Изготовление топлива на Марсе
К этому моменту вам должно быть очевидно, что возможность добраться до Марса с приемлемыми затратами и начать делать что-то осмысленное, оказавшись там, зависит главным образом от одной ключевой технологии – производства топлива из марсианской атмосферы. Но возможно ли это? Несомненно, да. На самом деле все химические процессы, предусмотренные в программе «Марс Директ», массово используются на Земле на протяжении уже более века.
Первый шаг в производстве топлива – это получение исходных материалов. Так как водород в двухкомпонентной смеси занимает лишь около 5 % от общей массы топлива, его лучше импортировать с Земли. При хорошей многослойной изоляции баков можно добиться, чтобы в месяц выкипало менее 1 % жидкого водорода без какого-либо активного охлаждения (перелет между планетами займет в целом шесть-восемь месяцев). Поскольку водородное сырье не будут сразу подавать в двигатель, его можно загустить до гелеобразного состояния небольшим количеством метана для предотвращения утечек. Это также снизит выкипание (на целых 40 %), подавляя конвекцию внутри резервуара.
Единственные виды сырья, которые потребуются нам на Марсе для производства топлива, – это углерод и кислород, наиболее распространенные элементы в марсианской атмосфере, на 95 % состоящей из углекислого газа. Они будут доступны в любой точке планеты так же свободно, как воздух на Земле. Атмосферное давление, измеренное в двух местах посадки «Викингов», варьируется в течение марсианского года от 7 до 10 мбар (1 бар – это атмосферное давление на Земле на уровне моря, или 14,7 фунта на квадратный дюйм; 10 мбар составляют 1 % от атмосферного давления на Земле на уровне моря), а среднее за год значение 8 мбар наблюдалось на месте посадки «Викинга-1» – в высшей точке долины Хриза. Насосы, способные удерживать газ под таким давлением и сжимать его до пригодного для работы давления в 1 бар или более, впервые были продемонстрированы английским физиком Фрэнсисом Хоксби в 1709 году, а сегодняшние аналоги способны на куда большее. Тем не менее, чтобы сжать диоксид углерода, насос не нужен. Для этого можно использовать всасывающую подстилку вроде губки, впитывающей углекислый газ. Все, что будет нужно сделать, – это взять емкость и засыпать туда либо активированный уголь, либо цеолит, а затем оставить ее ночь в открытом виде на поверхности Марса. При ночных заморозках (-90 °C) подстилка впитает до 20 % диоксида углерода от своего веса. Затем, когда наступит день, нужно нагреть поглощающий слой до 10 °C или близкого значения, и газ начнет выделяться. Таким способом можно получать диоксид углерода под очень высоким давлением, практически не используя подвижных конструкций и ограничившись очень малыми расходами энергии.
Можно использовать отходящее тепло, генерируемое какими-нибудь устройствами, для управления процессом дегазации. В моей лаборатории в «Мартин Мариетта» мы построили такую систему, и она работала очень хорошо.
Теперь, чтобы обеспечить контроль качества во время производства ракетного топлива, нужно убедиться, что в химические реакторы не попадают никакие примеси – речь идет о марсианской пыли. Этого можно добиться, разместив фильтр на входном отверстии емкости или насоса, чтобы удалить большую часть пыли, а затем сжав марсианский «воздух» примерно до 7 бар. Когда углекислый газ доводят до этого давления, а затем оставляют, чтобы его температура сравнялась с температурой окружающей среды, газ конденсируется в жидкость. (Мы не видим жидкой двуокиси углерода на Земле, потому что наше нормальное давление слишком низко для сжижения углекислого газа.) Пыль, которой удалось пройти через фильтры насосов, будет переходить в раствор или оседать на дне бака с CO2, в то время как азот и аргон из марсианской атмосферы останутся газообразными. В такой форме их легко можно будет удалить, чтобы либо вернуть в атмосферу, либо, что еще лучше, сохранить для использования в качестве буферного газа системы жизнеобеспечения. Если затем диоксид углерода испарить из накопительного бака, то он окажется стопроцентно чистым, так как вся пыль останется в осадке. Процессы очистки дистилляцией, работающие на этом принципе, широко используются на Земле, начиная с середины 1700-х годов, когда Бенджамин Франклин продемонстрировал устройство опреснения воды для британского флота.
