1. Шестое, седьмое и другие чувства
Пре-Красный взгляд
Северная, а по положению относительно экватора — очень «южная» Австралия зимой напоминает южную, а по сути, весьма северную Якутию летом: +35 °C в тени, ясный небосвод и бесконечный частокол из тонких стволиков. Правда, в Якутии это лиственницы, а в Австралии — эвкалипты. Заблудиться легко и там, и там, но в Якутии хотя бы быстро к речке выйдешь, и жажда не мучит. А на австралийской Северной Территории — сплошь сухие русла. С опытным представителем местной геологической службы Пьером Крузом мы проплутали в общей сложности часов пять. Половину этого времени провели в поисках бледно-зеленых скал, на которых как золотистые шишки торчали позднекембрийские губки-гетерактиниды, еще столько же в попытке найти «лендровер», припаркованный на одной из бесчисленных грунтовок чьего-то обширного фермерского хозяйства. (В «лендровере» остался целый походный холодильник, доверху набитый банками с водой и восстанавливающими солевыми растворами.) А ведь место то было, можно сказать, цивилизованное: в этих скалах снимали некоторые сценки из второй части знаменитой австралийской кинотрилогии «Данди по прозвищу „Крокодил“».
Высушенные до кондиций вяленого бекона, мы решили заночевать на берегу реки Дейли. Правда, когда я, сорвав с себя майку, рванул к вожделенной воде, Пьер резко схватил меня за плечо, так, что едва не опрокинул навзничь. Дальше между нами развернулся краткий диалог на тему: «But why?» — «But how?». Короче: «Крокодилы, сэр». Накануне в Музее и художественной галерее Северной Территории в городе Дарвин мне были явлены 6,5-метровые скелет и шкура гребнистого крокодила: мало того что этот вид является самым крупным современным крокодилом на планете, так ведь именно эти скелет и шкура, будучи когда-то единым целым, слопали то ли семь, то ли восемь человек, причем целенаправленно по звуку выслеживали моторные лодки…
Ни одного крокодила при свете дня я так и не увидел. Однако стоило солнцу упасть за горизонт (вблизи экватора светило не закатывается, а именно падает — стремительно и отвесно), как у противоположного берега загорелась пара красных точек, затем еще одна, и вскоре вся кромка реки стала похожа на новогоднюю гирлянду из попарно соединенных лампочек. Я растолкал Пьера, с которым мы устроились на крыше «лендровера», и засыпал его вопросами о природе таинственных огней. «Крокодилы, сэр», — ответил он и повернулся на другой бок. А я не мог уснуть уже до самого утра. И не только из любопытства. С тех пор красные крокодильи глаза не раз мерещились мне даже на сибирских реках…
Трудно быть лошадью
Принято считать, что 90 процентов информации человек получает благодаря зрению. Если это так, то глаза других животных воспринимают и 150, и все 200 процентов информации. По сравнению с нашими, конечно. Ведь человеческий глаз во время развития как бы выворачивается наизнанку. Получается, что первичная лицевая сторона сетчатки обращена от зрачка в обратную сторону и свет, прежде чем попасть в фоторецепторы, преодолевает толщу других клеток. А прямо сквозь сетчатку проходит нерв, образуя слепое пятно. Из-за него предметы, находящиеся перед глазами, вдруг исчезают из поля зрения.
Мы видим мир в цвете, и наше цветовое восприятие называется трихроматическим: от греческого τρεϊς (три) и χρώμα (цвет). Если же сравнить его с красочными ощущениями многих животных, то такой хроматизм, скорее, происходит от слова «хромать». Так уж случилось, что наши дальние предки — первые плацентарные млекопитающие, которые жили буквально в тени динозавров, или даже зверозубые ящеры, — наверное, предпочитали вообще не выходить на свет, пока дежурил дневной дозор ужасных хищников. Мелким ночным зверькам все краски мира были ни к чему. Вот и утеряли они половину цветовых рецепторов — колбочек, которыми обладали их рептилиеподобные прародители. Киты и тюлени, освоившие водную стихию, а также ночные приматы полностью лишились цветового восприятия — их мир стал монохроматическим, черно-белым.
Цветное зрение — это нечто иное, как способность различать волновые спектры света. Большинство плацентарных млекопитающих остались дихроматиками: у них отсутствуют колбочки, восприимчивые к длинноволновой части спектра, то есть к красному цвету. Им все кажется либо ультрафиолетово-зеленым (грызуны), либо сине-зеленым (лошади, коровы, кошки, собаки). Как дальтоникам. Так называют людей, для которых красный и зеленый выглядят одинаково, а оттенков совсем не существует. Вместо, скажем, желто-зеленого они видят белый, серый или просто желтый. Многим этот дефект не мешает, и, пока в детских садах и школах не ввели обязательную проверку цветового восприятия, человек мог прожить всю жизнь, даже не догадываясь о том, что он не такой, как все. Первым природу этого явления попытался понять в конце XVIII века химик Джон Дальтон, преподававший в Нью-Колледже в Манчестере. Он заметил у себя и своего брата необычные ощущения красок: цветок пеларгонии, который при дневном свете казался небесно-голубым, при свечах становился почти желтым. (На самом деле пеларгония была розовой.) Дальтон решил, что от природы обладает синим фильтром, и завещал свои глаза для исследований. После смерти ученого в 1844 году лечащий врач Джозеф Рэнсам провел вскрытие и не обнаружил ни в стекловидном теле, ни в роговице или хрусталике решительно ничего необычного. Лишь 150 лет спустя остатки глаз Дальтона были изучены молекулярными биологами. Они и выявили отсутствие гена, кодирующего опсин, который воспринимает зеленую часть спектра. Опсин — это белковая часть пигмента; другой частью является хромофор — производное витамина А. Хромофор изменяет свою структуру под действием света, а опсин улавливает этот химический сигнал и передает его дальше — в зрительный нерв мозга.
Дальтонизмом в среднем страдают 2 процента людей. Болезнь эта — наследственная и связана с неполадками в Х-хромосоме, где гены, кодирующие два разных опсина, расположены вплотную друг к другу. Поэтому среди мужчин, имеющих всего одну такую хромосому, дихроматиков больше — до 8 процентов. Те же самые генетические закономерности наблюдаются у наших ближайших родственников — других приматов Старого Света. А вот у некоторых видов южноамериканских обезьян вообще все самцы дальтоники.
Из млекопитающих только приматы 35–40 миллионов лет назад вернули себе трихроматическое зрение. Стимулом к новообретению цветного зрения стал образ жизни, связанный с поисками плодов в кронах деревьев. Ведь незрелые зеленые фрукты не только не очень вкусные, но нередко и ядовитые, в отличие от созревших, сочных и сладких, красных и ярко-желтых. К тому же точность прыжков с ветки на ветку невозможна без правильного восприятия цвета и, значит, развитого мозга, который играет важную роль в обработке зрительных сигналов. Правда, нейробиолог Марк Чангизи из Политехнического института имени Ренсселера в Трое (штат Нью-Йорк) считает, что более важной причиной развития у приматов цветного зрения стало появление голых участков кожи. Покраснение лица (или противоположного ему участка тела) подскажет, что интересующая вас персона пребывает в гневе или, наоборот, смущается; позеленение — укажет на нездоровье. Вполне достаточный повод, чтобы научиться разбираться в цветовых, а следовательно, и в эмоциональных оттенках поведения себе подобных. И действительно, среди приматов цветовое восприятие лучше развито у видов с обнаженными лицами (и не только).
Как бы то ни было, на химико-генетическом уровне все решилось достаточно просто — благодаря возникновению двух разных генов на основе одного, отвечающего за синтез опсина, который воспринимает средние (зеленые) волны. Достаточно заместить одни аминокислоты на другие всего на трех из 348 участков молекулы опсина, и цветовое восприятие сдвинется на 30 нанометров. Этого вполне достаточно, чтобы увидеть дополнительный спектр: разница между красным и зеленым спектральными пиками как раз составляет 30 нанометров.
Насколько быстро может распространяться подобное генетическое изменение? Очень быстро. Как уже было сказано, на 100 человек в среднем приходятся два дальтоника, а на атолле Пингелап в Микронезии красный цвет не различают 75 человек из 700 его обитателей. Там после тайфуна 1775 года выжило всего 20 человек. Один из них оказался дальтоником, но очень плодовитым…
Все краски мира
Вернемся ко времени появления млекопитающих. Если в начале эволюции они лишились половины своих цветовых рецепторов и остались с двумя типами колбочек, то, значит, их предки обладали тетрахроматическим зрением? Это на самом деле так. Практически у всех других позвоночных — рыб, земноводных, пресмыкающихся (например, крокодилов), птиц, а также вымерших динозавров — цветовое восприятие богаче нашего. Мы привыкли считать основными цветами — красный, зеленый и синий; остальные примерно 100 оттенков — их производные. Эту цветовую шкалу создали наши светочувствительные пигменты. Они наиболее восприимчивы к световым волнам с пиками около 560 (красный), 530 (зеленый) и 420 (синий) нанометров. А скажем, птицы видят еще и ультрафиолетовый (370–390 нанометров). В многоцветье и ультрафиолетовом сиянии перед ними предстают партнеры, плоды и цветы, которые нам кажутся одноцветными. (Скажем, воробей — не бледнее павлина.) Они видят красно-зеленый и ультрафиолетово-зеленовато-красный оттенки, которые мы и вообразить не в состоянии. Сами перья тоже добавляют яркости: благодаря закономерному, в виде пластин, расположению наноразмерных органелл — меланосом, отвечающих за окраску, перья иридисцируют — переливаются всеми цветами радуги, испуская опять же невидимый для нас отраженный свет. Во всем блеске представали перед своими партнерами и пернатые динозавры.
