Книга: Наука воскрешения видов. Как клонировать мамонта
Назад: Глава 4. Создаем клона
Дальше: В поисках чуда

Соматический ядерный перенос

Если в коллекциях по всему миру уже накоплено такое множество костей, зачем нам выбираться в поле, чтобы найти еще какие-то? Зачем иметь дело со сломанными вертолетами, золотыми рудниками, двадцатичетырехчасовым световым днем и тучами комаров? Ответ прост: лучшие кости – те, которые попали к нам прямиком из обледеневшей тундры. Мы хотим найти кости, которые ни разу не оттаивали. В них содержатся наилучшим образом сохранившиеся клетки с наилучшим образом сохранившейся ДНК.
Мы – не единственная группа ученых, проводящая свое лето в Арктике в поисках останков животных ледникового периода или болтающаяся по золотым приискам, но мне приятно думать, что у нас самый здравый подход к делу. К примеру, мы знаем, что не ищем клетки, которые можно будет клонировать. Все, что известно ученым о клонировании животных с использованием соматических клеток (то есть не являющихся ни сперматозоидами, ни яйцеклетками), говорит о том, что клонирование сработает только в том случае, если клетка содержит неповрежденный геном. Ни одной такой клетки не было обнаружено в останках вымерших животных, найденных во льдах тундры.
Разрушение ДНК начинается сразу же после смерти организма. Растительные и животные клетки содержат ферменты, задача которых – разрывать связи внутри молекулы ДНК. Эти ферменты, называемые нуклеазами, обнаруживаются в клетках, слезной жидкости, слюне, поте и даже на кончиках наших пальцев. Пока мы живем, нуклеазы критически важны для нас. Они уничтожают проникающие в наш организм патогенные микробы до того, как они причинят нам какой-либо вред. Они устраняют поврежденную ДНК, позволяя нашим клеткам починить то, что было сломано. А после смерти наших клеток нуклеазы разрушают их ДНК, так что нашему организму проще избавиться от них. Другими словами, нуклеазы эволюционировали таким образом, чтобы оставаться активными и после того, как клетка гибнет, и это плохие новости для тех, кто хочет клонировать мамонта.
В лаборатории мы не даем нуклеазам разрушать ДНК, которую мы пытаемся выделить, либо погружая свежий образец в раствор химических ингибиторов, либо подвергая его быстрой заморозке. Арктика – холодное место, но недостаточно холодное, чтобы заморозить что-то (особенно такое большое, как мамонт) достаточно быстро, чтобы защитить ДНК от распада. Вдобавок нуклеазы вырабатываются всеми живыми организмами, включая бактерии и грибы, которые колонизируют разлагающиеся тела мертвых животных. Следовательно, шанс, что геномы каких-либо клеток могут сохраниться совершенно нетронутыми в течение длительного времени после смерти, невелик. Без неповрежденного генома клонировать мамонта не получится. Точнее, не получится клонировать мамонта путем соматического ядерного переноса.
Соматический ядерный перенос – это унылое, но вполне подходящее название для процесса, благодаря которому у нас появился, в частности, самый известный клон – овечка Долли (рис. 8). Долли клонировали ученые из Рослинского института в Шотландии в 1996 году. Ученые удалили ядро – часть клетки, содержащую геном, из клетки молочной железы, взятой у взрослой овцы, и поместили это ядро в подготовленную яйцеклетку другой взрослой овцы. Затем эта яйцеклетка развилась в матке еще одной взрослой самки в совершенно здоровую особь своего вида. Важно отметить, что овца, клонированная путем ядерного переноса, была генетически идентична животному, ставшему донором клетки молочной железы, и не имела ничего общего со своей суррогатной матерью или той овцой, у которой взяли яйцеклетку.

 

Рис. 8. Соматический ядерный перенос, или «клонирование». У двух разных организмов берется соматическая клетка (слева вверху) и неоплодотворенная яйцеклетка (слева внизу). Ядра клеток удаляются, и ядро соматической клетки переносится в яйцеклетку, лишенную ядра. На яйцеклетку воздействуют электрическим током, и она начинает делиться. Образовавшийся эмбрион имплантируют суррогатной матери, и из него развивается особь, генетически идентичная донору соматической клетки

 

