Книга: Сейчас. Физика времени
Назад: Часть V Сейчас
Дальше: Глава 25 Смысл понятия сейчас Все детали пазла на месте. Как выглядит картина целиком?

Глава 24
Четырехмерный большой взрыв
Когда Большой взрыв создает новое пространство, он создает также и новое время… и это новое время – ключ к «сейчас»

О, господи, можно сойти с ума, думая обо всем этом…
Сара Коннор, фильм «Терминатор»
Мгновенья коротки и быстро умирают,
но все их весело и радостно встречают.

Хор юных дев из комической оперы «Пираты Пензанса»
Эйнштейн внес поистине фундаментальные изменения в наши представления о времени. Фейнман счел нужным дополнить их обратным движением в потоке времени. С тех пор, как мне кажется, прогресс в наших представлениях о времени был практически нулевым.
При собирании пазла иногда бывает трудно отыскать недостающую деталь, но настоящие проблемы возникают, если какой-то элемент оказывается не на своем месте. Энтропийное объяснение стрелы времени долгое время служило именно такой неправильной деталькой в общей картине. Цивилизация строится на локальном снижении уровня энтропии, а не на его возрастании. Конечно, видео разбивающейся чашки – прекрасный пример возрастания энтропии и при проигрывании в обратном направлении выглядит совершенно неправдоподобно, но ведь видео изготовления той же чашки при обратной перемотке будет выглядеть ровно так же нелепо.
Энтропия Земли снижается по мере остывания ядра. Локальное снижение энтропии характерно для распространения жизни и цивилизации. Гипотеза о связи времени со снижением уровня энтропии обладает тем очевидным преимуществом, что в ней решающее значение имеют местные колебания энтропии, а не изменение ее уровня в какой-то отдаленной черной дыре. Мало того, в итоге снижение энтропии – существенная составляющая того, что мы называем жизнью: при этом из почвы и воздуха извлекаются разрозненные питательные вещества и превращаются сначала в пищу (посредством деятельности растений), потом в плоть (посредством питания и пищеварения), а затем в рост и знание. Когда в финале энтропия наших тел и правда начинает резко расти, мы называем это явление смертью.

Передний край времени

Мог ли сам Большой взрыв породить движение времени? Да, конечно, уверены многие теоретики, но при этом они считают необходимым включить в схему энтропийный механизм как связующее звено между расширением Вселенной и ходом времени. Большой взрыв создает Вселенную с низким уровнем энтропии и условиями для его увеличения. Но зачем вообще включать в модель энтропию, если ее присутствие позволяет ожидать результатов, которых мы не наблюдаем, таких как локальная корреляция между скоростью хода времени и энтропией? Давайте посмотрим на сам Большой взрыв и на то, как он может непосредственно породить ход времени и смысл понятия сейчас, без необходимости привлечения энтропийного «костыля».
В современной космологической картине, согласно подходу Леметра, галактики не движутся – или, по крайней мере, движутся незначительно; если забыть о небольшом «собственном движении» (таком, к примеру, как наше собственное локальное ускорение в направлении Андромеды), получится, что все они застыли в фиксированных координатах. Хаббловское расширение представляет собой не движение галактик, а создание нового пространства. В этом новообразовании нет ничего загадочного: в общей теории относительности пространство обладает гибкостью и растяжимостью. Оно запросто может расширяться, но при этом будущее такого расширения зависит от уравнения общей теории относительности – уравнения, согласно которому геометрия (метрика) пространства определяется соотношением в нем энергии и массы. В самой элегантной форме оно выглядит обманчиво простым: G = kT.
Что такое Большой взрыв? Взрывное расширение трехмерного пространства? Да – но более разумное, более близкое по духу к принципу унификации пространства и времени предположение, что Большой взрыв – это взрывное расширение четырехмерного пространства-времени. Точно так же, как пространство генерируется хаббловским расширением, создается и время. Непрерывная и бесконечная генерация нового времени определяет и направление стрелы времени, и ее скорость. Каждое мгновение Вселенная становится чуть больше, и времени в ней становится чуть больше; именно этот передний край времени мы и называем сейчас.
Течение времени запущено не энтропией Вселенной, а непосредственно Большим взрывом. Будущее еще не существует (хотя и включается в стандартные диаграммы пространства-времени); оно создается по ходу событий. Сейчас находится на границе, на фронте ударной волны нового времени, приходящего из ниоткуда, на переднем крае времени.

Одновременны ли все сейчас?

