Книга: Игра случая. Математика и мифология совпадения
Назад: Глава 11 Доказательство
Дальше: Глава 13 Риск

Глава 12
Открытие

Dans les champs de l'observation le hasard ne favorise que les esprits prepares. (В области наблюдений удача благоволит только подготовленному уму.)
Луи Пастер
Великие изобретения и открытия нередко сопровождаются удивленным возгласом «Ага!». Но иногда «Ага!» вызвано тем, что все пошло не так, как планировалось, или у события нет очевидной причины: взаимодействие в лаборатории с неким ингредиентом, который был частью другого эксперимента, или инструментом, который как раз вовремя придумали, или же эксперимент просто не получился.
Веками химики работали с молекулярными связями задолго до того, как стало известно, как и почему эти связи работают. До XX в. они ничего не знали об обобществленных электронах, потому что вообще не знали об электронах. И все же они могли осуществлять великолепные химические опыты, зная, как атомы и молекулы взаимодействуют и преобразуются, создавая новые соединения. Они смогли проанализировать реакции молекул, их трансформации под воздействием тепла и света и даже изготовить сложные соединения, куда входили полимеры и сплавы металлов, не понимая решающей роли электронов в создании необходимых для этого связей. Они понимали, что газы всегда вступают в реакцию друг с другом в кратных отношениях. И все это без знания о роли электронов в химических реакциях и связях.
Это были научные открытия необычных людей, которым по непостижимой случайности повезло столкнуться с совпадениями и распознать в них ключи к ответам на сложные вопросы. Они показывают нам, что незапланированные события могут быть так же полезны для новых открытий, как и отработка целенаправленных гипотез. Что случайности, происходящие во время научных наблюдений, могут формировать наш образ мышления и изменять мир к лучшему. Таких историй много, в том числе история о том, как случайно полученные Уильямом Перкинсом красители помогли развитию иммунологии и химиотерапии; открытие пенициллина Александром Флемингом, Говардом Флори и Эрнстом Чейном: в не слишком чистой лаборатории Флеминга культура стафилококка оказалась загрязнена плесенью, которая окружила и уничтожила стафилококки. Примем во внимание также историю Алана Тьюринга, Ральфа Тестера и других криптоаналитиков времен Второй мировой войны из Блетчли-парка, взломавших считавшуюся невзламываемой систему шифрования «Энигма», что сыграло значительную роль в том, какая из сторон впоследствии выиграет войну. Все они были очень одаренными людьми, но лишь благодаря нескольким ошибкам, допущенными немецкими шифровальщиками, английские криптографы смогли разобраться в логике немецких шифровальных машин. Полученные сведения не только помогли союзникам победить в войне, но и способствовали изобретению первых в мире компьютеров.
В 1869 г. Дмитрий Менделеев увидел сон, в котором расположил элементы в таблице согласно их атомным весам. Проснувшись на следующее утро, он записал таблицу. Это было время, когда национальные метеорологические агентства начинали собирать данные о температуре, осадках и других достойных доверия климатических параметрах. В те годы умы химиков занимали уже не атомы. Научные основы химии были заложены почти за 100 лет до создания таблицы, когда Антуан Лавуазье открыл значение кислорода для горения и сформулировал закон сохранения массы. Однако в 1869 г., когда Менделеев впервые опубликовал свою периодическую таблицу, химики в своих экспериментах все еще работали вслепую, ничего не зная о внутреннем устройстве атома. Это были простые времена; железные дороги связали между собой города по всей Западной Европе и в России, хотя добраться из одной страны в другую все же было непросто. Санкт-Петербург, город белых ночей, где жил и преподавал Менделеев, был городом высокой моды, состоятельных аристократов и захватывающих развлечений; городом перенаселенным, нездоровым, со скверной водой, многие жители недоедали; плохи были дела с санитарией, быстро распространялись и подолгу не унимались болезни. В том же году швейцарский медик Фридрих Мишер выделил ДНК из гноя, взятого с использованных бинтов. Мишер, также работая вслепую, так и не узнал, что это была молекула наследственности, кодирующая генетические инструкции, тем не менее его открытие привело к осознанию того, что ДНК – носитель наследственности.
