Глава 9
Терраформирование Марса
Бог сотворил мир, а голландцы – Голландию.
Традиционная поговорка в Нидерландах
До сих пор в этой книге мы обсуждали перспективы скорого разведывания и заселения Марса. Теперь мы обратимся к заключительной задаче, которую Красная планета ставит перед человечеством, – терраформированию [46, 47]. Можно ли изменить Марс, чтобы сделать его полностью пригодным для жизни?
На первый взгляд идея кажется совершенно нереальной, просто научной фантастикой. Но еще не так давно к области научной фантастики относили полет человека на Луну. Сегодня лунные экспедиции стали предметом изучения для историков, а пилотируемые исследования Марса – областью работы инженеров. Многим кажется, что возможность значительно изменить температуру и атмосферу Красной планеты для создания более «землеподобных» условий – то есть «терраформировать» Марс – или чистой воды фантазия, или в лучшем случае задача для далекого будущего. Однако, в отличие от некоторых других смелых идей – путешествий со скоростью выше скорости света или, скажем, нанотехнологий, – у терраформирования есть история длиной примерно в четыре миллиарда лет.
Вся история жизни на Земле и есть пример терраформирования – поэтому наша красивая голубая планета стала именно такой, как сейчас. Когда Земля сформировалась, в ее атмосфере не было кислорода, только углекислый газ и азот, а грунт был каменистым и безжизненным. Нам повезло, что Солнце тогда давало примерно на 70 % меньше света, чем сейчас, в противном случае толстый слой двуокиси углерода в атмосфере создал бы парниковый эффект, который превратил бы нашу планету в подобие адски разогретой Венеры. Но, к счастью, фотосинтезирующие организмы эволюционировали так, что преобразовали углекислый газ в атмосфере Земли в кислород, в процессе полностью изменив химию поверхности планеты. В результате этой деятельности не только удалось избежать парникового эффекта, но и началась эволюция аэробных организмов, то есть таких, которые используют кислород для дыхания. Эти животные и растения продолжали изменять Землю еще больше, колонизируя сушу, создавая почву и резко изменяя глобальный климат. Жизнь эгоистична, поэтому не удивительно, что все изменения, которые она произвела с Землей, способствовали расширению биосферы и появлению все новых возможностей сделать окружающую среду еще комфортнее.
Люди практикуют это искусство совсем недавно по сравнению с остальными живыми существами. Начиная с самых ранних наших цивилизаций, мы использовали ирригацию, высаживали сельскохозяйственные культуры, пропалывали их, приручали животных и защищали их стада, чтобы получить от родной планеты как можно больше. Поступая таким образом, мы расширили биосферу для человеческой популяции, в результате чего возросла наша численность и вместе с тем способность изменять окружающую среду, чтобы поддержать продолжение экспоненциального роста. В результате мы буквально переделали Землю в такое место, где могут жить миллиарды людей, значительная часть которых освобождена от необходимости трудиться ежедневно ради выживания. И теперь мы можем смотреть в ночное небо и искать новые миры.
Некоторые люди считают идею терраформирования Марса еретической – дескать, человечество играет в Бога. Но другие видят в таких достижениях самое глубокое доказательство божественной природы человеческого духа – способность возвращать мертвый мир к жизни. Лично мне эта точка зрения ближе. Но я бы пошел дальше. Я бы сказал, что отказ терраформировать Марс означает отказ от человеческой природы и от нашей ответственности как членов сообщества самой жизни. Сегодня биосфера готова расширить свое влияние: охватить целый новый мир. Люди с их интеллектом и технологиями – уникальный инструмент, с помощью которого она может завоевать новую землю, первую среди многих. Бесчисленное множество существ жило и умирало, чтобы превратить наш мир в подходящее для людей место. Теперь наша очередь внести свой вклад в это дело.
Так давайте поставим вопрос еще раз: можно ли преобразовать Марс, чтобы сделать его полностью пригодным для жизни? Рассмотрим эту проблему. Несмотря на то что сегодня Марс – холодная, сухая и, вероятно, безжизненная планета, там есть все составляющие, необходимые для поддержания жизни: вода, углерод, кислород (в виде диоксида углерода) и азот. Физические свойства Марса, его сила тяжести, скорость вращения, наклон оси вращения и расстояние от Солнца достаточно близки к аналогичным показателям Земли, и это нам подходит. В одном Марс серьезно недотягивает: там не такая уж мощная атмосфера.