Совпадает ли ваше сейчас с моим? Для начала рассмотрим этот вопрос в обычной космологической системе координат, описанной Жоржем Леметром. Все галактики у него покоятся, а пространство между ними расширяется. Можно считать, что в каждой галактике имеются свои часы. Согласно космологическому принципу (встроенному в модель Леметра), все галактики везде выглядят одинаково; они все прожили одно и то же время с момента Большого взрыва, и все часы в них показывают одно и то же. Это означает, что все они переживают момент сейчас одновременно.
Но, как и в специальной теории относительности, концепция одновременности тоже может зависеть от системы отсчета. Возьмем, к примеру, СО с галактикой Млечный Путь в центре. Здесь все галактики движутся от нас прочь, и время в них растягивается; оно бежит медленнее, и моменты сейчас уже не синхронны. В этой системе отсчета с момента Большого взрыва для нас прошло больше времени, чем в других галактиках. Сейчас перестает быть одновременным по всей Вселенной. Наше сейчас наступает первым.
Как и в СТО, такое поведение одновременности не создает противоречия; это свойство общей теории относительности.

Восприятие сейчас

Почему вы чувствуете, что живете в настоящем? На самом деле вы есть и в прошлом тоже; вы это прекрасно знаете. Вы существуете обратно во времени до самого момента рождения (или зачатия, в зависимости от вашего определения жизни). Тот факт, что вы сосредоточены на настоящем, объясняется в первую очередь тем, что настоящее, в отличие от прошлого, подвержено воздействию вашей свободной воли. Согласно физике, как мы ее теперь понимаем, прошлое не определяет будущее полностью; квантовая физика вносит в развитие событий по крайней мере какой-то элемент случайности. Его присутствие означает, что физика неполна, будущее не определяется однозначно прошлым, а нефизические факторы могут сыграть роль в определении того, что должно произойти. И то, что физика неполна, оставляет открытой возможность повлиять на будущее посредством свободной воли.
Не могу доказать, что свобода воли существует, но когда физика включает в себя квантовую неопределенность, она уже не может отрицать возможное существование свободы воли. Если вы обладаете свободой воли, можете воспользоваться нефизическим знанием, чтобы открыть или закрыть возможные пути возрастания энтропии и таким образом повлиять на то, что происходит, и на то, что будет происходить. Вы можете разбить чашку или изготовить новую; ни вероятность, ни энтропия не имеют отношения к вашему решению. Процитируем Джона Драйдена: «То, что прошло, прошло. Даже небо само не имеет над прошлым власти». Кстати – и это плохая новость для любителей научной фантастики, – вы тоже не имеете над ним власти. И никакая петля сквозь кротовую нору этого не изменит.
Физике с помощью повсеместного – и в исследованиях, и в обучении – использования диаграмм пространства-времени долгое время удавалось обходить вопрос о течении времени. Ось времени рассматривается (по большей части) как еще одна пространственная ось; ее особая черта – направленный ход времени – совершенно пропадает из поля зрения. Сейчас представляет собой всего лишь еще одну точку на этой оси, как будто будущее уже существует, просто еще не пережито. В такой системе путешествия во времени оказались бы изменением момента сейчас – сдвигания его вдоль оси времени назад и вперед. Но сейчас невозможно сдвинуть. Сейчас – передний край четырехмерного Большого взрыва. Сейчас – это момент времени, созданный только что. В подлинной диаграмме пространства-времени ось времени не уходит в бесконечность. На сейчас время останавливается.