Примерно в это же время многие физики экспериментировали с трубками Крукса – стеклянными трубками под вакуумом с электродами на каждом из концов. Целью экспериментов было понять причину свечения внутри трубок. Сейчас мы знаем, что происходит, когда на трубку Крукса, содержащую разреженные газы, подается высокое напряжение: небольшое число заряженных молекул газа (положительные ионы) в поисках электронов возбуждаются и сталкиваются с другими молекулами газа, выбивая некоторое число электронов, что создает еще больше положительных ионов. Положительные ионы устремляются к отрицательному электроду. Когда они сталкиваются с поверхностью металла электрода, они выбивают большое число электронов. Привлеченные положительным электродом, они движутся по трубке, создавая светящийся пучок электронов – катодный луч. Более чем за 30 лет опытов ученые экспериментировали с различными газами, без какого-то глубокого понимания того, что же на самом деле происходит. Они ничего не знали об отрицательно заряженных частицах, тех самых электронах в атомах газа. Как ничего не знали и о причине свечения. Новую информацию получали в результате случайностей или совпадений, которых не понимали. Одно стекло давало красное свечение, другое – зеленое. Фундаментального понимания причин этого практически не было. Например, они не знали, что в вакууме множество электронов, обладающих очень малой массой, движутся к положительному электроду благодаря электрическому полю. Чем ближе оказываются эти электроны к положительному электроду, тем сильнее становится притяжение. Сейчас нам известно, что эти электроны, направляющиеся к положительному электроду, набирают скорость, относительно близкую к скорости света. Некоторые из них пролетают мимо электрода и сталкиваются с атомами стекла трубки, на мгновение выбивая из них электроны на более высокие энергетические уровни, после чего те снова возвращаются на исходные уровни. При этом излучаются элементарные световые частицы (фотоны), поэтому стекло и светится зеленовато-желтым светом.
Рентгенолюминесценция, т. е. излучение света под воздействием электромагнитного излучения, немного сложнее. Вильгельм Конрад Рентген открыл рентгеновское излучение случайно, когда экспериментировал с электрическим током в стеклянном сосуде под вакуумом. Экран, покрытый цианоплатинитом бария (флуоресцентный материал), по воле случая оказался в его лаборатории и предназначался для другого эксперимента. Если бы этого экрана там не было, кто знает, сколько людей прожили бы значительно меньше, потому что рентгеновские лучи и способы их практического применения открыли бы позже. Рентген не смотрел на экран, который находился на некотором расстоянии от него. Не ожидая, что это будет иметь какое-либо отношение к эксперименту, он краем глаза что-то заметил на экране. Происходило нечто, не зависящее, по-видимому, от его эксперимента. Это была случайность, но случайность с множеством последствий.
Давайте пройдемся по лаборатории Рентгена в Вюрцбургском университете в том виде, в каком она была 8 ноября 1895 г. Большое окно выходит на узкий Норвежский бульвар, где стоят почти облетевшие клены. Столы красного дерева разной высоты выстроились под светлым окном. На столах в беспорядке навалены инструменты, образцы металлов и катушки проволоки, какие-то двигатели и разнообразная химическая посуда. На стене рядом с полкой, с которой свешиваются провода различной длины, располагаются часы с маятником. На одном из столов сложены стеклянные трубки. Потолок венчает электрический светильник с лампой накаливания, его низко висящий провод соединен с розеткой, расположенной около настенных часов. Остальная часть комнаты практически пуста. Занавески на окнах отсутствуют. Лишь яркое естественное освещение отличает эту комнату от любой другой химической лаборатории XIX в.
Человек, находящийся в лаборатории, – сам Рентген. Ему пятьдесят. У него густые черные волосы. В его окладистой черной бороде видна седина. С начала 1895 г. он экспериментирует с электричеством, раз за разом прогоняя заряды через стеклянные трубки. 8 ноября он экспериментировал с катодными лучами, которые создавали видимое свечение в стеклянных сосудах. Лучи не видны в отсутствие вакуума, поэтому у ученого возникает естественный вопрос: может ли часть невидимых лучей покинуть стеклянный сосуд? В попытке блокировать перемещение лучей или зафиксировать мгновение, когда они выходят за пределы сосуда, он накрывает сосуд картонным кожухом и затемняет комнату. Висящий на противоположной стене экран начинает светиться, а Рентген, изменяя глубину вакуума и силу тока в стеклянной трубке, управляет его свечением. Экран продолжает слабо светиться. Эксперимент за экспериментом – результат тот же. Даже если отодвинуть экран подальше или полностью затемнить лабораторию, результат не меняется. Ученый накрывает стеклянный сосуд более толстым кожухом, но и это не меняет дела. Колеблющийся свет на экране не может быть результатом чего-либо иного, кроме катодных лучей, производимых электрическим током в стеклянном сосуде. Это означает, что лучи, проходя через кожух и пролетая по воздуху, ударяются об экран и вызывают свечение. Это был новый, неизвестный тип излучения, неизвестные лучи.
