Алгоритм жизни
После всех этих событий Земля оказалась готова для появления жизни. Но тут встает другой вопрос: а должна ли была жизнь появиться? Пол Дэвис занимается этим вопросом на протяжении почти всей своей научной карьеры. Он полагает, что ответ кроется в неожиданной сфере – информатике.
Одни ли мы во Вселенной? Иными словами, широко ли в ней распространена жизнь? Для науки этот вопрос очень важен. Специалисты (с переменным успехом) ищут подобные Земле планеты, вращающиеся вокруг других звезд, главным образом как раз потому, что надеются обнаружить там инопланетную жизнь. Многие предполагают, что жизнь в землеподобных условиях неизбежно должна возникнуть: эта позиция называется биологическим детерминизмом. Впрочем, нелегко отыскать аргументы в ее поддержку, исходя из известных нам законов физики, химии или биологии. Если полагаться лишь на эти законы в попытке объяснить устройство и работу Вселенной, логично заключить, что жизнь могла возникнуть лишь благодаря удачному стечению обстоятельств, а значит, крайне маловероятно найти ее где-то еще.
Однако тем, кто надеется когда-нибудь встретиться с инопланетянами, отчаиваться не следует. Исследования все-таки могут подтвердить теорию биологического детерминизма, тем самым резко повысив наши шансы отыскать соседей по космосу – хоть где-нибудь.
В 1953 году Гарольд Ури и Стэнли Миллер из Чикагского университета попытались воссоздать в пробирке то, что они считали условиями первозданной Земли. Они обнаружили, что аминокислоты (строительные блоки белков) – часть химического месива, которое образуется, когда электрический разряд пропускают через смесь газообразного метана, аммиака, паров воды и водорода. Эксперимент Миллера – Ури провозгласили первым шагом на пути создания жизни в лаборатории. Многие химики считали, что жизнь – конечный пункт долгой дороги, по которой на протяжении длительного времени неутомимо движется химический суп, пронизываемый потоками энергии.
Однако эта идея быстро натолкнулась на ряд проблем. Построить кирпичики жизни легко – аминокислоты обнаруживали в метеоритах и даже в космосе. Но сами по себе кирпичи еще не составляют дом. Точно так же и случайный набор аминокислот не составляет живое существо. Подобно кирпичам дома, строительные компоненты жизни нужно собирать в целое весьма определенным и чрезвычайно сложным образом, прежде чем они обретут нужную функцию. Чтобы образовать белки, множество аминокислот должны соединяться в длинные цепочки в определенном порядке. С энергетической точки зрения это процесс движения «в горку».
Само по себе это еще не проблема: на древней Земле протекало множество различных энергетических процессов. Штука в том, что подрыв кучи кирпичей динамитом не даст в результате дом. Точно так же и простое глупое вбрасывание энергии в кучу аминокислот не приведет к образованию сложно устроенных молекулярных цепочек со строго определенной последовательностью звеньев. Скорее всего, мы получим просто какую-то смолистую жижу.
Систему необходимо подпитывать энергией каким-то особым и изощренным образом. В живом организме этот процесс контролируется молекулярной аппаратурой клетки, и специфика здесь чрезвычайно сложна. Однако в первичном химическом супе, где намешана масса всего, аминокислотам пришлось бы полагаться исключительно на удачу. Сами аминокислоты могли появиться на ранних этапах развития природы, но этого явно нельзя сказать о крупных и высокоспециализированных молекулах, таких как белки.
Теперь-то мы понимаем, что тайна жизни кроется не в базовых химических ингредиентах как таковых, а в логической структуре и организации молекул. Поэтому ДНК можно представить себе как генетическую базу данных, а гены – как инструкции по производству белков (оптимизированных для выполнения конкретных задач) и, косвенным образом, других биомолекул. Подобно суперкомпьютеру, жизнь является системой обработки информации, а это подразумевает особый тип организованной сложности. Главная загадка – не «железо», а «софт», то есть информационное содержание живой клетки.