Может ли будущее влиять на прошлое? Как насчет позитронов – электронов, движущихся назад во времени, приходящих из будущего, чтобы поучаствовать в нынешних взаимодействиях? Да, таков современный подход в физике, той самой, что упорно не замечает сейчас и базируется на бесконечной диаграмме пространства-времени. Означает ли этот современный подход, позволяющий успешно вычислять напряженность магнитного поля электрона с точностью более десяти знаков, что все сделанные в нем предположения верны? Многие физики считают, что да: по крайней мере, до тех пор, пока нет альтернативы.
Возможно, здесь работает своего рода принцип неопределенности. Будущее может повлиять на настоящее только в той мере, в какой некоторая часть этого будущего уже определена и потому неизбежна в настоящем. Хокинг высказывался в пользу этой позиции; он писал, что движение назад во времени возможно только на микроскопическом уровне. Вероятно, он не принял бы позитрон, сфотографированный Андерсоном, за частицу, движущуюся в прошлое.
Однако я готов утверждать, что отдаленного будущего пока не существует – в том смысле, в каком существуют настоящее и прошлое. Прошлое уже определено; что произошло, то произошло; будущего пока нет, потому что мы знаем, что оно непредсказуемо; по крайней мере, на основании нынешних законов физики, неспособных даже предугадать, когда распадется тот или иной радиоактивный атом. Религиозные детерминисты считали, что будущее зафиксировано посредством безупречности и предвидения их всезнающего Бога. Затем некоторое время мы думали, что детерминизм во Вселенной не требует такого Бога; мы считали, что физика справится и сама. Теперь знаем, что это не так.
Уравнение Дирака предсказывало существование антивещества, а Фейнман сумел избавиться от абсурда в интерпретации Дирака – от бесконечного моря заполненных отрицательных энергетических состояний; он понял, что решения, относящиеся к антивеществу, можно интерпретировать как частицы с отрицательной энергией, движущиеся назад во времени, – что придает им, по существу, положительную энергию. Все это история. Фейнман выяснил, что отрицательные энергетические состояния с обратным движением во времени неотличимы от положительных энергетических состояний с прямым движением во времени. Но не будем воспринимать эту интерпретацию слишком серьезно. Позитроны существуют; они обладают положительной энергией и движутся-таки вперед во времени.
Что было, то было. Если уравнения Дирака предсказали существование позитрона через серию витиеватых интерпретаций, прекрасно. Вот вам историческая аналогия. Нильс Бор предложил первую модель, корректно объяснившую спектр водорода; в 1913 году эта модель дала невероятно мощный толчок только зарождающейся области – квантовой физике. Сегодня мы знаем, что теория Бора была ошибочна; она делает определенные предсказания (к примеру, о моменте импульса [угловом моменте] электрона на самой низкоэнергетической орбите), которые не совпадают с наблюдаемыми значениями и, соответственно, фальсифицируют теорию. Неважно. Через 13 лет сразу двое – Гейзенберг и Шрёдингер – предложили теории получше, и вдохновил их на эту работу в значительной мере именно Бор; новые теории давали ровно тот же спектр водорода, но не делали при этом ошибочных предсказаний.
Мы до сих пор почитаем Бора как одного из основоположников квантовой физики. И по-прежнему преподаем модель Бора студентам; это простой и убедительный способ начать знакомство с исследованиями квантового поведения. (Мало кто из профессоров при этом указывает, что теория Бора дает неверные предсказания; не хочется, чтобы студенты знали – интуитивно понятная и простая модель ошибочна; по крайней мере, пока уровень их физического образования не продвинется хотя бы немного.) Когда-нибудь мы станем так же относиться к Дираку, Фейнману и их притянутым за уши теориям антивещества.