Поскольку символ x с того момента, когда его ввел Декарт, использовали для обозначения неизвестного в математике, Рентген решил назвать новое излучение X-лучи. Джеймс Клерк Максвелл и Майкл Фарадей ранее предсказывали существование невидимых электромагнитных волн, способных перемещаться в пространстве на некоторое расстояние. За 3 года до открытия Рентгеном X-лучей Генрих Герц проводил эксперименты, в которых продемонстрировал, что катодные лучи способны проникать через тонкую металлическую фольгу. В то же время Герман фон Гельмгольц разрабатывал математические уравнения, описывающие X-лучи, выдвигая гипотезу о том, что такие лучи действительно могут существовать и перемещаться со скоростью света.
Представьте себе удивление Рентгена, когда он попытался остановить лучи, поместив руку между сосудом и экраном, и увидел на экране кости своей руки! Он рассматривал на экране собственное тело. Из биографии, написанной спустя долгое время после смерти ученого, мы узнаем, что у него не было намерения помещать часть своего тела между сосудом и экраном. Это произошло случайно. Весьма вероятно, он был первым, кто проделал подобный эксперимент. Затем он пробовал остановить лучи с помощью других материальных объектов: дерева, металла, бумаги, резины, книг, ткани, платины и всяческих предметов, которые приносил из дома. Через одни предметы лучи проходили беспрепятственно; другие их останавливали. На снимке деревянной катушки с проволокой видна была только проволока, а сама катушка выглядела как бледная тень. В ходе следующего эксперимента Рентген проверял проницаемость алюминиевых пластин толщиной 0,0299 мм, прибавляя к стопке по одному листу. Он не смог найти различий в проницаемости между 1 и 31 пластиной, малые расстояния от покрытого цианоплатинитом бария экрана также не оказывали заметного влияния на результат. Рентгеновские лучи могли беспрепятственно проходить через живую ткань, но не через кости и некоторые металлы (свинец, например). Они проходили через дерево, но не через монеты. Вскоре Рентгена посетила блестящая идея заменить экран на фотографическую пластину. Он направил рентгеновские лучи через закрытую деревянную коробку, внутри которой была монета, и получил четкую фотографию одной лишь монеты, как будто коробки там не было вовсе. Далее он сфотографировал руку своей жены Берты. На снимке были видны кости пальцев и кольцо, которое она носила. Фотография получила широкую известность после того, как ее напечатала венская газета. Это была, вероятно, первая фотография внутреннего строения живой руки. Для одних это был любопытный феномен, для других – шутка. Днями, неделями и месяцами работали печатные станки, тиражируя истории про новую фотографию. Журнал Life опубликовал карикатуру, высмеивающую новый тип фотографии, где творческая фантазия дошла до крайности.
Вот сатирическое стихотворение из выпуска Life того времени:
Она вся так тонка, так мил ее скелет,
Нежнейшие фосфаты и твердый карбонат
Катодные лучи пред нашим взглядом обнажат.
В палитре герц, ампер и ом –
От нас не скрыты милой девы позвонки,
Покровы сняты, косточки крепки.

Барбара Голдсмит пишет в своей книге «Одержимый гений»: «Едва X-лучи пронеслись по миру, как стали целью бесчисленных карикатур: мужья, шпионящие за женами через закрытые двери; рентгеновские театральные бинокли, показывающие под одеждой обнаженные тела… Некая фирма в Лондоне даже продавала рентгенонепроницаемые костюмы».