Лучшая иллюстрация вычислительной мощи живого – генетический код. В основе всей известной нам жизни лежит своего рода соглашение между нуклеиновыми кислотами и белками – двумя классами молекул, которые с химической точки зрения – лишь дальние родственники, едва знакомые друг с другом. Нуклеиновые кислоты ДНК и РНК хранят в себе инструкции, а белки выполняют основную часть работы. Совместно эти молекулы творят множество чудес жизни, но сами по себе они беспомощны. Для выработки белков нуклеиновые кислоты привлекают умного посредника, дабы сформировать канал передачи зашифрованной информации.
Вот как это делается. ДНК, знаменитая двойная спираль, построена как веревочная лестница с четырьмя различными типами ступенек. Информация хранится в последовательностях этих звеньев, подобно тому, как привычные нам инструкции хранят информацию в виде цепочек букв. Белки строятся из 20 различных аминокислот, причем для создания каждого определенного белка нужно, чтобы определенные аминокислоты соединились друг с другом в определенном порядке.
Для перевода информации, изложенной при помощи четырехбуквенного алфавита ДНК, в 20-буквенную систему, используемую белками, все известные нам живые существа Земли применяют один и тот же код. Когда мы говорим о неизбежности (или, наоборот, о случайности) возникновения жизни, ключевой вопрос – каким образом появилась столь изобретательная система шифрования. Как безмозглые атомы сумели спонтанно написать собственный софт? И откуда взялась эта весьма особенная форма информации, нужная для того, чтобы запустить первую живую клетку на Земле?
Ответа никто не знает. Традиционно ученые, занимающиеся этой проблемой, делятся на два лагеря. В одной группе – те, кто верит, что все произошло случайно: иными словами, жизнь возникла в результате изумительной химической флуктуации. Нетрудно прикинуть, какова вероятность того, что в химической смеси, составившейся произвольным образом, определенные молекулы случайно выстроились в сложную структуру, необходимую для появления жизни. Вероятность этого процесса ничтожна мала. Если жизнь, какой мы ее знаем, возникла благодаря случайности, такое могло произойти лишь один раз во всей наблюдаемой Вселенной.
Напротив, биодетерминисты полагают, что фактор случайности здесь вторичен и нужные виды молекул послушно возникают в результате действия законов природы. Так, Сидни Фокс, американский пионер биогенеза, утверждал, что химия предпочитает соединять аминокислоты точно в тех комбинациях, какие нужны для того, чтобы они приобрели биологические функции. Если это так, значит, в природе словно существует некая изначальная предвзятость (или даже заговор), направленная на создание веществ, которые благоприятствуют возникновению жизни. Но можно ли всерьез полагать, будто законы физики и химии содержат в себе наброски жизни? И каким образом ключевая для всего живого информация может быть зашифрована в этих законах?
Чтобы попытаться ответить на сей вопрос, необходимо углубиться в размышления о самой природе той информации, которая лежит в основе всего живого. Вот одно важное наблюдение: богатая информацией структура обычно лишена четкого рисунка. Наиболее ясно это свойство иллюстрирует одна из отраслей математики – алгоритмическая теория информации. Ее задача – количественная оценка сложности информации с помощью подхода, при котором информацию воспринимают как результат работы компьютерной программы или алгоритма.
Представим себе такую бинарную последовательность: 1010101010101010101010… Ее можно получить, дав простую команду: «Печатать 10 n раз». Инструкции на входе значительно короче цепочки, которую мы получаем на выходе. Это служит отражением того факта, что результат содержит повторяющийся узор, который легко описать компактно. Поэтому данный результат содержит чрезвычайно мало информации.
Однако случайную с виду последовательность (к примеру, 110101001010010111…) нельзя свести к простому набору инструкций, содержание информации в ней велико. Если работа ДНК заключается в эффективном хранении информации, будет лучше, если последовательность «ступенек» не будет содержать слишком уж много «узоров», ибо они отражают информационную избыточность. Биохимики подтверждают такое ожидание. Геномы организмов, которые уже удалось секвенировать, по большей части выглядят как произвольные наборы знаков, случайным образом составленные с использованием четырех генетических букв.
Такая беспорядочная природа геномных последовательностей идет вразрез с принципами биологического детерминизма. Законы физики можно использовать для предсказания упорядоченных структур, но не структур случайных. К примеру, кристалл – просто определенный набор определенных атомов с периодичной структурой, подобный повторяющейся бинарной последовательности, которую мы приводили выше. А значит, он не несет в себе практически никакой информации. Конструкция кристаллов встроена в законы физики, поскольку их периодические формы определяются математическими симметриями, присущими этим законам. Однако случайные последовательности аминокислот в белках или звеньев лесенки ДНК не могут быть «встроены» в законы физики – как и возводимые нами здания не могут быть жестко встроены лишь в эти законы.