Атмосферное давление Земли на уровне моря составляет 14,7 фунта на квадратный дюйм, или приблизительно 1 бар. (Бар – единица измерения давления. Бар и миллибар, одна тысячная доля бара, обычно используются в метеорологии, я тоже остановлюсь на этих единицах при обсуждении терраформирования.) Давление в углекислотной атмосфере Марса составляет около 1 % атмосферного давления на Земле на уровне моря, оно колеблется от 6 до 10 миллибар (мбар). Однако мы знаем наверняка, что атмосфера Марса когда-то была гораздо плотнее, чем сейчас. Каналы, змеящиеся по поверхности Марса, служат доказательством, что когда-то по планете текла жидкая вода, а жидкая вода может существовать только при определенном диапазоне температур и давлений. На уровне моря на Земле этот температурный диапазон составляет от О °С – точка замерзания – до 100 °C – точка кипения. Чтобы вода могла течь по поверхности Марса, атмосферное давление и температура должны быть выше, чем сейчас.
Хотя атмосфера Марса в настоящее время весьма тонкая, большинство исследователей считает, что на планете есть достаточные запасы углекислого газа, чтобы уплотнить атмосферу. Часть двуокиси углерода существует в замороженном виде как сухой лед, составляющий значительную часть южной полярной шапки. Дополнительные запасы заключены в реголите, рыхлом материале, покрывающем поверхность планеты. (Реголит – это астрогеофизический термин для рыхлого грунта, применимый к любому планетарному телу. Почва – это земной реголит.) Высвобождение всех этих запасов углекислого газа значительно увеличит плотность атмосферы, возможно, до значения около 30 % от земного, или 300 мбар (почти треть бара). Нагревание планеты вызовет испарение огромных запасов захваченного диоксида углерода. Это не просто теория: мы знаем наверняка, что температура и атмосферное давление Марса изменяются благодаря движению планеты по эллиптической орбите вокруг Солнца в течение марсианского года. Когда Марс нагревается и охлаждается в течение года, его атмосферное давление меняется на 20 % в обе стороны по сравнению со средним сезонным значением.
Разумеется, мы не можем сдвинуть Марс ближе к Солнцу. Но нам известен еще один способ нагревания планеты, который мы, по-видимому, невольно практиковали на Земле в течение прошлого века. Я говорю о высвобождении или производстве газов, которые удерживают инфракрасное излучение Солнца – его тепло – и таким образом нагревают планету. На Земле это называется «парниковый эффект», и он вызван углекислым газом, который выделяется в результате сжигания ископаемого топлива, а также промышленными парниковыми газами. Называйте это терраформированием или парниковым эффектом, но то же самое мы способны устроить на Марсе. Парниковый эффект в атмосфере Марса может быть создан по крайней мере тремя различными способами: нагревом выбранных участков планеты для выделения крупных запасов природного парникового газа, двуокиси углерода; постройкой на Марсе заводов по производству очень мощных искусственных парниковых газов, например галогенуглеводородов, или фреонов (CFC); размножением бактерий, которые могли бы производить естественные парниковые газы, более мощные, чем диоксид углерода (но менее мощные, чем галогенуглеводороды), такие как аммиак или метан, если на Марсе удастся создать условия для жизни микроорганизмов.
Хотя концепция терраформирования Марса может показаться фантастической, идеи, на которые она опирается, просты. Главная из них – идея положительной обратной связи, явление, которое возникает, когда получаемый продукт системы увеличивает то, что поступает на вход системы. Для парникового эффекта на Марсе система с положительной обратной связью обнаруживается в соотношении между атмосферным давлением и температурой. Нагрев Марса выпускает углекислый газ из полярных шапок и из марсианского реголита. Освобожденный диоксид углерода увеличивает плотность атмосферы и повышает ее способность удерживать тепло. Удержание тепла увеличивает температуру поверхности и, следовательно, количество диоксида углерода, высвобождаемого из ледяных шапок и марсианского реголита. Это и есть ключ к терраформированию Марса – чем теплее он становится, тем плотнее будет его атмосфера, а чем плотнее его атмосфера, тем больше он нагревается.
В следующих разделах мы увидим, как можно смоделировать такую систему, и ознакомимся с результатами расчетов для такой модели. Эти результаты подтверждают, что в течение XXI века люди могут сделать марсианскую среду куда более пригодной для обитания живых организмов. Преобразовать Марс действительно в наших силах.