У всех великих научных открытий есть свои праотцы. Мало кто попадает в цель с первого выстрела. Многим приходится снова и снова повторять попытки, а некоторые достигают успеха из-за случайности, которая вдруг взяла, да и приключилась. Они, эти случайности, действительно случайны, тем не менее в большинстве случаев им предшествовали некие четкие ориентиры, продиктованные гипотезой или продуманной теорией. Вот почему нет причин предполагать, что открытие Рентгена не произошло бы, не окажись в его лаборатории цианоплатинитового экрана. Другие физики также изучали свойства катодных лучей, и можно с уверенностью сказать, что исследования в этой области в конце XIX в. были в высшей степени актуальны. Английский физик Уильям Крукс (в честь которого названы стеклянные вакуумные трубки) открыл катодные лучи, сумев получить пучок излучения, исходящий от катода, невольно создав научный ажиотаж вокруг их исследования. Используя вогнутые катоды, чтобы сфокусировать лучи, Крукс сумел собрать достаточно энергии для получения слабого рентгеновского излучения, хотя большая часть энергии была потеряна за счет выделения тепла. Ему показалось странным, что несколько неэкспонированных фотографических пластин, лежавших рядом, оказались засвеченными. Не придав этому особого значения, он вернул пластины производителю, заявив, что те были бракованными. В 1888 г. Филипп Ленард использовал катодные лучи в экспериментах с ультрафиолетовым излучением. Если бы в его трубке имелся достаточно разреженный вакуум и высокое напряжение, он бы получил поток рентгеновских лучей, который бы вызвал сильное свечение даже за пределами кварцевой трубки. Но вакуум был недостаточно глубоким, а напряжение – недостаточно высоким. Поэтому он не обнаружил рентгеновского излучения: оно было слишком слабым.
Майкл Фарадей принимал во внимание флуоресценцию, когда в 1838 г. начал работать с электрическими разрядами, пропускаемыми через вакуумные стеклянные трубки. Впоследствии молодые немецкие физики экспериментировали с вакуумными стеклянными трубками всех видов и форм. Они проверяли неон, аргон и даже пары ртути под высоким напряжением. Немецкий физик Генрих Гейсслер в 1857 г. начал помещать металлические электроды в стеклянные цилиндры с выкачанным воздухом, чтобы продемонстрировать свечение. Тем не менее все эти прозорливые ученые, работавшие в хорошо оснащенных университетских лабораториях, подобных лаборатории Рентгена, не обнаружили слабого мерцающего свечения на небольшом удалении от трубки, т. е. рентгеновских лучей – электромагнитного излучения с такой малой длиной волны, которое могло бы произвести свечение вне стеклянной трубки.
Нам никогда не узнать, насколько близки мы были к тому, что рентгеновские лучи открыли бы много позже, и можно только предположить (потому что данные слишком искажены, чтобы можно было на них опираться), что за прошедшие с момента открытия Рентгена 12 десятилетий «X-лучи спасли больше жизней, чем загубили пули». Не случись открытия в то время, вполне возможно, что еще как минимум 10 лет не открыли бы строение атома, а отсутствие этих знаний отсрочило бы другие великие открытия, которые происходили по цепочке и привели к громадным переменам во всем мире, в результате чего мир не стал бы таким, каким мы его знаем сегодня. О самом открытии Рентгена рассказывали (и пересказывали) многие. Рентген дал несколько интервью. Один из наиболее авторитетных отчетов принадлежит Х. Дж. У. Дэму, научному журналисту из McClure's Magazine. Это весьма занимательный материал, в нем множество деталей и описаний как самого Рентгена, так и его лаборатории и эксперимента:
– Ну, профессор, – сказал я, – Расскажете мне историю вашего открытия.
– Нет никакой истории, – сказал он. – Меня долгое время занимала проблема катодных лучей в вакуумной трубке, изложенная в работах Герца и Ленарда. Я с величайшим интересом ознакомился с результатами их трудов, а заодно и с некоторыми другими экспериментами, и решил, что, как только у меня появится время, проведу собственные исследования. Я нашел время для этих исследований в конце октября прошлого года. Я проработал несколько дней и внезапно обнаружил кое-что новое.
– Какой был день?
– Восьмое ноября.
– И в чем заключалось открытие?
– Я работал с лампой Крукса, накрытой кожухом из черного картона. Рядом на верстаке лежал кусок цианоплатинитовой бумаги. Я пропускал ток через трубку, как вдруг заметил на бумаге необычную черную линию.