И в законы химии они не могут быть встроены. Простую иллюстрацию этого факта можно вывести непосредственно из рассмотрения структуры ДНК. Каждое звено этой веревочной лестницы состоит из двух сегментов, которые, подобно ключу и замку, плотно соединяются друг с другом. В конечном счете именно химия определяет и природу связей, удерживающих вместе эти сегменты, и те силы, которые прикрепляют их к боковинам лестницы. Однако между ступеньками лестницы, следующими друг за другом, химических связей нет. Химии нет дела до порядка следования этих звеньев, и жизнь вольна менять этот порядок как ей заблагорассудится. Подобно тому, как последовательность букв в руководстве по эксплуатации не зависит от химии бумаги и чернил, «буквы» ДНК (из которых и слагается информация) не зависят от химических свойств нуклеиновой кислоты. Именно эта способность жизни освобождаться от строгих химических ограничений придает ей такую силу, гибкость и изменчивость. Биологический детерминизм подразумевает существование химической смирительной рубашки, которая не усиливала бы творческий потенциал жизни, а лишь сдерживала бы его развитие.
Если жизнь, по сути, отражает такой вот побег от химии, явно не следует обращаться к химии, пытаясь объяснить жизнь. Но где же еще может таиться объяснение? В основе жизни лежит в конечном счете сложный и комплексный процесс обработки информации, так что имеет смысл поискать ответ в области теории информации и теории сложности.
Раз уж биологическая информация не зашифрована в законах физики и химии (по крайней мере, в тех, что сейчас нам известны), откуда она вообще берется? Похоже, все специалисты сходятся во мнении, что информация не может возникать спонтанно (возможно, за исключением особого случая – Большого взрыва). А значит, информационное содержание живых систем должно каким-то образом браться из окружающей их среды. Хотя нам не известны законы физики, способные создавать информацию из ничего, мог бы иметься некий принцип, позволяющий объяснить, как информацию можно брать из среды и накапливать в макромолекулах.
Один из способов сделать это – дарвиновская эволюция. Жизнь на Земле начиналась с простых организмов, обладающих короткими геномами с относительно низким содержанием информации. Более сложные организмы обладают более длинными геномами, где хранится больше информации. Эта дополнительная информация перетекала из среды в геномы благодаря процессу естественного отбора: когда идет отбор среди различных геномов (по степени «приспособленности», которую они дают своим носителям), приобретается информация. Так что дарвинизм может объяснить, каким образом организмы приобретают информацию. Но дарвинизм вступает в дело, лишь когда жизнь уже появилась. Как апеллировать к естественному отбору на пребиотической стадии развития Земли?
По мнению некоторых биохимиков, ответом служит нечто вроде молекулярного дарвинизма. Представьте себе молекулы, которые копируются в своего рода химическом супе. Хотя такие простодушно множащиеся молекулы могут не соответствовать интуитивному определению живого, имеющемуся у большинства людей, они все же могут проходить некую разновидность дарвиновской эволюции, если им свойственна изменчивость и если они проходят отбор. Сторонники этой теории (насквозь дарвиновской) полагают, что первая такая реплицируемая молекула была достаточно проста, чтобы образоваться по чистой случайности.
Загвоздка в том, что знакомые нам крупные самовоспроизводящиеся молекулы – лишь те, которые использует живое. Крайне маловероятно, чтобы ДНК могла образоваться лишь благодаря случаю. Даже РНК, ее более простую родственницу, трудно заставить образовывать достаточно длинные цепочки, обладающие биологической действенностью. А более короткие молекулы нуклеиновых кислот склонны давать больше погрешностей при репликации. Если доля ошибок становится чересчур высокой, утечка информации происходит быстрее, чем ее приобретение путем отбора, и эволюция буксует. Молекула, склонная к ошибкам при копировании, будет не накапливать информацию, а терять ее.