Кроме того, в глазах у пернатых, а также пресмыкающихся есть цветовые фильтры — окрашенные масляные капли. Эти фильтры сужают области спектра, воспринимаемые каждым пигментом, и тем самым приумножают количество видимых цветов. Птица никогда не перепутает оранжевато-желтую гусеницу с желтовато-оранжевой.
Не только птицы могут «похвастаться» восприятием ультрафиолетового цвета. У пчел эту способность обнаружили еще в XIX веке, а знаменитый этолог Карл фон Фриш, работавший в Венском университете, в 1914 году придумал, как с помощью цветных и серых (разного оттенка) бумажных квадратиков узнать, сколько цветов видят эти перепончатокрылые. Правда, Фриш не сумел определить, как пчелы на самом деле воспринимают красный или желтый. Сегодня же исследователь может взять пчелу, вживить в ее 5-микронный фоторецептор микроэлектрод, затем направить в глаз луч света того или иного спектра и измерить разность потенциалов, которая при этом возникает в клетке.
Впрочем, и квадратики фон Фриша могут еще пригодиться. Например, зоопсихолог Ларс Читтка из Лондонского университета королевы Марии и его коллеги нанесли на такие квадратики вместо красок фотопортреты нескольких человек. И оказалось, что пчелы способны запоминать и распознавать лица людей! Уже с третьей попытки большинство насекомых безошибочно выбирали ту физиономию, которая в предыдущих опытах была намазана медом, вместо той, которую покрывали горьким хинином. Затруднение вызывали лишь перевернутые портреты. Но и у людей с этим не лучше. Значит, для такого непростого задания необязательно иметь особые отделы мозга, как предполагают нейропсихологи? Даже крошечные мозги на многое способны. Ведь пчелы, которые думали дольше, точнее осуществляли выбор.
Когда перед пчелами, выведенными в искусственных условиях и никогда не видевшими настоящих цветов, Ларс Читтка и художник-инсталлятор Джулиан Уолкер выложили репродукции картин Винсента Ван Гога, Поля Гогена, Фернана Леже и Патрика Колфилда, насекомые в большинстве выбрали «Подсолнухи» Ван Гога. Искусствоведы уже было заговорили о том, что даже пчелы различают подлинных художников, но экспериментаторы остудили их пыл: перепончатокрылых прежде всего заинтересовали контрастные сочетания красок и наиболее привлекательные для них цвета.
Цветовая шкала пчел складывается из ультрафиолетового, синего и зеленого спектров (340, 440 и 530 нанометров соответственно). Мир эти насекомые видят примерно таким: пурпурный мак, в лепестках которого присутствует почти невидимый для нас синий оттенок, для них предстает в ультрафиолетовом цвете; сиреневый колокольчик — ультрафиолетово-синим; темно-розовый иван-чай — синим; бледно-розовый шиповник и белый клевер — синевато-зелеными; светло-желтая чина луговая — зеленой; а темно-желтый рапс — зеленовато-ультрафиолетовым. Конечно, все это — наши представления о пчелином восприятии. Увидеть мир в подлинных пчелиных красках нам мешает хрусталик, не пропускающий ультрафиолетовые лучи. Впрочем… В 1923 году французскому художнику Клоду Моне удалили вместе с катарактой хрусталик правого глаза, и он мог видеть этим глазом ультрафиолет. Среди его картин последующих лет есть парные пейзажи, удивительно различные по сочетанию красок. Искусствоведы считают, что он писал их при разном освещении. А может, прикрывая по очереди один глаз?..
С земляными шмелями на острове Сардиния случилась примерно такая же история, как с микронезийцами атолла Пингелап. Правда, дальтониками они не стали, а, наоборот, обрели способность видеть красный цвет. И стали воспринимать мир в четырех спектрах, как многие бабочки, жуки, стрекозы и мухи. И если у нас всего три гена, кодирующих опсины, то у стрекоз таких генов может быть и 33: небольшая их часть включается на стадии водной личинки, а большинство — у взрослого насекомого, поскольку одни опсины нацелены на улавливание коротковолнового света, льющегося с неба, а другие — длинноволнового, отраженного от земли. У бабочек встречается и очень сложное цветовое восприятие — до пяти спектров, а в глазах присутствуют дополнительные пигменты-светофильтры. Точность в выборе нужного оттенка чешуекрылым необходима, чтобы обнаружить наиболее свежие и молодые листья для откладки яиц, из которых вылупятся прожорливые гусеницы. По цвету крыльев бабочки иногда можно определить, какие цвета она видит, поскольку их раскраска определяется теми же самыми пигментами, которые воспринимают цвета в ее глазах. Бывает, что дополнительные глазки возникают на пенисе, и они — видят! У бабочек-голубянок крылышки самцов и самок заметно отличаются. А все потому, что мужские и женские особи действительно смотрят на мир разными глазами. А некоторые птицы неодинаково воспринимают цвета даже левым и правым глазом.
Теперь, когда стало ясно, что чем ярче выглядят животные, тем красочнее их восприятие мира, достаточно посмотреть вокруг, чтобы заметить яркую раскраску оперенья птиц, крылышек насекомых, шкурок ящериц и лягушек (яркое оперенье было и у некоторых динозавров, пусть оно и сохранились только в виде пигментных зерен). Им можно только позавидовать. Цветковые растения, подстраиваясь под видение своих опылителей и разносчиков семян, тоже уподобились радуге, причем не семицветной, а невидимой для нас гораздо более красочной. Хотя тем же птицам цветы в разнообразии оттенков уступают…
Красное море
Рыбы, особенно обитатели мелководья, разнообразием расцветок могут поспорить с птицами и бабочками. И они видят много цветов. Для цихлид, живущих в больших африканских озерах, разница в цветовом восприятии даже стала основой для дальнейшей эволюции: в озере Виктория бурно стали плодиться виды с красной чешуей, а в Ньяса — с синей и фиолетовой. У цихлид зрение, кстати, гексахроматическое: их глаза различают ультрафиолетовый, фиолетовый, синий, сине-зеленый, зеленый и красный спектры. Последний, длинноволновой, лучше других распространяется в мутных водах озера Виктория, поэтому там и преобладают красные рыбы. В основе изменения окраски, конечно, лежат генетические перестройки, в первую очередь касающиеся генов, кодирующих опсины, что и показали работы генетика Ёхи Тераи и его коллег из Токийского технологического института.
Шесть спектральных типов светочувствительных клеток — далеко не предел: у раков-богомолов их 16, и 10 или 12 из них используются для цветового восприятия! Можно только позавидовать, но, увы, даже приблизительно не узнать, что видит это членистоногое. И зачем ему все это видеть?
В море длинноволновая (красная) часть спектра поглощается в пределах десятка метров, затем наступает черед средних (зеленых) волн, а глубже всех проникают короткие (синие). Именно поэтому мелководье нам кажется бирюзовым, а открытое море — синим. Спектральное различие между верхними и нижними слоями воды могло стимулировать появление по крайней мере двух разных фотопигментов. Но зачем рыбам и другим морским обитателям красный цвет? Многие жители океана предпочитают именно его, поскольку сами флюоресцируют — испускают красное свечение. В излюбленном ныряльщиками Красном море среди рыб это — морские иглы, собачки, губаны, бычки, а также некоторые водоросли, губки, кораллы и офиуры. Синее море, если взглянуть на него глазами рыб, действительно оказывается красным.
Даже в многокилометровых глубинах, куда не проникает ни единый солнечный фотон, рыбы не спешат расставаться с цветным зрением. По красным и оранжевым сигнальным вспышкам рыбы-драконы (стомии) находят своих партнеров на расстоянии в несколько метров. Дальше, увы, не получится. Одна из подобных рыб — малакост — для восприятия красного света приспособила зеленый пигмент растений хлорофилл; его малакост получает вместе с пищей — веслоногими рачками, которые в свою очередь питаются одноклеточными водорослями. Чтобы при этом не попасть в зубы хищнику, рыбы испускают контрвспышки, искажающие контур тела. А самое дно океана порой напоминает ночной город, который внезапно разбудили. Проплывающий ромбовый скат частыми взмахами плавников колышет заросли бамбуковых кораллов, и те полыхают рекламным неоном, среди которого мигают габаритные огни офиур, морских пауков и морских лилий.
Как понять, что видно, скажем, на глубине 400 метров? Всего лишь прогуляться лунной ночью по лесу. Освещенность в таком лесу в 100 миллионов раз ниже, чем в поле в безоблачный солнечный день. В безлунную, но звездную ночь — еще в 100 раз ниже, как на глубине 600–700 метров. Мы при этом в лучшем случае различаем размазанные контуры ближайших предметов и никаких цветов. А быстрокрылые бабочки бражники, которые вылетают пить нектар в сумерках, и ящерицы гекконы, которые охотятся по ночам, ориентируются на цвет, что установили биофизики Лина Рот и Альмут Кельбер из Университета Лунда.