– И что?
– Подобный эффект обычно производит, говоря простыми словами, прохождение света. От трубки свет исходить не мог, потому что кожух, которым она была накрыта, был непроницаем для любого известного излучения, даже для света электрической дуги.
– Что же вы подумали?
– Я не думал. Я исследовал. Я предположил, что эффект может быть вызван самой трубкой, поскольку его свойства указывали на то, что больше ему исходить неоткуда. Я проверил свое предположение. Через несколько минут сомнений у меня уже не оставалось. Лучи исходили из трубки и производили эффект люминесценции на бумаге. Я успешно проверил предположение на больших промежутках, увеличив расстояние до двух метров. Это было похоже на какой-то новый тип невидимого света. Было очевидно, что это нечто новое, ранее не зарегистрированное.
– Что это было, свет?
– Нет.
– Электричество?
– Лучи не напоминали ни одну из известных ранее форм.
– Что же тогда?
– Понятия не имею.
Так первооткрыватель X-лучей совершенно спокойно рассуждает о собственном невежестве в отношении новой сущности, как и любой другой из писавших об этом феномене до настоящего времени».
Другие источники упоминают также бумагу, покрытую цианоплатинитом бария, которая по чистой случайности оказалась на столе в некотором удалении от трубки, т. е. указывают на случайность открытия. В поздних сообщениях упоминается экран, покрытый цианоплатинитом бария, потому что Рентген якобы считал, что такой экран более эффективен, чем другие флуоресцентные покрытия. В своем докладе для Вюрцбургского физико-медицинского общества в 1896 г. он рассказал о том, как впервые наблюдал флюоресценцию цианоплатинитобариевой бумаги, как обнаружил, что флюоресценция появлялась только тогда, когда через накрытую кожухом трубку Крукса проходил заряд, и о том, что то же самое явление происходило даже в том случае, когда покрытую люминофором бумагу помещали на большем расстоянии. Тогда же Рентген заявил: «Я случайно обнаружил, что лучи проникают через черный картон. Затем я использовал дерево, бумагу, книги, по-прежнему полагая, что стал жертвой какого-то заблуждения. Наконец использовал фотографию, и эксперимент был успешно завершен». 22 декабря 1895 г. фотографии наподобие приведенной на рис. 12.1 газеты распространили по всему миру.
Вскоре после этого идея была применена в медицине, что позволило врачам заглянуть внутрь человеческого тела, чтобы рассмотреть опухоли, абсцессы, полости, строение костей и т. д., чего нельзя было проделать обычными средствами. Неясно, вполне ли Рентген осознавал, насколько значимым окажется его метод для медицинской диагностики внутренних заболеваний.

 

 

Он намеревался возобновить исходные эксперименты, связанные с использованием экрана, но его настолько захватили новые опыты с X-лучами, что к этим экспериментам он так и не вернулся.
Подходил к концу XIX в., а ученые все еще почти ничего не знали о внутреннем строении атома. Давно было открыто электричество. Они знали, как его вырабатывать. К 1880 г. лампы накаливания того или иного типа освещали улицы Лондона, Парижа, Москвы, многих городов в Соединенных Штатах. Ученые даже знали, что сила и энергия заполняют все пространство. А Фарадей и Максвелл разработали теорию электромагнитной волны. Однако электроны были открыты только в 1897 г., что разрушило древние представления об атоме как мельчайшей частице материи. То, как именно электрические токи проходили по проводам из одной точки в другую, все еще было загадкой. Успешное развитие химии перед лицом подобной загадки удивительно, учитывая, что химия еще за 100 лет до того была вполне оформившейся наукой. Но хотя теоретически существование катодных и рентгеновских лучей также было доказано, никто в то время их не продемонстрировал в реальном эксперименте. Глагол «продемонстрировал» в последнем предложении употреблен так, что это необязательно означает видимость посредством некоего инструмента (например, микроскопа). У науки есть множество примеров научных феноменов, которые невозможно зафиксировать с помощью каких-либо инструментов. А в то время никто не знал, как именно светящиеся потоки электричества проходили от одного электрода в трубке Крукса к другому.