А значит, для того чтобы молекулярный дарвинизм заработал, природа должна ухитриться предоставить молекулы-репликаторы достаточно простые, чтобы они могли образоваться случайно, но при этом достаточно хитро устроенные, чтобы воспроизводиться достаточно точно и при этом с огромным набором вариаций (также представляющих собой хорошие репликаторы): только на таких условиях с ними сможет иметь дело естественный отбор. Это не обязательно должны быть нуклеиновые кислоты. Но для объяснения жизни, какой мы ее знаем, они должны в конце концов породить нуклеиновые кислоты и передать им функцию самовоспроизводства.
Получается, молекулярный дарвинизм все-таки протаскивает элементы биологического детерминизма. Мало того что законы природы должны допускать существование молекул, обладающих всеми перечисленными свойствами, вдобавок эволюционный маршрут, по которому идет популяция репликаторов, должен приводить к созданию нуклеиновых кислот. А иначе жизнь, какой мы ее знаем, оставалась бы чудовищно маловероятной флуктуацией.
Значит, приходится сделать вывод, что жизнь – результат чрезвычайно маловероятного химического происшествия, случайного события, уникального для нашей Вселенной? Не обязательно. Какая-то разновидность биологического детерминизма все-таки может оказаться справедливой, даже если жизнь не вписана в известные нам законы физики, химии и эволюционной теории. Не исключено, что эти законы отвечают за жизненное «железо» (то есть за ее сырье), но необходимый для нее «софт», то есть информационная составляющая, берет начало в законах информационной теории.
Само понятие «информация», пожалуй, довольно-таки расплывчато, хотя это обычное дело для молодых наук. Два столетия назад столь же туманным понятием была энергия. Ученые интуитивно признавали ее как нечто существенное для физических процессов, но этим представлениям недоставало математической четкости. Сегодня мы рассматриваем энергию как реальную и фундаментальную количественную величину, поскольку наука в ней хорошо разобралась. А вот информация продолжает нас озадачивать – отчасти из-за того, что она предстает в разных обличьях в великом множестве областей науки. В теории относительности, например, информации запрещено распространяться быстрее света. В квантовой механике состояние системы описывается по максимуму содержащейся в ней информации. В термодинамике количество информации падает при возрастании энтропии. В биологии ген рассматривается как набор инструкций, содержащих информацию, которая необходима для выполнения определенной задачи.
То, что нам известно об информации, берет начало главным образом в царстве наук о человеческом общении. Важной вехой в развитии информационной теории стал анализ коммуникаций с помощью наполненных шумами радиоканалов, сделанный американским инженером-электротехником Клодом Шенноном во время Второй мировой войны. Однако пока никто не вывел эквивалент законов Ньютона применительно к информационной динамике. Ученые даже не могут прийти к согласию по поводу того, всегда ли информация сохраняется в физических процессах. Годами бушуют споры о том, что происходит с информацией, хранящейся в звезде, когда та схлопывается в черную дыру, которая затем испаряется. Теряется ли эта информация безвозвратно? Или она потом каким-то образом возвращается?
Одна из сфер исследования таит в себе заманчивый путь для грядущих изысканий. До сравнительно недавнего времени биологи рассматривали молекулы живого как маленькие строительные блоки, которые слипаются вместе. На самом деле строение молекул и связи между ними – предмет квантовой механики. В наши дни физики расширили понятие информации, включив в него и квантовый мир. При этом удалось совершить ряд необычайных открытий. В частности, выявить способность квантовых систем обрабатывать информацию экспоненциально быстрее по сравнению с системами классическими. Именно это свойство лежит в основе действия квантовых компьютеров.
В сущности, загадка биогенеза по природе своей – вычислительная. Требуется найти весьма особенный тип молекулярных систем на чрезвычайно раскидистом древе химических альтернатив, большинство ветвей которого представляют собой биологические тупики. Как наделить материю информацией и вывести ее на дорогу к возникновению жизни? Может статься, первые, и важнейшие, шаги здесь как раз были сделаны в странном и загадочном царстве квантовой механики? Вопрос остается открытым. Но если ответ на него окажется положительным, биологический детерминизм наконец обретет убедительное теоретическое обоснование широко распространенной гипотезе, утверждающей: мы живем в биологически дружественной Вселенной, и мы тут не одиноки.