У столь разных приборов цветного ночного видения, какими являются фасеточные глаза бражника и камерные глаза геккона, есть одно сходство. И те, и другие имеют особую клеточную выстилку зеркального типа позади сетчатки. Это зеркальце отражает свет, упущенный фоторецепторами, и направляет его обратно прямо в эти клетки. Поэтому глаза бражников сверкают в темноте, если на бабочку направить луч фонарика. Глаза кошки и крокодила тоже светятся: во тьме они горят зелеными или красными огоньками. И в них есть такая же выстилка. Кроме того, улавливать незримый ночной свет им помогают щелевидный зрачок и близкое расположение сетчатки к хрусталику. Но цвета в темноте ни кошка, ни крокодил не различают.
У страха глаза велики
Упомянутые фасеточные и камерные глаза — две основные конструкции органов зрения. Леонардо да Винчи и другие художники Возрождения развлекали своих меценатов камерой-обскурой: в небольшой зале с беленой задней стеной завешивали окна плотной черной тканью и прорезали малюсенькую дырочку. В ясный день на стене отображалось все, что находилось по ту сторону окна, только вверх ногами. Привычный вид отражению возвращали с помощью зеркал. Именно так устроен и наш глаз, а также глаза других позвоночных, осьминогов, кальмаров и некоторых других существ. Такой глаз и называется камерным. У осьминогов и кальмаров он, кстати, устроен лучше человеческого: нет слепого пятна, а кровеносные сосуды не мешают фоторецепторам.
Эволюция камерного глаза началась с нескольких светочувствительных клеток на поверхности тела, которые изначально могли служить для ориентации на свет и наоборот. (Примерно так устроен глаз у плоских червей.) В трехмерном пространстве океана эта задача была не только достаточной, но и необходимой: темнота опасности не сулила, убийствен был именно свет — ультрафиолетовое облучение на поверхности. Для усиления восприятия достаточно было проложить под фоторецепторами слой пигментных клеток — вместе они образуют сетчатку. Иначе свет просто рассеется.
Чтобы увидеть не просто свет, а картинку, хотя бы размытую, требуется усилить разрешающую способность глаза — сфокусировать его, либо поместив клетки в ямку, либо сократив площадь пигментного слоя. Так уменьшится угол падения луча на поверхность отдельной клетки, а это и есть основное условие остроты зрения. Углубление ямки более простой путь к достижению цели, но лишь до того момента, пока глубина ямки не сравняется с диаметром. Дальше требуется уменьшать ее отверстие. Вот и получилась та самая камера-обскура — камерный глаз с дыркой-зрачком. Роль зрачка видна на таком примере: европейцы, и не только они, плохо видят под водой, из-за того что зрачок не сужается менее 2,5 миллиметра. А у детей из племени мокен, которых называют морскими цыганами, зрачок может уменьшаться до 1,96 миллиметра: они без маски ныряют в Андаманское море, где собирают мелких моллюсков и трепангов. Впрочем, эта разница — результат тренированности, а не природный дар.
Однако и у размера зрачка есть свой предел, обусловленный двойственной природой света: это и волны, и частицы — фотоны. Фотоны, попадая в зрачок, создают статистический шум, который усиливается по мере сужения отверстия. И тогда нужно добавить хрусталик — линзу, которая без искажений сфокусирует луч на наиболее чувствительном участке клеток, где колбочки сидят особенно плотно, — например, в центральной ямке. Изображение обретает четкость, не теряя в яркости. Такая ямка есть у человека, но у дневных хищных птиц клеток в ней намного больше, благодаря чему, скажем, орел, видит муравья с высоты 10-этажного дома.
Для всех этих преобразований требуется всего несколько сотен тысяч лет эволюции. Не удивительно, что глаза, и камерные (у позвоночных), и фасеточные (у членистоногих), появились не позднее 530 миллионов лет назад, всего через 15–20 миллионов лет после возникновения этих организмов. В первую очередь — у подвижных хищников. Хищники и создали современный мир, что подтвердилось в последние два десятилетия. За эти годы в древних слоях, накопившихся в течение «кембрийского взрыва» — временного интервала стремительной эволюции живых существ (540–515 миллионов лет назад), палеонтологи нашли многочисленные остатки разнообразных морских хищных животных. Хищники вынудили прочих своих современников совершенствовать средства защиты, то есть эволюционировать. Но что предопределило быструю эволюцию самих хищников?
В жизни успешных хищников, будь то тигр, орел, стрекоза или человек, важную роль играют глаза. Может быть, разгадка кроется именно в развитии органов зрения? Достаточно «включить свет», и начнется бурное преобразование форм, размеров, цветов и поведения, то есть взрывная эволюция видов. Зоолог Эндрю Паркер из Музея естественной истории в Лондоне так и назвал свою идею, объясняющую причины «кембрийского взрыва», — «гипотезой включенного света». Ведь всего за несколько генных перестроек пропускающая свет дырка в покровах тела со светочувствительными клетками на дне превращается в совершенный орган.
Глаз кембрийского аномалокаридида состоял из 3000 крупных фасеток; это морское животное хорошо видело даже в мутной воде. 515 миллионов лет Остров Кенгуру, Австралия. 5 мм в поперечник! (предоставлено Майклом Ли)
В раннекембрийском морском сообществе китайского Ченцзяна (520 миллионов лет) среди нехищных животных менее 5 процентов обладали глазами, а среди хищников — более половины. А в отложениях, которым 505 миллионов лет, палеонтолог Майкл Ли из Южно-Австралийского музея и его коллеги обнаружили отпечатки больших фасеточных глаз, прекрасно сохранившихся, благодаря минеральному замещению органического вещества (хитина). Их обладатель был зорким сумеречным хищником, высматривавшим жертвы из толщи воды. Подобные глаза характерны для большинства членистоногих. Каждый из пары фасеточных, или сложных, глаз состоит из множества — у стрекоз до 28,5 тысячи — структурных единиц омматидиев. А чем больше омматидиев, тем острее зрение, подобно тому как чем больше пикселей, тем четче картинка на мониторе. Наружная часть омматидия несет роговицу в форме правильного шестигранника и дополнительную линзу — хрустальный конус. Под ними располагаются удлиненные светочувствительные клетки с нервными окончаниями, образующими зрительный нерв. Омматидий окружен экранирующим пигментным слоем: сплошным у дневных насекомых или смещенным к линзе — у ночных. В последнем случае лучи света, попадающие на соседние омматидии, сходятся в определенной точке, что повышает чувствительность глаза. Из-за малого размера и обособленности омматидиев каждый из них проводит очень узкий пучок лучей, и изображение получается мозаичным.
Глаз кембрийского животного включал примерно 3 тысячи крупных омматидиев, в каждом из которых прекрасно выражена линза. Расположение и размер шестигранных линз указывают на то, что эти глаза принадлежали активному хищнику, способному видеть даже при тусклом освещении. По своему устройству они ни в чем не уступают фасеточным глазам наиболее совершенных насекомых — мух. Прежде глаза сравнимой сложности были известны у членистоногих, живших на 85 миллионов лет позже (у силурийских трилобитов). Животные с такими глазами, подобно современным стрекозам или хищным мухам ктырям, могли издалека разглядеть потенциальную добычу и просчитать скорость и направление ее движения. Что, собственно, и нужно для успешной охоты. Вполне возможно, что эти животные уже видели цветную картинку. Во всяком случае, раковинки и панцири многих существ имели радужную окраску благодаря тонкой штриховке на поверхности, которая по-разному преломляет лучи, расщепляя белый свет на цветные составляющие.
Взгляд трилобита на действительность
Благодаря рентгено-томографическому сканированию высокого разрешения Бригитте Шёнеманн из Боннского университета минералогии и палеонтологии удалось заглянуть под каменные (из прозрачного кальцита) линзы трилобита и увидеть остатки пигментных клеток. Со стороны глаза трилобита, наверное, выглядели синими. Они хорошо отражали ультрафиолетовые лучи и, поскольку были кальцитовыми, даже светились под действием этих лучей — флюоресцировали. Использовать минеральные хрусталики для глаз научились также офиуры и многостворчатые моллюски хитоны — у них линзы рассеяны по всему панцирю (ученые догадались заглянуть в эти глаза лишь в последние годы).
Благодаря каменной природе трилобитового глаза, его можно рассмотреть в деталях, и деталей таких немало. Самые сложноустроенные глаза у ордовикских факопин: каждая линза (до двух миллиметров в диаметре) состояла из трех частей: внешней, которая представляла собой совершенную апланатную линзу Рене Декарта (у некоторых — Христиана Гюйгенса), срединного ядра и чаши. Внешняя линза состояла из отдельных оптических цилиндров, изогнутых так, чтобы к поверхности линзы подходить под прямым углом в любой ее части. А ядро отличалось повышенным содержанием магния в кристаллической решетке. Такая конструкция четко фокусировала луч на пигментных клетках; помогала избежать сферических искажений — самой большой проблемы оптических приборов, сработанных руками, даже такими умелыми, как у Декарта и Гюйгенса (и это за 470 миллионов лет до рождения гениальных физиков XVII века); хорошо видеть в водной среде благодаря близкому коэффициенту преломления; была бифокальной (или даже трифокальной). То есть как в бифокальных очках, не меняя их, можно было рассматривать либо удаленные объекты, либо те, что под «носом» — прямо под антеннами и другими передними конечностями. Причем если у человеческих очков центры фокусировки находятся в верхней и нижней частях, то в трилобитовых «очках» эти центры располагались в середине (ближнее зрение) и на периферии линзы (дальнее).
