Книга: В поисках кота Шредингера. Квантовая физика и реальность
Назад: Инфляция и Вселенная
Дальше: Примечания

Кода
Обращаясь к современности

Сразу после выхода в свет первого издания книги «В поисках кота Шрёдингера» Джона Белла спросили, считает ли он, что эксперимент Аспе стал «окончательной» экспериментальной проверкой квантовой реальности. Он ответил:
Думаю, нет. Это очень важный эксперимент, и, возможно, он знаменует собой тот момент, когда каждому стоит остановиться и на минутку задуматься, но я точно надеюсь, что это еще не конец.
Именно почувствовав, что этот эксперимент «знаменует собой момент, когда каждому стоит остановиться и на минутку задуматься», я написал свою книгу. Но куда нас привела еще четверть века раздумий и экспериментов?
Самым важным шагом в размышлениях о квантовой реальности стало превращение многомировой интерпретации из «пользующегося уважением взгляда меньшинства» в главенствующую позицию, с которой знакомы все физики. В конце 1980-х и в 1990-х идею подтолкнули космологи, включая знаменитого Стивена Хокинга, которые не смогли найти способа «редуцировать волновую функцию Вселенной» и были вынуждены принять многомировую альтернативу. Но космология – весьма эзотерическая дисциплина, а настоящей причиной возрождения многомировой интерпретации стало развитие квантовых вычислений и, в частности, работа оксфордского физика Дэвида Дойча.
Я подробно описал это в своей книге «В поисках мультивселенной» (Allen Lane, 2009), но вкратце можно сказать, что квантовый компьютер – это компьютер, в котором «переключатели» в блоках памяти («битах») не только могут принимать положение «1» и «0», как в компьютере, который я использую, чтобы писать эти слова, но могут также существовать – в соответствии с Копенгагенской интерпретацией, – как кот Шрёдингера, в суперпозиции состояний, будучи и «0», и «1» одновременно. С практической точки зрения это означает, что эффективная разрядность такого компьютера равняется не количеству переключателей, а числу 2, возведенному в степень, равную количеству переключателей. Таким образом 4-битный квантовый компьютер ведет себя, как классический компьютер с 16 битами – и так далее. Всего 10 квантовых битов (или кубитов) достаточно, чтобы компьютер обладал той же мощностью, что и классический компьютер с 210 бит, то есть с одним килобитом.
Еще в 1985 году Дойч теоретически доказал, что квантовые компьютеры в принципе смогут совершать расчеты, которые не под силу обычным компьютерам. Но в то время у экспериментаторов не было возможности сконструировать такой компьютер. Поразительно, что, несмотря на практические сложности, в начале XXI века команда из Исследовательского центра IBM в Амальдене совершила прорыв, создав рабочий квантовый компьютер с 7-кубитным процессором, что эквивалентно 128 битам, а сейчас работать начали и несколько большие квантовые компьютеры. Квантовые вычисления явно работают. Но как – а точнее, где – они работают?
Экспериментаторы не переживают на этот счет. Но Дойч сделал важные выводы из успеха квантовых вычислений. В обычных компьютерах 8 бит называются байтом, и это обычная единица измерения компьютерной памяти. «Хранилище» (которое обычно называют регистром) из 8 кубитов может одновременно вместить в себя 256 чисел. Единственное разумное объяснение этому, по словам Дойча, заключается в том, что «суперпозиция» на самом деле дает 256 разных компьютеров, находящихся в 256 различных «параллельных вселенных». Если бы у нас был квантовый компьютер, содержащий всего 100 кубитов, он был бы эквивалентен 1267 миллиардам миллиардов миллиардов обычных компьютеров, работающих в 1267 миллиардах миллиардов миллиардов вселенных. Тот факт, что квантовый компьютер работает, доказывает, что многие миры существуют. И это привело Дойча к развитию вариации на тему многомировой интерпретации, которая дает нам новое понимание квантовой реальности.
Люди вроде Хью Эверетта размышляли о многих мирах с позиции их разделения. В соответствии с их представлением, когда проводится эксперимент с котом, вся Вселенная делится на две ветви, на одной из которых кот умер, а на другой – остался жив. Но Дойч утверждает, что обе версии реальности существуют «всегда». Всегда было две вселенные, которые ничем не отличались до момента проведения эксперимента и стали различаться после него. В одной вселенной кот умирает, в другой вселенной кот продолжает жить, но разделения при этом не возникает. Подобные идеи с середины 1980-х годов развивал и другой оксфордский физик Джулиан Барбур, который предложил занимательный взгляд на то, что это означает для нашего понимания природы времени. Но это совсем другая история.
Еще один практический шаг в последние годы был совершен на основании «парадокса» ЭПР и эксперимента Acne. С 1984 года мы перешли от доказательства того, что, как только две квантовые сущности вступают во взаимодействие, они остаются «связанными», даже если их разделяют гигантские расстояния, к практическому применению их соответствующего поведения. Это было сделано двумя способами. Первый – создание невзламываемых квантовых кодов, а второй – развитие телепортации.