После получения чистого диоксида углерода дальнейший процесс становится полностью контролируемым и предсказуемым, так как на Марсе нет неизвестных факторов. Если разработать подходящий способ контроля качества, остальная часть процесса химического производства диоксида углерода может быть повторена на Земле при тех же самых условиях, что и на Марсе, такие испытания позволят гарантировать надежность технологии. Лишь отдельные ключевые элементы пилотируемой миссии на Марс (двигатели, аэродинамические чехлы для торможения, парашюты, система жизнеобеспечения, орбитальные стыковки, методы сборки и др.) могут быть протестированы так же тщательно. Это означает, что производство местного топлива вполне реально сделать самым надежным звеном в марсианской миссии, а не наоборот.
После получения диоксида углерода можно быстро провести реакцию метанирования с водородом, привезенным с Земли. Этот химический процесс также называют реакцией Сабатье в честь тщательно изучившего его в 1910-х годах химика.
Реакция Сабатье позволяет получить метан и воду из диоксида углерода и водорода. Записывается она следующим уравнением:
CO2 + 4Н2 → СН4 + 2Н2O (1)
Это экзотермическая реакция – при ее протекании высвобождается тепло, а происходит она спонтанно в присутствии никелевого или рутениевого катализатора (никель дешевле, рутений лучше). Константа равновесия, которая определяет полноту реакции, чрезвычайно сильно стремится сместить ее вправо и дает выход более 99 % уже при одном обычном запуске реактора. Реакция Сабатье широко используется в промышленности в течение примерно ста лет, а кроме того, она была изучена НАСА, ВВС США и их подрядчиками для возможного использования в системах жизнеобеспечения на МКС и в проекте «Пилотируемой орбитальной лаборатории». Компания «Гамильтон Стандарт» (сегодня это UTC Aerospace Systems), например, в 1980 году разработала реактор Сабатье для использования на МКС и подвергла его примерно 4200 часам квалификационных испытаний.
Тот факт, что реакция Сабатье является экзотермической, не означает, что для ее протекания не требуется энергия. Использующиеся реакторы представляют собой простые стальные трубы, прочные и компактные, содержащие слой катализатора. Я полагаю, ориентируясь на результаты, полученные в лабораторных испытаниях в «Мартин Мариетта» и «Пионер Астронотикс», что модуль для производства всего объема метана, необходимого для миссии «Марс Директ», должен состоять из всего трех реакторов Сабатье, каждый длиной 1 метр и 12 сантиметров в диаметре.
Во время протекания реакции (1) производимый метан сжижается либо при контакте с потоком сверххолодного водорода, либо (после того как жидкий водород будет исчерпан) с помощью механического холодильника. (Метан находится в жидком состоянии примерно при такой же относительно небольшой температуре, как и жидкий кислород.) Вода, производящаяся в процессе, конденсируется и переносится в бак, после чего закачивается в специальный отсек и подвергается известной реакции электролиза, при которой под действием электрического тока расщепляется на водород и кислород:
2Н2O → 2Н2 + O2 (2)
Кислород, полученный таким образом, охлаждается и сохраняется для дальнейших нужд, а водород может быть возвращен в реакцию Сабатье (1).
Электролиз знаком многим из школьного курса химии – ученикам обычно очень нравится этот эксперимент. Такая популярность опыта тем не менее послужила распространению несколько ошибочного представления о том, что ячейка для электролиза – это громоздкая конструкция из стеклянной посуды, расставленной по столу. В действительности электролизеры с модулятором и демодулятором представляют собой чрезвычайно компактные и надежные устройства, состоящие из сжатых слоев пластика, пропитанных электролитом, разделенных металлической сеткой и на каждом конце зафиксированных металлическими колпаками, прикрепленными к металлическим же стержням, проходящим по всей длине ячейки. Такие электролизеры с твердым полимерным электролитом (ТПЭ) были сильно усовершенствованы для использования на атомных подводных лодках и к настоящему времени проработали более 20 миллионов «устройство-часов». Испытания включали воздействие на ячейки глубинными бомбами и перегрузками до 200 g. Компания «Гамильтон Стандарт» и компания «Лайф Сайенс» разработали легкие модули электролиза для Международной космической станции. Эти устройства вполне подходят для использования на марсианском топливном заводе. Блоки ТПЭ, которые «Гамильтон Стандарт» поставляет ВМФ Британии, по своему уровню выработки продуктов способны удовлетворить нужды в топливе пилотируемой миссии «Марс Директ». Эти блоки уже работали по 28 000 часов без обслуживания, что примерно в четыре раза больше, чем планируемая продолжительность марсианской экспедиции. Для подводных лодок блоки ТПЭ делаются очень тяжелыми – это нужно для балластировки, – для космических полетов они должны быть гораздо легче.