В фасеточном глазу девонского трилобита сохранился светочувствительный пигмент, который указывает, что он видел не хуже, чем крупный современный рак. 390 миллионов лет. Германия. Масштабная риска = 500 мкм (предоставлено Бригиттой Шёнеманн)
Реконструкция глаза трилобита: в фасетке находился хрусталик (2 миллиметра в диаметре), состоявший из нескольких линз, каждая из которых образована множеством столбчатых кристаллов кальцита высокой чистоты. Художник Алина Коноваленко
Эволюция глаз трилобитов тесно связана с изменениями, происходившими в среде их обитания. У первых представителей этой группы, равно как и у других морских раннекембрийских членистоногих, фасеточные глаза не отличались совершенством: фасеток насчитывалось немного и они не имели четкой шестигранной формы. Такие глаза годились в мутных тусклых придонных водах. Держаться ближе к поверхности животным не позволяла высокая ультрафиолетовая радиация. К концу ордовикского периода (450 миллионов лет назад) появились пелагические трилобиты с огромными почти шаровидными глазами и сферическим обзором — это значит, что атмосфера насытилась кислородом и образовавшийся озоновый щит отражал большую часть ультрафиолетового излучения. Можно было плавать у самой поверхности, не опасаясь, что флюоресценция собственных глаз ухудшит зрение. А в конце девонского периода (360 миллионов лет назад) многие трилобиты почти ослепли — либо лишились органов зрения, либо остались с маленькими, в несколько фасеток, глазками. Это было время, когда уровень кислорода вновь сильно упал, а в прибрежные моря стали выноситься большие объемы нитратов и фосфатов, вызывавшие цветение фитопланктона, из-за чего водная толща утратила прозрачность. А зачем в темноте столь дорогостоящий прибор, как глаза?
Впрочем, острота зрения у всех животных со сложными глазами сравнительно небольшая, не лучше, чем у мыши, и зависит от числа и размера фасеток. Если бы человек имел такие глаза, то при нормальной остроте зрения каждый из них был бы не менее метра в поперечнике! Авторы фантастических триллеров до этого не додумались: они приставляют человеческому телу мушиную голову и вместо монстра получается слепой неудачник.
Так, по мнению авторов кинотриллера «Муха», должен был выглядеть человек с мушиными генами (справа). Но чтобы обладать остротой зрения человека, он, по расчетам нейробиолога Куно Киршфельда, должен иметь глаза метрового поперечника. Художник Алина Коноваленко
Камерные глаза — прекрасный прибор для разглядывания мелких деталей. И только в этом отношении человеческие глаза одни из лучших. Если принять остроту нашего зрения за единицу, то лошади придется надеть очки с 5 диоптриями, собаке — с 7, кошке — с 8, а мыши — с 10. В данной шкале и единица далеко не высший балл: у некоторых кальмаров зрение лучше, а у орла и сокола зрение раз в десять острее нашего. В очках бы ползали и змеи, причем не только очковые. В общем, чем меньше камерный глаз, тем хуже он видит.
Самые большие камерные глаза среди наземных животных — у страуса и лошади (5 и 3,4 сантиметра в диаметре соответственно). У нас — 2,4 сантиметра. Лошадь в естественных условиях — животное сумеречное, а в темноте нужно ловить каждый фотон. Для человека темнота наступает тогда, когда на один фоторецептор приходится меньше одного фотона в минуту. Притом в сумерках вместо фоторецепторов колбочек, различающих цвета, в дело вступают палочки, воспринимающие все в черно-белых тонах, зато с лучшей разрешающей способностью. У глубоководных рыб сетчатка превращается в многослойную (до 28 слоев) батарею для охоты за фотонами. И глаза у них по сравнению с размером тела становятся неимоверно большими и в 120 раз более чувствительными, чем у человека. По абсолютным размерам глазного яблока морские организмы тоже обошли наземных: синий кит — 11 сантиметров, меч-рыба — 9 сантиметров в диаметре. Чтобы лучше видеть, этот хищник направляет тепло, вырабатываемое мускулатурой при быстром движении, к мозгу и глазам, поднимая их температуру на 10–15 °C выше окружающей среды. Среди палеозойских организмов самые большеглазые — некоторые виды трилобитов, вероятно, тоже были обитателями глубин: многоканальное устройство и высокая степень прозрачности их минеральных фасеточных глаз указывают на способность улавливать даже небольшое число фотонов.
Проверка остроты зрения: что бы видели животные на месте человека с неиспорченным зрением, равным 1; у гигантских кальмаров (внизу) зрение острее, а для орлов и соколов в стандартной таблице даже строчки не видно. Художник Алина Коноваленко
Рекордсменами среди глазастых животных являются гигантские кальмары: глазное яблоко — 27 сантиметров в диаметре, зрачок — 9. А нужны им такие большие глаза… конечно, чтобы лучше видеть, но не Красную Шапочку, то есть добычу, а своих недругов — кашалотов. На 600-метровой глубине кашалот, двигаясь сквозь облака планктона, вызывает свечение микроорганизмов, которое и улавливает чуткий взгляд кальмара. Кальмар различает темный силуэт кашалота на светящемся фоне за 120 метров. Скрыться он не успеет, но сможет приготовиться к встрече с врагом во всеоружии. Крупнее, чем у кальмаров, глаза были только у вымерших морских ящеров ихтиозавров — до 35 сантиметров в диаметре. Наверное, для тех же целей: избегать своих соперников — плиозавров. Вполне возможно, что глубоководная охота и, следовательно, необходимость подогрева глаз вызвали развитие теплокровности у юрских и меловых гигантских морских ящеров — плезиозавров, ихтиозавров и мозазавров. Во всяком случае, геохимик Орельен Бернар из Лионского университета и его группа обнаружили, что кости этих животных по изотопному составу кислорода очень отличаются от рыбьих, и оценили температуру тела ящеров в 35–39 °C в 12-градусной воде.
Убивающая взглядом
Как только органы зрения появились, их можно было приспосабливать к различным условиям, уменьшая или увеличивая размеры глаза, разнообразя строение сетчатки или смещая глаза в разные части головы, если она есть, для создания панорамного, стерео- или телескопического зрения. У кубомедуз, например, нет ни головы, ни мозгов, а камерные глаза с хрусталиком и сетчаткой имеются. Личинки этих медуз с помощью глаз и передвигаются. Это совсем не сложно: светочувствительные клетки происходят от жгутиковых предшественников, основной задачей которых было именно движение.
Древние греки придумали множество мифических существ, казалось бы обладавших совершенно неправдоподобными способностями. Медуза Горгона убивала взглядом, а у девятиголовой змееподобной Лернейской гидры заново отрастали отрубленные головы. В эпоху Просвещения ученые ввели традицию присваивать имена мифических созданий реальным организмам, в чем-то напоминающим своих фантастических тезок. У маленькой пресноводной гидры действительно заново отрастают многочисленные щупальца, а некоторые ее морские родственники — медузы — способны убивать людей. Яды воздействуют на нервную и кровеносную системы, а одно из самых опасных животных — тихоокеанская кубомедуза Chironex fleckeri — насмерть поразила более 200 человек. Люди, пережившие ее нападение, утверждают, что в момент укуса чувствовали будто тысячи раскаленных гвоздей вонзаются в тело.
Эти «тысячи гвоздей» являются стрекательными клетками, которые есть в щупальцах и гидры, и медузы, и коралла, потому всех этих животных называют стрекающими (книдарии). Каждая такая клетка содержит пузырек с ядом и спирально свернутую трубочку с похожим на гарпун наконечником. Если чувствительные клетки гидры ощущают приближение возможной добычи, трубочка мгновенно — всего за 700 наносекунд — раскручивается и выстреливает с такой силой, что пробивает даже панцирь рака. И яд поступает в ткани обреченной жертвы.
Лишь недавно зоолог Дэвид Плачецки из Калифорнийского университета (Дэвис) смог раскрыть некоторые секреты стрекательных клеток. Оказалось, что их эластичная оболочка состоит из белка, близкого по составу к тому белку, который образует паутину. А каждая чувствительная клетка иннервирует батарею из примерно 30 стрекательных. Хотя глаз, в нашем понимании, у гидры нет, она, когда тень жертвы падает на нее, разряжает свои ядовитые клетки, причем лучше попадает в цель в условиях плохой освещенности.
В таких клетках гидры и медузы содержатся светочувствительные рецепторы и белки, контролирующие восприимчивость к свету. Еще в них есть регуляторные гены, которые являются предковыми для генного комплекса, отвечающего у позвоночных за формирование не только органов зрения, но и слуха. Выходит, что наши способности видеть и слышать имеют сходство на генном уровне. А медузы, получается, убивают взглядом, поскольку стрекательные клетки одновременно служат у них глазами.
Магический кристалл
Всем этим возможности глаз не исчерпываются. Так, вблизи глубоководных черных курильщиков, извергающих 350-градусные гейзеры, обитают многочисленные креветки и крабы, которые, чтобы не заблудиться в холодной безжизненной мгле, со всех сторон окружающей теплые оазисы, приспособились видеть инфракрасное излучение (700–1000 нанометров), исходящее от горячих растворов. Но не только: нейробиолог Стивен Чемберлен из Сиракузского университета в штате Нью-Йорк обнаружил в глазах этих ракообразных пигменты, восприимчивые к зеленому свету. На такую глубину световые волны средней длины не проникают. Значит, источник зеленого свечения нужно искать в курильщиках. Геофизики его открыли: мириады пузырьков газа, выделяющиеся при извержении курильщиков, взрываются и излучают зеленый свет. Это явление называется сонолюминесценция.