Чтобы разобраться в хитросплетениях этого процесса, нужно узнать кое-что о клетках. Наши тела (и тела других живых организмов) состоят из клеток трех основных типов: стволовых, половых и соматических. Соматических – больше всего, к ним относятся клетки кожи, мышечные клетки, клетки сердца и т. д. Соматические клетки имеют диплоидный набор хромосом, – это означает, что в них содержится по две копии каждой хромосомы – одна от матери и одна от отца. Соматические клетки также имеют специализацию – это могут быть клетки мозга, клетки крови или клетки молочной железы, подобные тем, которые использовали при создании Долли. Еще одна категория клеток – это первичные половые клетки (гоноциты), из которых образуются гаметы – сперматозоиды и яйцеклетки. Гаметы имеют гаплоидный набор хромосом, то есть в них содержится только одна копия каждой хромосомы. При нормальном половом размножении две гаплоидные гаметы сливаются в момент оплодотворения, образуя диплоидную зиготу, из которой затем развивается эмбрион.
При ядерном переносе этап оплодотворения и слияния гамет опускается. Вместо этого происходит процесс, называемый энуклеацией, в ходе которого удаляется гаплоидный геном яйцеклетки. Затем на его место помещается диплоидное ядро соматической клетки (в случае Долли – клетки молочной железы).
При нормальном половом размножении млекопитающих зигота, образовавшаяся при оплодотворении, содержит клетки, не имеющие никакой специализации. Такие неспециализированные клетки относятся к третьей категории и называются стволовыми. Стволовые клетки, из которых состоит зигота на раннем этапе своего развития, называют тотипотентными, потому что они могут превратиться в клетки любого типа и, следовательно, способны дать начало целому живому организму. По мере дальнейшего развития зародыша клетки размножаются и начинают дифференцироваться, то есть выполнять более специализированные функции в организме. На одном из самых ранних этапов развития зародыша тотипотентные стволовые клетки теряют свою способность превращаться в клетки любого типа, но все еще не имеют четкой специализации. Теперь эти клетки называются плюрипотентными. Плюрипотентные стволовые клетки млекопитающих, к примеру, могут превращаться в клетки любого типа, кроме плацентарных.
Плюрипотентные стволовые клетки представляют особенный интерес для науки, поскольку с их помощью можно лечить людей. Когда стволовые клетки делятся, из них получаются либо другие стволовые клетки, либо специализированные соматические. Это означает, что они потенциально способны заменять собой больные или поврежденные клетки. Стволовые клетки можно обнаружить не только в развивающемся эмбрионе, но и во всех тканях взрослого организма. Стволовые клетки взрослых склонны к более высокой специализации, чем эмбриональные, но, несмотря на это, они критически важны для восстановления поврежденных тканей и их обновления. В медицинских целях зачастую берутся стволовые клетки взрослых. К примеру, кроветворные стволовые клетки могут превращаться в различные виды кровяных клеток, и их используют в лечении заболеваний крови, в том числе лейкоза.
Давайте вернемся к клонированию путем ядерного переноса. Соматические клетки, в отличие от стволовых, высокоспециализированны. Они не могут превращаться в разные типы клеток, поскольку представляют собой конечную точку процесса дифференцировки. У соматических клеток есть конкретная функция, и их клеточные механизмы приспособлены к качественному выполнению этой работы. В соматической клетке, взятой из молочной железы овцы, происходит экспрессия только тех белков, которые нужны ей, чтобы выполнять функцию клетки молочной железы, и поэтому в ней включаются только те гены, которые кодируют эти белки.
Чтобы соматическая клетка смогла превратиться в целый живой организм, она должна «забыть» все о своей специализации и дедифференцироваться. Она должна снова превратиться в эмбриональную стволовую клетку.
Хотя Долли, возможно, – самое известное животное, появившееся на свет благодаря соматическому ядерному переносу, она не была первым клоном, созданным таким образом. В 50-х и 60-х годах XX века Джон Гёрдон из Оксфордского университета доказал, что лягушачьи яйцеклетки развиваются в лягушек даже после того, как ядра этих клеток были изъяты и заменены ядрами соматических клеток. Хотя в те времена механизм этого явления был не очень хорошо понятен, ключевым наблюдением Гёрдона стало то, что яйцеклетка каким-то образом запускает процесс дедифференцировки соматической клетки – и последняя «забывает», каким типом клетки была до этого. В 2012 году Гёрдон получил за это открытие Нобелевскую премию совместно с Синъей Яманакой из Киотского университета. Яманака позже обнаружил, что такой же плюрипотентности (дедифференцировки соматических клеток) можно добиться in vitro, то есть в тканевой культуре в лабораторных условиях, добавив в клетку набор факторов транскрипции, представляющих собой белки, которые соединяются с определенными участками ДНК и контролируют, какие гены должны включаться и когда. Такие клетки называют индуцированными плюрипотентными стволовыми клетками (iPSC).
Ядерный перенос используется для клонирования овец, коров, коз, оленей, кошек, собак, лягушек, хорьков, лошадей, кроликов, свиней и многих других животных. Также набирает популярность клонирование животных со специфическими требуемыми свойствами. В интернете широко рекламируются коммерческие службы, занимающиеся клонированием домашних животных и созданием клонированного потомства лошадей-чемпионов. Первые результаты уже видны: в конце 2013 года шестилетняя лошадь Шоу Ми, клон кобылы Сэйдж, выступавшей в конном поло, стала чемпионом Тройной короны в Аргентине, возможно, тем самым возвещая наступление новой эры в разведении животных для шоу и спорта.
Однако клонирование путем ядерного переноса имеет невысокую эффективность. Долли была единственным эмбрионом из 277, созданных в Рослинском институте, который дожил до своего рождения. Кобыла по имени Прометея, первая клонированная лошадь, появившаяся на свет, была единственным эмбрионом из 841, который развился в полноценную особь своего вида. Снуппи, кобель афганской борзой, клонированный корейским ученым Хваном У Соком, стал одним из двух щенков, рожденных после того, как 1095 эмбрионов имплантировали 123 разным суррогатным матерям, и единственным, прожившим более нескольких недель. Во всех этих случаях ученые имели доступ к потенциально бесконечному числу соматических клеток, взятых у живых зверей.
Живых мамонтов не существует.
Назад: Глава 4. Создаем клона
Дальше: В поисках чуда