Если весь водород пойдет на производство топлива посредством реакций (1) и (2), то каждый его килограмм, привезенный на Марс, будет преобразован в 12 килограммов двухкомпонентного топлива из метана и кислорода (в соотношении 2:1 соответственно). Сжигание такой смеси обеспечит удельный импульс около 340 секунд. Этот показатель можно было бы назвать хорошим, но оптимальное соотношение кислорода и метана – около 3,5:1, такая пропорция дает удельный импульс в 380 секунд, а массовое отношение водорода к двухкомпонентному топливу в таком случае будет 18:1.
Это наилучший уровень производительности, какого можно достичь для реализации пилотируемой миссии «Марс Директ». Но он требует дополнительного источника кислорода, кроме того, который дают реакции (1) и (2). Одно из возможных решений – прямое восстановление двуокиси углерода:
2CO2 → 2СО + O2 (3)
Эту реакцию можно осуществить, нагрев двуокись углерода примерно до 1100 °C, что приведет к частичной диссоциации газа, после чего произведенный свободный кислород можно будет под напряжением пропустить через циркониевые керамические мембраны и тем самым отделить от остального газа. Использовать эту реакцию для производства кислорода на Марсе впервые предложил доктор Роберт Эш из ЛРД в 1970 году и с тех пор это было и остается предметом исследований как самого Эша (который сейчас работает в Университете Старого Доминиона), так и Кумара Рамохали и К. Р. Шридхар (из Университета штата Аризона). Преимущество данного химического процесса – то, что он полностью отделен от любых других и позволяет произвести неограниченное количество кислорода без какого-либо дополнительного исходного сырья. К недостаткам можно отнести то, что трубки из циркония крошатся и дают небольшой выход продукта, потому для миссии «Марс Директ» их понадобится очень много. Также для этого процесса требуется примерно в пять раз больше энергии, чем при производстве того же объема кислорода с помощью электролиза воды. Недавно исследователи из Университета штата Аризона сообщили, что им удалось увеличить выход реакции, так что ее имеет смысл рассматривать в качестве перспективной, но все еще экспериментальной.
Альтернативой, которая позволит удержать все процессы строго в рамках промышленной химии эпохи газового освещения, будет известная инженерам-химикам реакция конверсии водяного газа, запущенная в обратном порядке: повторное использование некоторого количества водорода (полученного в блоке электролиза) в третьей камере, где он вступит в реакцию с диоксидом углерода в присутствии железно-хромового или медного катализатора. Этот процесс даст на выходе окись углерода и воду:
CO2 + Н2 → СО + Н2O (4)
Реакция (4) слегка эндотермическая, но протекает она при 400 °C, что хорошо укладывается в температурный режим реакции Сабатье. Если проводить реакцию (4) одновременно с (1) и (2), то можно получить смесь с искомым соотношением метана и кислорода, а вся энергия, необходимая для реакции (4), будет добыта из тепла, выделяемого в реакторе Сабатье. Реакцию (4) можно проводить в простой стальной трубе, что делает конструкцию довольно надежной. Недостатком здесь является то, что в интересующем нас температурном интервале реакция (4) имеет константу равновесия всего около 0,1, а это означает, что для поддержания процесса придется запустить конденсатор и мембранный сепаратор, чтобы постоянно удалять из реактора воду и окись углерода, а затем с помощью насоса возвращать в камеру непрореагировавшие водород и диоксид углерода и повторно их использовать. (Вода и СО – это продукты, стоящие в правой части уравнения (4); пока они непрерывно удаляются, реакция сообразно химическим принципам будет течь вправо с образованием воды и СО, чтобы поддерживать соответствующую равновесную концентрацию в реакторе.) Такая система была впервые продемонстрирована мною и Брайаном Фрэнки в «Пионер Астронотикс» в 1997 году, причем с последующими улучшениями нам удалось достичь почти полного превращения диоксида углерода и водорода в СО и воду. При запуске реактора обратной конверсии водяного газа (ОКВГ) параллельно с циклом реакции Сабатье и электролиза можно легко добиться такого соотношения метана и кислорода в топливе, которое будет оптимальным для использования в ходе миссии «Марс Директ».