Пресноводная гидра… убивает взглядом: на кончиках ее щупалец стрекательные клетки сопряжены со светочувствительными (темные пятна на периферии диска). Они мгновенно реагируют на любые изменения освещенности, впрыскивая яд жертве. Диаметр диска 200 мкм (предоставлено Дэвидом Плачецки)
На суше инфракрасный свет видят гремучие, или ямкоголовые, змеи. На голове у такой змеи есть пара ямок, которые устроены почти так же, как камерные глаза: не хватает лишь хрусталика. Тепло, исходящее от тела мыши, попадает в ямку и возбуждает чувствительные клетки, способные различать разницу температур в тысячную долю градуса (Кельвина). Мозг обрабатывает полученную информацию, сопоставляет ее с той, что поступила через обычные органы зрения, и складывает в достаточно понятное изображение мыши. Не исключено, что дополнительный прибор видения понадобился змеям для улучшения зрения. Ведь их «прозрачная роговица» является сросшимися и не вполне прозрачными веками. Они пронизаны густой кровеносной сетью. Герпетолог Кевин ванн Дорн из канадского Университета Ватерлоо выяснил, что относительно четкую картинку змея видит в моменты единовременного сокращения сосудов, длящегося около 100 секунд.
Лучи света различаются не только по спектру: проходя сквозь атмосферу, отражаясь от гладкой водной поверхности или глянцевой листвы, они поляризуются. Если в обычном пучке света электромагнитные волны колеблются в любых плоскостях поля, перпендикулярных его распространению, то в поляризованном — большинство волн колеблется в одной плоскости. И многие насекомые, и птицы приспособились видеть поляризованный свет, чтобы находить его источник: днем — солнце, ночью — луну. Конечно, в ясную погоду такой необходимости нет, но, когда небо тучами покрыто, определить, где находится светило, непросто. В море главная плоскость поляризации лежит параллельно поверхности, и хищники — рыбы и головоногие моллюски — научились извлекать из этого выгоду: если зрачок и расположение наиболее чувствительных участков сетчатки — вертикальные (как у рыб) или, наоборот, горизонтальные (как у осьминогов и каракатиц), то разрешающая способность глаза увеличивается почти в два раза. Используя разницу в поляризации различных световых потоков, в воде можно разглядеть прозрачные объекты, а ведь многие морские организмы (медузы, гребневики, кальмары), чтобы слиться с окружающим фоном, используют прозрачный камуфляж. А кальмары и каракатицы имеют окраску, различимую только для тех, кто видит поляризованный свет.
Меловой глубоководный ихтиозавр Leninia, открытый палеонтологом Максимом Архангельским в Ульяновской области, был одним из рекордсменов по размеру глаз (диаметр зрачка 7,7 сантиметра). 120 миллионов лет (предоставлено Паскалем Годфруа)
Пользовались поляризованным светом и люди. В скандинавских сагах рассказывается о магическом солнечном камне, который помогал викингам находить дорогу при любой погоде. До недавнего времени все это представлялось не более чем легендой, но неожиданно на юге Гренландии археологи обнаружили фрагменты деревянного диска и камня, испещренные прямыми и гиперболическими кривыми линиями. Как выяснили биофизик Габор Хорват из Университета имени Этвёша в Будапеште и его коллеги, на широте 61°, где плавали викинги, в мае — августе тень от каменного столбика, установленного в центре такого диска, точно следовала бы начертанной на диске гиперболической линии с полудня до заката. Для выбора направления на север достаточно было повернуть диск так, чтобы кончик тени совпал с определенной календарной насечкой. Но это в солнечный день. В непогоду можно было откалибровать компас с помощью кристалла, определив по яркому свечению, где прячется солнце. Опыты показали, что при плотном облачном покрове, установить положение солнца, полагаясь на невооруженный взгляд, не удается. А с помощью поляризационного фильтра — вполне. Солнечным камнем мог быть, например, исландский шпат — двоякопреломляющая прозрачная разновидность кальцита. И это не единственный магический кристалл…
Шестое чувство
Другим магическим кристаллом является магнитный железняк, или магнетит. Более 2000 лет назад китайцы использовали его свойства, чтобы создать компас. Вооруженный китайским изобретением Христофор Колумб и отплыл на поиски Индии…
Этот путь — из Старого Света в Новый — буквально вымощен панцирями морских черепах. Если бы Колумбу и его матросам вовремя не подвернулись неисчислимые стада рептилий, не миновать бы мореплавателю голодного бунта. К тому историческому моменту небольшая флотилия уже готова была повернуть назад. «Великий мореплаватель» так и не стал бы таковым, кончив жизнь на рее или в пучине, а Испания не превратилась бы в державу, где «никогда не заходит солнце». Хотя для страны, возможно, это было бы и к лучшему: сто лет благоденствия на дармовых природных ископаемых (во времена конкистадоров то были золото и серебро, сейчас — нефть и газ) в конце концов привели к полному экономическому и политическому краху.
Впрочем, не имеет история сослагательного наклонения. И судьба морских черепах тоже. Зеленая черепаха, а повстречалась Колумбовой братве именно она, достигала величины хорошей телки, плодилась в изобилии, ловилась легко и долгое время после поимки оставалась вполне съедобной. Перед отплытием на родину испанцы набивали свои камбузы, складируя рептилий живьем, лишь перевернув на спину, чтобы лишнего места не занимали. А флибустьеры избрали своим пристанищем остров Тортуга, воспетый в блокбастерах «Пираты Карибского моря». В итоге и черепах там не осталось, и остров переименовали в Большой Кайман.
Английский флот, вышедший на просторы Атлантики после гибели Великой Армады, перенял нехитрые секреты заготовки неспешных морских обитателей у испанцев: ароматная черепаховая похлебка наполняла и медные котлы простых матросов, и голубые супницы адмиралов. От адмиралов вкусную и питательную традицию перенял высший свет: «Правь, Британия, морями», — заводили лондонские олдермены, повязывая грудь салфеткой, глотнув рюмку черри и придвинув поближе тарелку с прозрачно-зеленой «олдерменской черепахой». Когда свежего мяса не хватало, домашние повара клали в воду телячью голову, копыта, хвост, изрядно сдабривали варево специями, и получалась «фальшивая черепаха». Последняя стала одним из персонажей «Алисы в Стране чудес» Льюиса Кэрролла, а его не менее знаменитый иллюстратор Джон Тенниел даже изобразил корову в панцире с ластами вместо передних копыт. «Однажды я была настоящей черепахой», — с грустью вспоминает Фальшивая Черепаха, проливая обильные слезы. К слезам этих рептилий, которые имеют немаловажное значение в их жизни, мы еще вернемся…
Зеленая, она же суповая, черепаха сыграла и другую важную роль в истории освоения американских континентов. Дело даже не в ее яйцах, которые черепахи-мамы откладывают сотнями на песчаных пляжах: чуть мельче, чем куриные, но не менее готовые к употреблению в пищу. Испанские конкистадоры подметили, что дальние странники — черепахи — неплохо умеют использовать морские течения для перемещения из одной части света в другую, экономя силы и энергию. Возможно наблюдая за морскими рептилиями, конкистадор Хуан Понсе де Леон и обнаружил Гольфстрим. Это открытие испанцы долгое время хранили в секрете, ставя свои парусники на естественную транспортную ленту для быстрых трансатлантических переходов.
Первый исследователь поведения морских черепах герпетолог Арчи Карр, основавший национальный парк Тортугеро в Коста-Рике, отмечал, что у черепахи нет ни хронометра, ни секстанта, ни лоций, ни «Морского астрономического ежегодника», ни «Практического руководства по навигации», ни даже компаса. А она спустя два-три года, проведенных в открытом океане, и накрутив за это время несколько тысяч морских миль, возвращается точно на тот самый пляж, который покинула, едва вылупившись из яйца! «Морские черепахи несомненно обладают компасным чувством», — подытожил свои многолетние наблюдения за мечеными зелеными и другими черепахами Карр. А затем перебрал все доступные плавающим рептилиям возможности для поиска правильного направления на бескрайних океанских просторах. Рельеф? Его не видно уже через несколько миль. «Запах моря»? Вряд ли особый аромат маленького пляжа можно учуять за тысячи километров. Звезды? Из-под воды невозможно засечь их видимое перемещение над самым горизонтом, как делают корабелы с помощью секстанта. Силы и ускорение Кориолиса, создающие четкие ориентиры благодаря различным скоростям перемещения объекта на разных широтах? Не исключено, но есть ли у животных органы, способные воспринимать эту разность скоростей? Наконец, координаты магнитные? А почему бы нет?
Предположение о наличии у черепах магнитного чутья, позволяющего распознавать свойства магнитного поля Земли, пятьдесят лет назад звучало довольно смело. Как и с помощью чего могут животные определять то, что под силу лишь сверхчувствительным и высокоточным приборам? Но в 80-х годах прошлого века впервые были обнаружены магниточувствительные бактерии.