Первая разработанная версия квантовой криптографии прямо не подразумевала применения квантовой запутанности, а основывалась на квантовой суперпозиции. В 1984 году она выросла из работы сотрудника IBM Чарльза Беннета и Жиля Брассара из Монреаля. Коды (строго говоря, шифры) работают следующим образом: изначальное сообщение искажается так, чтобы его нельзя было прочитать, и передается тому, кто может «расправить» его, имея «ключ», который говорит, как это сделать. Суть в том, чтобы передать ключ от А к В, не дав какой-нибудь третьей стороне перехватить его и расшифровать сообщение. Беннет и Брассар предложили решать эту проблему передачей ключа в форме последовательности фотонов в разных состояниях поляризации. Они будут находиться в суперпозиции состояний, поэтому, когда перехватчик попробует «прочитать» ключ, фотонам придется принять какое-то из состояний, тем самым показав, что ключ перехватили. Даже лучше, не вдаваясь в технические детали, можно сказать, что систему можно настроить таким образом, чтобы перехватчик уничтожал содержащуюся в ключе информацию, пытаясь прочитать ее, тем самым лишая себя возможности использовать ключ. И это еще не настоящий полет фантазии теоретиков. Всего через двадцать лет после появления идеи Беннета и Брассара, 21 апреля 2004 года, физики из Венского университета помогли местному банку и мэру города осуществить перевод средств из банка на счета городских властей, используя такую же невзламываемую систему. Подобные сигналы с тех пор уже передавались по чистому воздуху на расстояние до 150 километров, что доказывает возможность их отражения от спутников на орбите Земли. Это лишь вопрос времени – и кажется, что уже не за горами момент, когда эта технология будет использоваться для шифрования информации, например той, которую вы используете при платежах кредитной картой в Интернете.
Вторая техника квантовой криптографии была предложена в 1990-х годах Артуром Экертом из Оксфордского университета, однако она не достигла столь же продвинутой стадии практического применения. Принцип прост, однако практические сложности огромны. Во-первых, необходимо приготовить пару связанных фотонов (или других частиц). Затем вы отправляете один своему другу, который проводит измерение, воздействующее на фотон, после чего отправляет его вам обратно. В итоге вы проводите измерение состояния связанных частиц, которое показывает, что именно ваш друг сделал с той частицей, которая была у него. Никто не в состоянии взломать этот код, поскольку вам необходимы обе частицы, чтобы выяснить, что же сделал ваш друг. Загвоздка (хотя она и не является непреодолимой) в том, что вам нужно посылать туда-обратно пучки фотонов и при этом постоянно отслеживать их пары, чтобы собрать достаточное количество информации.
Напоследок я оставил самое лучшее (или хотя бы мое любимое). В 1993 году Чарльз Беннет предложил еще одну идею использования запутанности – квантовую телепортацию. Как и всегда, она начинается с фотонов, однако есть вероятность, что однажды ее удастся провести и с более крупным объектом. Ключ к телепортации лежит в создании идеальной копии объекта, которая будет находиться в другом месте относительно самого объекта, – это как покупка музыкального файла в Интернете. Было доказано, что невозможно «клонировать» единичный фотон – то есть создать его точную копию с таким же квантовым состоянием. Однако телепортация может быть (и была) достигнута с использованием пары связанных фотонов. Сперва необходимо приготовить пару связанных фотонов, которые затем разносятся в разные места без проведения измерения их состояний. Затем один экспериментатор позволяет своему фотону взаимодействовать с чем-нибудь и записывает информацию о результате этого взаимодействия. Эта информация затем передается второму экспериментатору обычным способом (то есть не быстрее скорости света). Затем на основании этой информации обученный физик может повлиять на второй фотон таким образом, чтобы он стал точной копией первого. Второй фотон превращается в первый фотон. Это было сделано. Фотоны были успешно телепортированы сперва из одной части лаборатории в другую, а недавно и на расстояние в несколько километров.
Чем все это закончится? Никто точно не знает, куда эти исследования приведут нас в XXI веке, так же, как и братья Райт не знали о том, какое развитие в XX веке получат летающие машины. Но ясно то, что квантовый кот выбрался из мешка, и мы вступаем в новый этап применения квантовых принципов в практических целях. Следующая четверть века обещает стать еще более захватывающей, чем прошлая.

notes

Назад: Инфляция и Вселенная
Дальше: Примечания

Денис
Перезвоните мне пожалуйста 8(999)529-09-18 Денис.