Более элегантное решение заключается в простом объединении (1) и (4) в одном реакторе следующим образом:
3CO2 + 6 Н2 → СН4 + 2СО + 4 Н2O (5)
Эта слабоэкзотермическая реакция, и если запустить ее вместе с (2), смесь кислорода и метана будет иметь пропорцию 4:1, что даст оптимальное соотношение масс компонентов топлива 18:1, причем кислорода окажется даже больше, чем нужно, – его можно будет использовать как запас для системы жизнеобеспечения. Кроме того, продуктом реакции окажется окись углерода, теоретически пригодная для различных двигателей внутреннего сгорания или топливных элементов. Если учесть весь произведенный запас окиси углерода и кислорода, общее соотношение масс компонентов топлива может достигать 34:1!
В проекте, проведенном для НАСА между 2005 и 2007 годами, «Пионер Астронотикс» продемонстрировала этот цикл в действии с самого начала и до конца с помощью системы, которая брала из емкости газ, близкий по составу к марсианскому «воздуху» и содержащийся под давлением в 8 мбар, сжимала его до 3 бар, применяла сборную реакцию (5) для получения метана, оксида углерода и воды, затем подвергала последнюю электролизу для производства кислорода и водорода (он снова отправлялся в реактор), очищала от СО метан и сжижала его. Было показано, что этот реактор – который начал разрабатывать Тони Мускателло, а завершили Дуве Бруинсма и его коллеги, после того как Тони ушел из «Пионер Астронотикс», чтобы занять пост в Космическом центре имени Кеннеди, – способен производить метан и кислород в любом соотношении, работая при автоматизированном управлении до пяти дней без остановок.
Еще один способ добычи необходимого кислорода состоит в том, чтобы просто взять часть метана, полученного в реакции (1), и разложить в процессе пиролиза на углерод и водород:
СН4 → С + 2Н2 (6)
Полученный таким образом водород будет затем снова использован для взаимодействия с местным углекислым газом в реакции (1). Через некоторое время в камере, где проводилась реакция (6), накопится какое-то количество графита (сегодня это самый распространенный на практике метод промышленного получения пирографита). Поступление метана в реактор будет прекращено, вместо него камеру заполнит горячая газообразная двуокись углерода. Она начнет вступать в реакцию с графитом с образованием СО, который затем будет отводиться из камеры.
CO2 + С → 2СО (7)
Использовать две камеры – одну для пиролиза, другую для очистки – мне предложили как самое простое решение проблемы с дополнительным кислородом Джим Макэлрой и его исследовательская группа из «Гамильтон Стандарт».
Дело в том, что записать на бумаге систему химического синтеза как серию уравнений легко, куда труднее построить модуль, работающий должным образом. Однако к реактору, о котором я вам рассказал, это не относится – я знаю наверняка, потому что сам руководил рядом проектов по созданию всех блоков ЗПТМ с нуля. Первый и в некотором роде наиболее драматичный из этих проектов был начат осенью 1993 года, когда Дэвид Каплан и Дэвид Уивер из Космического центра имени Линдона Джонсона НАСА спросили меня, сможет ли «Мартин Мариетта» продемонстрировать рабочую модель ЗПТМ, которую я пропагандировал на конференциях и в статьях. Однако в той истории произошла неприятность: НАСА выделило всего 47 тысяч долларов на мой проект, а это очень маленький бюджет для того, чтобы разработать и продемонстрировать новую аэрокосмическую технологию, к тому же мне следовало закончить к январю 1994 года. Это было достаточно рискованно – в «Мартин Мариетта» 47 тысяч долларов обычно платят за презентацию с парой десятков слайдов. Однако я твердо верил в то, что технология проста и что проект, кажущийся нереализуемым при имеющемся бюджете и сроках, в принципе осуществим. После долгих обсуждений с руководством я принял вызов. В октябре 1993 года «Мартин Мариетта» заключила контракт на выполнение работы, Дэвид Каплан возглавил программу, Стив Прайс был назначен руководителем проекта со стороны «Мартин Мариетта», а я выступал в качестве главного исследователя и ведущего инженера.
