Наполнение атмосферы планеты кислородом
Самая сложная в технологическом плане задача – наполнить атмосферу Марса таким количеством кислорода, которое позволяет поддерживать животную жизнь. В то время как бактерии и простейшие растения могут выжить без кислорода, более сложные растения требуют давления по крайней мере 1 мбар, а людям нужно 120 мбар. Несмотря на то что в марсианском реголите, вполне вероятно, содержатся супероксиды или нитраты, которые можно нагреть, чтобы высвободить кислород и азот в виде газов, процесс потребует огромного количества энергии, примерно 2200 ТВт. лет на каждый произведенный миллибар. Подобные количества энергии потребуются и растениям, чтобы выделять кислород из диоксида углерода. Однако у растений есть преимущество: если их однажды посадили, они могут разрастаться и размножаться. Поэтому производство кислородной атмосферы на Марсе распадается на две фазы. На первом этапе используются инженерные методы грубой силы, дополненные распространением для начала цианобактерий и примитивных растений для получения достаточного количества кислорода (около 1 мбар), чтобы затем сделать возможным распространение более сложных растений по всему Марсу. Если предположить, что у нас будут три космических зеркала 125-километрового радиуса и достаточные запасы необходимых материалов на поверхности Марса, мы получим желаемый результат примерно за двадцать пять лет. Есть и другой способ: количество кислорода, дающее давление в 1 мбар, может быть добавлено в атмосферу примерно за век благодаря деятельности фотосинтезирующих бактерий. В любом случае, как только появятся начальный запас кислорода, умеренный климат, утолщенная углекислая атмосфера, обеспечивающая достаточное давление и значительно снижающая дозу космической радиации, и приличное количество циркулирующей воды, можно будет внедрять генетически модифицированные растения, которые сумеют приспособиться к марсианскому реголиту и осуществлять фотосинтез с высокой эффективностью, вместе с бактериями-симбионтами. Предположим, что распространить растения по всему Марсу мы сумеем в течение нескольких десятилетий и что эффективность этих растений благодаря генной модификации будет составлять 1 % (довольно много, но иногда встречается и на Земле), то они будут эквивалентны продуцирующему кислород источнику энергии примерно на 200 ТВт. Если объединить усилия таких биологических систем с энергией около 90 ТВт от космических зеркал и 10 ТВт от элементов питания на поверхности (земная цивилизация сегодня использует около 15 ТВт), требуемые 120 мбар кислорода, которые нужны для жизни людей и других высших животных под открытым небом, могут быть произведены примерно в течение девятисот лет. Если мы сумеем разработать более мощные искусственные источники энергии или вывести еще более эффективные растения (или, допустим, сконструировать самовоспроизводящиеся машины для фотосинтеза), процесс может ускориться. И этот факт сам по себе способен стать двигателем для воплощения таких технологий в жизнь. Можно отметить, что энергия термоядерного синтеза в количествах, необходимых для ускоренного терраформирования, также является ключевой технологией для осуществления пилотируемых межзвездных полетов. Если терраформированию Марса суждено способствовать появлению такой боковой отрасли, то конечным результатом этого проекта станет доступность для человечества не только одного нового мира, пригодного для проживания, но целых мириад миров.