Эксперименты Дж. Дж. Томсона в 1897 г. с катодными лучами показали, что лучи сами по себе не были атомами, текущими от одного электрода к другому; напротив, они были материальными компонентами атомов. Атомы уже не воспринимались как просто цельные шарики. Существование протонов и электронов предсказывали и ранее, поскольку, хоть их и нельзя было увидеть, можно было измерить их воздействие на некоторые приборы. В интервью в 1934 г. Томсон задал риторический вопрос: «Может ли что-либо показаться нам с первого взгляда более невозможным, чем тело, которое столь мало, что его масса – это незначительная доля массы атома водорода, который, в свою очередь, настолько мал, что скопление этих атомов, равное числом населению всего мира, слишком мало, чтобы его можно было обнаружить любыми из известных науке средств?» За несколько следующих десятилетий наука прошла большой путь: если в начале этих десятилетий ученые ничего не знали об атоме и не догадывались о существовании электронов и протонов, теперь они владеют знаниями о некоторых из наиболее глубоких тайн Вселенной и внутреннем устройстве атома. К 1939 г. открыли деление ядра, хотя даже сегодня вопрос об основных кирпичиках атомного ядра остается загадкой; эти частицы, названные странными словами «верхний кварк» и «нижний кварк», представляют собой пульсирующую массу еще меньших частиц, связанных сильным взаимодействием.
В популярной истории науки есть много примеров случайных открытий: открытие противомалярийного препарата хинин южноамериканскими индейцами, страдавшими от малярии и утолившими жажду водой рядом с хинным деревом; инсулин был открыт, когда исследователи обратили внимание на мух, привлеченных мочой собаки, у которой была удалена поджелудочная железа; а также истории о том, как Декарт изобрел свою систему координат, лежа в кровати и наблюдая за мухой. Существует много историй об открытиях в области химии, которые на самом деле являются скорее технологическими изобретениями, чем фундаментальными научными открытиями. О них стоило бы упомянуть, но здесь мы их не приводим по простой причине, емко выраженной Луи Пастером: «Le hazard ne favorise que les esprits préparés» (Удача благоприятствует тому, кто к ней готов). Кроме того, многие из этих историй рассказывают вне контекста подлинных записей ученого. Преувеличения легко находят место в этих историях благодаря желанию рассказчика что-то приукрасить. Это естественный фон для отличнейшей истории. До получения результатов чаще всего выполняется важная первичная работа. Копните историю открытия чуть глубже, и вы почти всегда обнаружите, что первооткрыватель стоял на плечах гигантов. Даже та известная строчка Исаака Ньютона «Если я видел дальше других, то потому, что стоял на плечах гигантов» не была первоисточником. Ньютон действительно написал эти слова в письме Роберту Гуку в 1676 г. Однако ее автором был французский неоплатонист XII в. философ Бернар Шартрский, который говорил про свое поколение, что «мы подобны [ничтожным] карликам, усевшимся на плечах великанов». Бернар отметил, что мы видим больше и дальше, чем наши предшественники, не потому, что обладаем более острым зрением или выше их ростом, но потому, что «нас подняли и несут на высоте своего громадного роста». Разумеется, есть и такие, кто, даже стоя на плечах гигантов, видит недалеко, а есть и те, кому гиганты не требуются, потому что они стоят на плечах множества обычных людей, посвятивших себя определенной цели. Я предпочитаю определение понятия гигантов, данное Стивеном Вайнбергом. В своем великолепном сборнике очерков о современной физике и научной политике «Виды на озеро» он пишет: «Мы понимаем, что наши важнейшие научные предшественники не были пророками, чьи работы надо изучать, как непогрешимые учебники, – они были просто великими людьми, которые подготовили почву для лучшего понимания, ныне достигнутого нами».
Плесень вполне могла оказаться в чашке Петри в лаборатории Александра Флеминга, однако тот факт, что она вообще там была, наводит на подозрения, что существовала некая связанная с ней цель. Плесень не на куске хлеба выросла, как утверждают некоторые народные источники. Она появилась в чашке Петри! Поставленные цели направляют научные открытия. Как и в случае с обезьянами, пытающимися написать строчку из Шекспира, цели, выбранные наугад, почти никогда не обеспечивают результат.
Назад: Глава 11 Доказательство
Дальше: Глава 13 Риск