Конструкция системы была разработана в октябре 1993 года, и большую часть ноября мы ждали, пока нам пришлют детали. К концу месяца мы получили все необходимые компоненты и принялись за строительство завода в натуральную величину согласно требованиям миссии по доставке марсианского грунта.
Реактор Сабатье создали с нуля, заполнив металлическую трубу 36 сантиметров в длину и 5 сантиметров в диаметре рутениевым катализатором, полученным от некой компании, поставляющей химическое сырье. (Позже выяснилось, что мы взяли его в десять раз больше по объему, чем требовалось для системы, но мы были стеснены жесткими сроками, которые не позволяли нам делать что-либо дважды. Поэтому проектирование с запасом показалось нам хорошим вариантом.) Электролизер, имевший длину всего в 25 сантиметров и весивший 3 килограмма вместе с водой, был взят из устройства для производства водорода в лаборатории «Паккард Инструмент». Мы также добыли нихромовые нагреватели, чтобы довести реактор Сабатье до рабочей температуры (в дальнейшем тепло, выделяемое в ходе химических реакций, должно было поддерживать его горячим без использования электричества). Наконец, мы построили систему конденсации, чтобы отделять произведенный метан от произведенной воды, а затем испытали всю систему, включая датчики давления и температуры и измерители расхода газа, установленные в стратегических точках и подключенные к компьютеру. К середине декабря система была завершена и готова к работе.
15 декабря ее включили в первый раз, запустив только реактор Сабатье. К концу второго часа работы уровень воды в конденсаторе заметно поднялся – а это значило, что система работает. Последующий лабораторный анализ газа, отходящего из реактора Сабатье, показал, что тот с 68 %-ной эффективностью преобразует водородное сырье и углекислый газ в метан и воду.
В последующие дни в систему были внесены изменения, чтобы повысить ее производительность. К 22 декабря, когда водород для реактора Сабатье подавался из электролизера, мы достигли эффективности в 85 %. 5 января система в первый раз заработала в полноценной конфигурации, и ее эффективность при этом составила 92 %. Наконец, 6 января 1994 года она полноценно проработала день, показав 94 %.
В результате этого последнего запуска были достигнуты все тестовые цели, и у нас еще остались деньги, чтобы оплатить подготовку отчета [24].
После этого успеха систему удалось усовершенствовать за счет небольших сумм, выделенных сначала Космическим центром имени Линдона Джонсона, а потом ЛРД. Были добавлены поглощающие слои, которые позволяли блоку получать углекислый газ из емкости, моделирующей атмосферу Марса при ее нормальном давлении. Эффективность реактора Сабатье увеличилась до 96 %, а сам он был уменьшен в 10 раз и обзавелся 2-килограммовым холодильником на цикле Стирлинга, что позволило нам сжижать весь получаемый кислород и хранить его в криогенном сосуде Дьюара. Также были добавлены автоматизированные системы управления, благодаря чему устройство стало работать по 10 дней подряд без вмешательства оператора. Общая масса всех рабочих компонентов составила в конечном итоге около 20 килограммов, а общая необходимая мощность была менее 300 Вт [25], при том что система позволяла получать 400 кг ракетного топлива для поддержки миссии доставки марсианского грунта.
В 1996 году я ушел из «Локхид Мартин» (так к тому времени назывался «Мартин Мариетта»), чтобы основать собственную компанию, «Пионер Астронотикс». Мы разработали множество дополнительных устройств, демонстрирующих обратную конверсию водяного газа, а также получение метанола, бензола, этилена и пропилена, а еще создали системы, объединяющие реакцию Сабатье, электролиз и ОКВГ.
Моя старая команда в «Локхид Мартин» – в настоящее время ее возглавляет Ларри Кларк – продолжает совершенствовать реакторы Сабатье и электролиза, стремясь добиться большей эффективности и выработать конфигурации, наиболее подходящие для полета. Исследования показывают, что в системе по производству топлива, подогнанной по размеру для миссии «Марс Директ», отношение масс для всех реакторов окажется еще более выраженным, так как процент массы системы, отведенной под паразитные элементы, такие как измерители расхода газа и датчики давления, будет крайне мал.
Итак, мы все-таки можем производить ракетное топливо и кислород прямо на Марсе.