Кристаллы магнетита, выращенного бактериями, не превышают в поперечнике 0,04–0,12 микрона, но не только для того, чтобы разместиться в ее клетке размером от одного до трех микронов. В кристаллах такой размерности намагниченность однородна и направлена везде одинаково и благодаря удлиненной форме они приобретают свойства ориентированных магнитных стрелок. Цепочки из кристалликов, окруженные собственной оболочкой, — магнитосомы — обладают достаточно большим магнитным моментом и образуют орган магнитной чувствительности, с помощью которого бактерия ориентируется в магнитном поле. Проживая на дне лагуны, она очень не любит, когда кто-нибудь большой и настырный ворошит ил, всплывающий облаком мути. Вращаясь в этом облаке, бактерия не знает, где спасительное дно с пониженным содержанием кислорода, а где — жутко опасное для нее открытое пространство, наполненное этим ядовитым газом. Но поскольку силовые линии магнитного поля проходят по касательной к поверхности Земли (и соответственно водоема), перемещаясь вдоль них с помощью магниточувствительного органа, бактерия живо уходит на дно. Не случайно такие бактерии, обитающие в Северном полушарии, всегда плывут на Север, и наоборот.
После обнаружения магниточувствительных бактерий пошел вал открытий: пчелы, голуби, киты, — оказывается, многие умеют ориентироваться в магнитном поле планеты… И действительно, почему бы не воспользоваться изначально заданными нашей планетой координатами? Организовано магнитное поле Земли довольно просто — действует по принципу диполя, то есть стержневидного магнита, помещенного в центре Земли и ориентированного вдоль оси ее вращения. Он положительно заряжен с одного (северного) конца и отрицательно — с другого. В любой точке земной поверхности магнитное поле можно представить как вектор в трехмерном пространстве, то есть как очень точный указатель. Задается этот вектор следующей системой координат: магнитным склонением (углом между меридианом и проекцией вектора на плоскость, касательную к поверхности Земли), наклонением (углом между вектором и плоскостью, касательной к поверхности Земли) и величиной (напряженностью поля). То есть склонение можно выразить как угол между направлением стрелки компаса на истинный Северный полюс и полюс магнитный, а наклонение — как угол, на который стрелка наклоняется к земле, следуя направлению вектора поля. Достаточно определить всего две переменные компоненты — напряженность и магнитное наклонение, и вы получите точную привязку своего местоположения к поверхности Земли. Без всякого GPS.
Конфигурация поля, вероятно, объясняется тем, что возникает оно в результате перемещения потоков в жидком железном ядре Земли. Какие именно слои ядра «отвечают» за магнитный момент, точно не известно, но ряд моделей довольно неплохо предсказывает результаты работы всей этой системы. Например, вращение в проводящей среде объемной фигуры из двух проводящих цилиндров, продольные оси которых взаимно перпендикулярны, создает двухполюсное магнитное поле, поскольку электрический ток в одном цилиндре индуцируется магнитным полем другого. Одним из результатов работы такой «динамо-машины» будет нерегулярная смена полюсов, когда южный оказывается в Северном полушарии и наоборот. Подобное явление названо магнитной инверсией.
Обо всем этом мне рассказывал Джо Киршвинк, профессор геобиологии из Калифорнийского технологического института, пока мы с ним коротали время у скалистого обрыва реки Алдан в Якутии. Туда Джо в 1981 году в поисках древних инверсий магнитного поля в кембрийских отложениях прилетел прямо из Японии с молодой женой Ацукой, тоже специалистом по магнитным явлениям. С ней ему незамедлительно пришлось расстаться, поскольку мы на пару отправились на интересующий только нас и малопривлекательный для всей экспедиции разрез.
На моторке я был за капитана, а Киршвинк — за механика, поскольку лодочный мотор отличался от его ручного бура только насадкой — винтом вместо бурильной колонки. Два дня я стоически варганил ранний завтрак, на третий — разжигать костер и варить что-нибудь горячее — был отправлен профессор. Через два с половиной часа он разбудил меня и сказал, что решил-таки трилемму: из трех сортов «риса» — мелкого желтого (пшено), крупного красного (гречка) и толстого белого (это действительно был рис, но наш, отечественный, а не привычный американцам длинненький) он решился приготовить последний. Правда, довел его до консистенции манной каши. Какао я предпочел сделать сам…
Таежными вечерами я постигал историю магнитных исследований, а также историю знакомства Джо с будущей женой на симпозиуме по биомагнетизму в Киото. По сути, тогда было открыто новое — магнитное, или компасное, чувство, которым обладают самые разные организмы от бактерий до китов. Природа этого чувства несколько схожа со зрением. В слове «биомагнетизм» нет ничего связанного с ясновиденьем и прочим шарлатанством. Эта наука изучает рост магнитных минералов в живых организмах и способности животных ориентироваться в магнитном поле. При том что обнаружение кристалликов размером от 0,04 до 0,12 микрона даже в тельце пчелы, не говоря уж о туше кита, задача — посложнее пресловутых поисков иголки в стоге сена, причем сам стог, учитывая соотношение масштабов, возносится выше Джомолунгмы. Расчленение тканей должно производиться без применения каких-либо привычных хирургу и препаратору металлических инструментов, иначе засорения избежать не удастся, и вся длительная и сложная операция пойдет насмарку.
Лишь в последние два десятилетия XX века с появлением приборов нового поколения, высокочувствительных к источникам магнитного поля, удалось обнаружить мельчайшие частицы магнетита, запрятанные в передней части брюшка у пчелы, в голове и груди у бабочки данаиды, вблизи решетчатой кости черепа у тунца и в передней части твердой оболочки мозга у зеленой черепахи, голубя и дельфина. С загрязнением извне биогенные минеральные формы перепутать невозможно. Например, магнетит отлагается в клетках в виде шестигранных таблитчатых кристалликов, тогда как в неживой природе он кристаллизуется исключительно в виде восьмигранников — октаэдров или двенадцатигранников — ромбододекаэдров. Кристаллы биогенного магнетита очень однородны по форме и размерам и не содержат примесей, свойственных геологическим материалам, так как растут в условиях жесткого биохимического контроля. Благодаря отчетливым различиям по находкам магнетитовых таблеток удалось установить, что отлагавшие их бактерии существовали уже 2,1 миллиарда лет назад.
В магнитном поле Земли с биогенным компасом не заблудишься, если, конечно, исключить магнитные аномалии (подобные искажения создают, например, огромные залежи металлических руд под Курском). Хотя сам механизм восприятия магнитного поля различными организмами, кроме бактерий и радужной форели, остается расшифрованным не до конца, понятно, что именно скопления доменов магнетита служат органом, воспринимающим магнитные сигналы, и что пчелы, голуби, черепахи и киты пользуются такой информацией для ориентации в пространстве.
Способность медоносных пчел возвращаться в улей всерьез заинтересовала ученых более двух столетий назад. Еще в первой половине XX века многие маститые биологи совершенно не верили в танцевальный пчелиный язык, хотя Карл фон Фриш достаточно подробно изложил суть этого явления. Он выяснил, что эти насекомые запоминают расположение предметов вблизи своего дома и с помощью знаменитого танца передают соплеменницам сведения о положении по отношению к улью и солнцу самых привлекательных для сбора нектара участков. Пчела-сборщица отмечает расстояние и направление каждого отрезка своего маршрута, внося поправки на ветер (при встречном ветре маршрут как бы удлиняется) и суточное «движение» солнца. Вернувшись после удачного взятка, она исполняет пантомиму полета к источнику пищи. Соплеменницы внимательно наблюдают и повторяют рисунок танца. Танцовщица виляет брюшком из стороны в сторону, двигаясь по прямой, совпадающей с направлением ее пути. Показывает основные ориентиры пчела обычно на вертикальной плоскости (стенка сотов). Ориентиром служит вектор силы тяжести: «верх» указывает на положение солнца. Так, виляющая дорожка под углом 90° вправо от вертикали означает, что корм находится под углом 90° вправо от прямой, направленной от улья к солнцу. Продолжительность виляния соразмерна расстоянию до источника взятка. Казалось, эти насекомые обладают органом восприятия гравитации.
Однако замысловатые круги и восьмерки выписывали и молодые особи, никогда не покидавшие родной улей, а в ритуальном танце сборщиц постоянно наблюдались странные ошибки в указании верного направления, которые совершали все без исключения пчелы. Подобные ошибки направления исчезают, если танцевальные проходы ориентированы вдоль силовых линий магнитного поля. Чтобы избежать лишних проблем, эти перепончатокрылые и соты возводят, располагая ячейки с учетом характеристик магнитного поля. Так на них потом легче будет выплясывать. Кстати, пчел на самом деле можно разделить на «правильных» и «неправильных»: одни предпочитают ориентироваться по северному магнитному полюсу, другие — по южному.
Организовать голубиную почту или соревнования среди голубятников на скорость возвращения их питомцев в голубятню тоже было бы невозможно, если бы не удивительные способности этих птиц, и, кстати, многих других, к ориентации на местности. Голуби могут летать по солнцу; с использованием поляризованного света, когда небо затягивают тучи; по звездам в ночное время; по низкочастотным звукам, вроде шума прибоя. Они запоминают наиболее заметные вехи на своем пути, если их увозят от места жилья и кормления по шоссе, и возвращаются, будто следуя дорожному атласу. Компасное чувство голубей поистине удивительно, ведь за неимением других указателей они способны взять верное направление, ощущая особенности магнитного поля. Голуби, даже самые молодые из них, никогда ранее не вылетавшие из голубятни, лишенные на время возможности видеть с помощью особых линз и перемещенные под глубоким наркозом, довольно споро находят кратчайший путь домой, хотя в последний момент и не могут в голубятню залететь — для этого нужны видимые ориентиры. Наоборот, при экранировании магнитного поля (индукционной катушкой или постоянным магнитом) в пасмурную погоду их способности к возвращению заметно ухудшаются, а птицы, увезенные в контейнерах, где создается переменное магнитное поле, просто разлетаются в разные стороны. То же происходит с пернатыми, выращенными в искусственном магнитном поле. В естественных условиях на ориентацию голубей отрицательно влияют сильные магнитные бури, грозовой фронт с частыми разрядами молний, магнитные аномалии.
Когда на пути птиц встречаются такие помехи, биокомпас выключается, и они переходят на ориентацию по звездам (ночью) или солнцу. Биолог Свене Энгельс из Ольденбургского университета и ее коллеги, изучавшие компасное чувство зарянки, установили, что магнитному восприятию препятствуют также радиоволны частотой от 20 килогерц до 5 мегагерц. В таком диапазоне работают амплитудные радиостанции, которые становятся все более популярными благодаря высокому качеству вещания. Пролетая на расстоянии до 5 километров от станции, птицы могут сбиться с пути, пока не переключатся с магнитного ориентира на другие. Способность выключать компасное чувство при появление подобных помех возникла у птиц и, видимо, других организмов не случайно: на тех же частотах ощущается влияние выбросов коронального вещества на Солнце, буквально заставляющих «вибрировать» магнитосферу Земли. Кроме того, организмы время от времени переживали эпохи смены магнитных полюсов, что также влияло на особенности магнитного поля планеты. Так что это одно из давних приспособлений организмов к природным каверзам.
Если пчелы и голуби оказались довольно удобными по своим размерам и количеству объектами для исследований магнитной чувствительности, с китами пришлось гораздо сложнее. Однако Джо придумал остроумный способ проверки чувствительности морских гигантов к магнитным явлениям. Статистический анализ странностей в поведении усатых китов, известных как массовые выбросы целых групп на берег, выявил, что подобные печальные события случаются в областях с минимальным значением магнитного поля. Как раз такие характеристики магнитного поля должны использовать эти млекопитающие, чтобы за тысячи километров переместиться со своих летних пастбищ на зимние, из одного полушария в другое и попасть точно в квадрат размером всего в несколько десятков квадратных километров. Никакие другие параметры земной среды, кроме относительно непрерывных зон со слабым магнитным полем, не могут вывести их прямо на место. Но при малейших ошибках эти же ориентиры губят левиафанов.
В 1992 году я сам оказался в гостях у Киршвинка, точнее, у родителей его жены, проживающих в Осаке, недалеко от Киото, где проходила очередная сессия Международного геологического конгресса. В тонком деревянном домике, с символической сосной во дворе полуметровой ширины, миниатюрным прудиком, где плавали золотые караси, бамбуковыми ширмами и циновками, чтобы спать на полу, мы обсуждали новейшее открытие. Тогда супругам Киршвинк удалось извлечь из человеческого мозга таблитчатые шестигранники биогенного магнетита и маггемита — в огромных количествах: 5 миллионов однодоменных кристаллов из одного грамма мозга в среднем и более 100 миллионов таких частиц из одного грамма мозговой оболочки. Правда, размер большинства магнитиков не превышает 0,07 микрона, реже достигает 0,2 микрона, но и кристаллики в 0,01 микрона — не редкость. Если бы они не образовывали скопления, их бы не удалось распознать ни на какой аппаратуре.
Видимо, из-за незначительного объема магнетита человек не способен воспринимать особенности земного магнитного поля и, как следствие, лишен возможности самоопределяться в пространстве по положению магнитных полюсов или аномалий. Лишь опыты биофизика Робина Бэкера из Манчестерского университета дали положительный результат. Правда, местность, где они проводились, имела заметный уклон к ближайшему озеру, и привлеченные к исследованиям местные жители довольно легко ориентировались по положению знакомого водоема, если, конечно, понимали, что юг находится в противоположном направлении от севера. Множество дальнейших опытов на добровольцах показало, что, если человеку дать хорошенько поплутать, повозив его на автобусе или покрутив на вращающемся кресле, он скорее покажет пальцем в небо, чем в какую-либо определенную сторону света, независимо от того, было экранировано магнитное поле или нет. Ничуть не лучше находили правильную дорогу и слепые с рождения люди, хотя им магнитная чувствительность очень пригодилась бы.
Попутно в этих опытах «пострадали» лозоходцы, поскольку именно у них подозревали наличие особого чутья, если и не к магнитным параметрам, то хоть к чему-нибудь. Сами они считают, что способны улавливать подъем грунтовых вод или прорыв водопровода по резкому опусканию расщепленного на конце прутика или проволочки в руке. Тщательно проведенные исследования показали, что они не только не обладают каким-либо шестым чувством, но и ошибаются в своих прогнозах не реже нормальных людей. Лозоходцам явно не стоит идти в саперы… «Секрет» же их заключается в том, что вода — это горная порода и, как всякая горная порода, залегает пластами, поэтому в каком месте пальцем ни ткни, рано или поздно до водяного пласта докопаешься.
Миллиарды магнитных кристаллов, обнаруженные в человеческом мозге, оказались не более чем свалкой металлолома, то ли доставшейся людям в наследство от предков, подобно другим атавистическим признакам, то ли необходимой для разгрузки излишков железа…
Орган восприятия магнитного поля у животных долго продолжал оставаться неопознанным. Все органы чувств состоят из принимающих сигнал клеток (обычно нейронов), связанных с центральной нервной системой, и всегда внешний сигнал вызывает изменение проницаемости клеточной мембраны, что приводит к электрическому ответу. Например, в зрительной системе пигмент, реагирующий на свет, воспринимает кванты света, и этот процесс меняет проницаемость клеточной мембраны для ионов (как правило, натрия), что, в свою очередь, меняет электрический потенциал на мембране светочувствительной клетки. Так энергия света превращается в электрический ответ клетки, который передается в нервную систему, где и подвергается обработке.
Понятно, что нечто подобное должно происходить в магниточувствительном органе. Но где он сам? Лишь в XXI веке подобный орган был открыт группой Киршвинка у радужной форели. Ее, как и других лососевых, пристально изучали не только из-за отменного вкуса икры и мяса, но и из-за способности распознавать среди тысяч ручьев место нереста своих родителей и выдерживать компасный курс в течение нескольких суток. Специализированные клетки, воспринимающие магнитное поле, расположены в глазной ветви тройчатого нерва. С клетками связаны цепочки магнитных кристаллов — точно таких же, как у бактерий, магнитосом. Каждая цепочка закреплена в нескольких порах клеточной мембраны. Изменения в направлении движения рыбы вызывают переориентацию магнитных цепочек в зависимости от направления вектора поля и его напряженности, поры открываются, позволяя ионам проскакивать сквозь них, и через десятые доли миллисекунды возникает электрический сигнал, передающийся по тройчатому нерву в мозг.
Чувство № 7
Магнитные явления сопряжены с явлениями электрическими: их связывает единое электромагнитное поле. Практически любое многоклеточное животное с мускульной системой использует электрические сигналы для передачи информации по нервной системе и к мускулам. Но способностью накапливать и высвобождать электрические заряды обладают немногие. Электрические рыбы были известны уже в конце XVIII века. Им посвятили свои труды величайшие физики — Генри Кавендиш, Майкл Фарадей, Ганс Эрстед, Алессандро Вольта и Луиджи Гальвани. Гальвани экспериментально показал, что любая мышца и любой нерв способны генерировать электрические импульсы, а вольтов столб, построенный из собранных в столбик контактных пар металлов, разделенных влажными матерчатыми дисками, стал моделью электрического органа рыбы. Один из самых знаменитых опытов того времени провел племянник Гальвани, Джованни Альдини: он присоединил источник электричества к голове только что казненного в Лондоне преступника и мертвое лицо исказила страшная гримаса… Этот эпизод натолкнул Мери Шелли на идею готического романа «Франкенштейн», герой которого пытается воскресить мертвеца с помощью мощных электрических разрядов.
Как именно устроен электрический орган рыб, очень похожий на гальванические батареи и представляющий собой преобразованную мускульную ткань с особыми клетками — электроцитами, ученые открыли много позже. Чтобы батарея сработала, нужно правильно расположить ее элементы, не путая полярность (как, скажем, в зарядном блоке любой фотокамеры): в момент разряда все электрощиты должны быть обращены в одну сторону. Эти мускулы утратили способность сокращаться, и волокна в них расположены так, чтобы электрическое напряжение накапливалось. Накопиться может немало: 2,5-метровые электрические угри (Electrophorus electricus), обитающие в бассейне Амазонки и Ориноко, поражают врага сильным разрядом — до 500 вольт (в воде), — отражая его атаку. Для этого угрю требуется последовательно включить более 3 тысяч электроцитов, ведь напряжение в каждом из них не превышает 0,15 вольта.
А например, клюворылы и родственные им гимнархи довольствуются слабыми — около 30 милливольт — электрическими импульсами. Эти рыбы, как установил в 1950-е годы биофизик Ганс Лиссманн, работавший в Кембриджском университете, не только генерируют, но и ощущают слабые электрические поля. В аквариумных опытах он обнаружил, что подобные рыбы воспринимают проволочный прямоугольник как непреодолимую преграду, а среди нескольких дипольных антенн распознают единственную, на которую подаются электрические сигналы, и атакуют ее. То есть у них существует электрическое чувство восприятия, с помощью которого они обнаруживают препятствия, источники пищи и угрозы. Многослойный эпидермис, обладающий высоким электрическим сопротивлением, пронизанный густой сетью каналов, наполненных проводящим веществом, уподобляет поверхность рыбы сетчатке глаза, «видящей» картину электрических полей. Именно с особенностями органов чувств этих рыб связаны их необычная форма тела (выросты на голове), своеобразный стиль плавания (волнообразные движения, способствующие зарядке электрических органов), довольно развитый мозжечок (именно эта часть мозга содержит нервные центры, связанные с мускулатурой) и способность выживать в мутных водоемах. Глаза же у них развиты плохо.
В 1993 году биофизик Владимир Барон и его коллеги из Института проблем экологии и эволюции РАН зарегистрировали очень слабые электрические разряды у обитающих в озерах и реках Африки сомов из семейства клариевых: разряды возникали при «выяснении отношений» между рыбами. А недавно группа ученых под руководством биофизика Владимира Ольшанского установила с помощью аквариумных опытов во Вьетнаме, что самки местного вида клариевых сомов генерируют особые электрические разряды во время спаривания. Нерест сомов — сложный ритуал. Сначала рыбы собираются вместе и выбирают партнеров. Затем самец, изгибаясь дугой, обвивает самку, и они совершают ряд замысловатых движений. Наконец он выбрасывает сперму, а она немного погодя — мечет икру. В момент, предшествующий этому событию, самка и дает разряд — до 30 милливольт, весьма чувствительный для самца. «Икра — очень ценный ресурс, — объясняет Ольшанский, — и разбросать ее нужно как можно шире. Вот самка и должна убедиться, что сперматозоиды уже в воде, а самец готов ей помочь. Своим разрядом она будто указывает ему, что пора надавить на ее брюшко. Возможно также, что испытанный шок доставляет самцу удовольствие и побуждает к новым спариваниям».
Казалось бы, обнаружить электрические органы в палеонтологических коллекциях — задача неразрешимая. Однако уже в 1920-е годы палеонтолог Эрик Стеншё, работавший в Шведском музее естественной истории, обратил внимание на обширные поля, расположенные на причудливых головных панцирях раннепалеозойских бесчелюстных позвоночных. В этих полях вполне мог находиться многослойный эпидермис, пригодный для восприятия и передачи электрических импульсов. Обитали эти похожие на панцирных рыб бесчелюстные в основном в мелководных лагунах и других прибрежных водоемах, где видимость оставляла желать лучшего. (Необычное рыло у обитателей вод — хороший признак электрочувствительности: например, клюв млекопитающего утконоса — это тоже электросенсорный орган.)
Так что седьмое (электрическое) чувство вполне могло быть одним из первых, не говоря уж о шестом (магнитном). Анализ информации, прежде остававшейся глубоко запрятанной в геноме, проведенный группой генетика Мартина Шестака из Института имени Рудера Бошковича в Загребе, показывает, что основные молекулярные элементы всех чувств имеют довольно древние корни и что органы чувств, связанные с восприятием различных физических сигналов (например, зрение), вероятно, возникли раньше способности улавливать химические сигналы, то есть обоняния.
Теперь же можно разнообразить восприятие, как делают морские черепахи.
Соленые слезы черепах
Едва вылупившись из яйца, что происходит в ночную пору, черепашки ориентируются на свет: море отражает звезды. Добравшись до кромки воды, они переключают внимание на движение волн и движутся поперек волнового фронта. А уже в открытом море у них включается компасное чувство: опыты, проведенные герпетологом Кеннетом Ломанном и его группой из Университета Северной Каролины, показали, что, пребывая в мощных теплых струях северо-атлантической воронки Гольфстрима, зеленые черепахи и логгерхеды делают три засечки магнитных координат. Вылупившись, скажем, на восточных пляжах Флориды, черепашки стремятся попасть именно в это течение, вращающееся вокруг Саргассова моря. Там, в богатых пищей водах, они проводят несколько лет. Однако их поджидают три опасности: у берегов Португалии течение разветвляется, и один его рукав отходит на север; на приближении к Западной Африке появляются ответвления, уносящие в холодные воды Южной Атлантики; наконец, на подходе к Карибам нужно разобраться, в какой из многочисленных морских рукавов следует плыть, чтобы оказаться в месте откладки яиц. Те, кто сумел правильно распорядиться своими знания по ориентации с помощью магнитной сетки координат, всегда попадают в нужную струю и сполна проживают свой черепаший век.
«Двоечникам» грозит холодная и голодная смерть где-нибудь в заливе Кардиган, и на обширных песчаных отмелях Уэльса у скал Харлеха их трупики будут расклеваны чайками. Правда, случается такое крайне редко. Гораздо чаще на пляжах Уэльса можно встретить вполне себе живехоньких кожистых черепах — самых холодоустойчивых рептилий, заплывающих без вреда для себя даже в Баренцево море. И пусть не вводят зевак в заблуждение их горючие и горькие, в буквальном смысле в три ручья, слезы.
Просто слезные железы морских черепах за 200 миллионов лет эволюции превратились в железы солевые. Ведь все они пьют исключительно морскую воду, а кожистые черепахи к тому же едят медуз и прочую студенистую пищу, которая содержит соли столько же, сколько окружающая среда. Избыток ионов и выводится в виде слезных ручьев. Причем эти выделения, содержащие натрий, калий, хлор и даже магний, солонее воды в два раза. И никаких почек не надо. Впрочем, у кожистых черепах их практически и нет. Нет у них, как следует из названия, и рогового панциря, зато есть толстый-претолстый слой ворвани. Настолько толстый, что музейные препараты сочатся жиром по нескольку лет. Даже голова такой черепахи состоит из солевых желез и жира, в глубине которого прячется маленький мозг.
Мощная жировая прослойка, а также своеобразный кровоток в длинных (до 2,7 метра в размахе) передних ластах делают эту черепаху самой теплокровной среди холоднокровных животных. Она может поддерживать постоянную температуру тела на 18 °C выше температуры воды. Способствуют этому и скорость передвижения (45–65 километров в сутки), и большая собственная масса (до 916 килограммов): при таких габаритах избавиться от излишек тепла сложнее, чем согреться. По весовой категории эти рептилии сравнимы с моржами и малыми китами, но, чтобы достичь гигантских размеров, в отличие от млекопитающих, вырастают в 10–20 тысяч раз. Ведь из яйца проклевывается черепашка массой всего в 40–50 граммов. И это не последний ее рекорд.
Это дышащее атмосферным воздухом животное ныряет на глубину 1820 метров и проводит в пучине до 85 минут! Притом заглоченного на поверхности воздуха должно хватать от силы минут на сорок. Значит, черепаха в какой-то момент переходит на анаэробное (бескислородное) дыхание. Для этого и нужен гибкий, неороговевший панцирь, а также неокостеневшая трахея: сжимаясь они выдавливают остатки газов из легких, и животное избегает кессонной болезни, которой подвержены все глубоководные ныряльщики — и современные кашалоты, и давно вымершие мозазавры, которые 70 миллионов лет назад охотились на четырехметровых морских черепах, тоже нередко страдавших некрозом костной ткани (хорошо видимый на ископаемых остатках признак кессонной болезни).
Черепахи пережили не только мозазавров, но и динозавров, с которыми появились почти одновременно. Правда, откуда они появились, пока точно не установлено. Дело в том, что у черепах нет лишних дырок в черепе (височных окон) — только глазницы и ноздри, а все эволюционное древо пресмыкающихся строится по наличию и положению дополнительных отверстий. Потому палеонтологи считали их предками пермских парарептилий — грузных черепахоподобных ящеров. А молекулярные биологи предпочитают сближать черепах с крокодилами и птицами. Лишь недавно палеонтологи Райнер Шох из Государственного музея естественной истории в Штутгарте и Ганс Дитер Зюс из Национального музея естественной истории в Вашингтоне нашли в среднетриасовых отложения Германии «папу черепах» — Pappochelys. 240-миллионолетний «папа» имел зубы и длинный хвост, место пластрона (брюшного щита) у него занимали брюшные ребра — гастралии, а место карапакса (спинного щита) — уплощенные грудные и крестцовые ребра; он еще сохранял височные окна, указывавшие на родство с динозаврами, ящерицами и всякими морскими ящерами. У потомков паппохелиса — юрских черепах, которым 220–215 миллионов лет, — карапакс продолжал развиваться как сложное образование из ребер, невральных дуг, костных пластинок и роговых щитков, височные окна закрылись, хвост укоротился, чтобы укладываться внутрь панциря, а зубастая пасть превратилась в подобие рогового клюва с острыми краями. Так разрешилась одна из самых загадочных историй — история происхождения черепах.
Интересно, что у морских черепах верхняя часть панциря полностью редуцировалась, как у кожистой, а стоило их потомкам вернуться на берег, панцирь «отрос» заново. По панцирным наслоениям можно представить, что и предки современной кожистой черепахи сначала жили на суше, потом освоили морскую стихию, где им, наверное, не понравилось, и они вернулись на берег, но там оказалось еще хуже. И они окончательно выбрали жизнь в море.
Черепахи живут на земле и в воде. Вот только взлететь они не смогли…