Фальсификация космологического происхождения времени. Часть I

Можно ли назвать фальсифицируемой космологическую теорию происхождения времени – включая создание нового времени Большим взрывом, течение времени и смысл понятия сейчас? В одном из возможных способов проверить это используется открытие о том, что расширение Вселенной ускоряется и она увеличивается в размерах со все большей скоростью. Время связано с пространством, это четвертое измерение в системе пространства-времени, поэтому естественно ожидать, что скорость хода времени тоже увеличивается. Это означает, что часы сегодня идут быстрее, чем вчера, и они демонстрируют космологическое ускорение времени. Можно ли как-нибудь зарегистрировать и измерить это?
В принципе, да: изменчивость скорости хода вселенского времени можно заметить, если посмотреть на какие-нибудь далекие часы.
Вспомните, что небольшую разницу в скорости хода часов удалось зарегистрировать в эксперименте Паунда и Ребки с вертикальным гамма-лучом, когда впервые наблюдалось замедление времени в результате действия гравитации. Подобное замедление времени было отмечено также в авиационном эксперименте Хафеле−Китинга, зафиксировавшем, что часы на большой высоте идут быстрее, чем на поверхности Земли, – и медленнее из-за эффекта скорости. Разница эта ежедневно видна в работе системы GPS, куда для компенсации этого временного эффекта приходится вводить поправки. Влияние силы тяготения на время заметно и при измерении спектральных линий на поверхности белых карликов; они демонстрируют сдвиг частоты из-за растяжения времени, потому что сильные гравитационные поля замедляют время на их поверхности.
В принципе, любой из этих экспериментов мог обнаружить также и ускорение времени. Сигналы испускаются в один момент времени, проходят сквозь пространство и принимаются позже. Большая часть наблюдаемых эффектов при этом будет обусловлена гравитационным потенциалом и допплеровским сдвигом, но некоторое превышение дает и космологическое ускорение времени. Эффект не должен зависеть от направления: всегда будет красное смещение (то есть уменьшение частоты); это значит, что наблюдаемая скорость хода из прошлого должна всегда быть меньше скорости хода настоящих часов. Эксперимент Паунда и Ребки показал увеличение частоты для гамма-лучей, идущих вертикально вниз, и показал бы (предположительно) космологическое ускорение времени для гамма-лучей, идущих вертикально вверх; космологическое ускорение времени снизило бы частоту тех и других лучей.
Мы могли бы также поискать аномальное красное смещение у далеких галактик. Галактики, для которых ускорение измерено наиболее точно, испустили свой свет около 8 миллиардов лет назад. Согласно наблюдениям, их скорость отличается от скорости хаббловского расширения примерно на 4 %. Эти галактики отстоят от нас на 8 миллиардов световых лет и удаляются от нас (расстояние увеличивается) со скоростью, равной 40 % скорости света. Часть этой скорости, обусловленная ускорением времени, составляет примерно 2 % скорости света.
Конечно, все далекие галактики и без того демонстрируют красное смещение, но мы приписываем его расширению пространства; тому, что расстояние до них стремительно увеличивается. Это закон Хаббла. Как же отличить красное смещение, обусловленное расширением, от красного смещения, обусловленного космологическим замедлением времени? Один из способов сделать это – отдельно измерить меняющееся расстояние, причем так, чтобы измерение не зависело от обусловленного скоростью красного смещения. Если бы мы знали скорость изменения расстояния, то понимали бы, какая доля красного смещения обусловлена расширением и какая его часть вызвана космологическим замедлением времени.
Прежде чем искать способ это проделать (то есть такой, посредством которого подобное измерение можно было бы завершить при нашей жизни), давайте рассмотрим, можно ли провести такой эксперимент в принципе – если бы у нас были неограниченные ресурсы и терпение. Предположим, мы имели бы на исследование миллиард лет. Не могли бы мы просто посмотреть, с какой скоростью удаляется от нас та или иная галактика, не опираясь на обусловленное скоростью красное смещение? Мы могли бы попытаться найти в галактике «стандартную линейку» – например, размер звезды известного типа – и понаблюдать, как видимая величина этой линейки изменяется со временем, получив таким образом независимую оценку скорости ее удаления. Или мы, может быть, выявили какой-то свет (микроволновое излучение?), который отражается от этой галактики. Цель – отделить красное смещение, обусловленное скоростью расширения, от красного смещения, которое зависит также от собственного замедления времени.
Здесь есть ловушка. Современные представления о расстоянии прочно связаны с измерением времени. Сейчас мы определяем длину метра как расстояние, которое проходит свет в вакууме за 1/299 792 458 долю секунды. Такое определение означает, что свет или любая по-настоящему лишенная массы частица движется сквозь пустое пространство со скоростью ровно 299 792 458 м/с. Никакое экспериментальное измерение ни при каких обстоятельствах не сможет определить скорость света более точно! Причина определения единицы длины таким образом кроется не в нашей лени; оказывается, очень трудно предложить хорошее определение метра, и ничего лучше просто не удалось найти. Это определение пришло на смену старому методу, когда стандарт длины зависел от эталонного метрового стержня, который держали в специальном хранилище Парижа. Но если в той отдаленной галактике, о которой идет речь, часы идут медленнее (по сравнению с нашими часами), то и эталон – стандартный метровый стержень на одной из планет этой галактики – окажется длиннее, поскольку свет за каждую секунду там успевает пройти большее расстояние. Это означает, что мера длины, определенная по эталонному стержню, будет иной. Получается, что космологическое замедление времени можно спутать с изменением скорости расширения Вселенной.
Вообще говоря, при взгляде на уравнения модели Леметра возникает впечатление, что эта проблема нерешаемая; по крайней мере, в той степени, в которой точен космологический принцип (идеально однородная Вселенная). Может оказаться, что не существует способа отличить расширение пространства от расширения времени. Разумеется, Вселенная не полностью однородна; космологический принцип – всего лишь приближение, позволяющее проводить вычисления и находить решения в рамках простого (для физиков) математического выражения. Может быть, нам удастся воспользоваться неоднородностью пространства, чтобы выявить ускорение времени. Вероятно, это ускорение можно выявить локально; в ходе эксперимента Паунду и Ребке (с гамма-лучами, направленными вертикально вниз с башни) удалось зарегистрировать сдвиг (девиацию) частоты на всего лишь одну миллионно-миллиардную долю (10−15). У меня пока нет никаких практических предложений на этот счет. Немного утешает лишь то, что Дирак, предлагая свой позитрон, тоже считал, что не существует способа обнаружить такую частицу в обозримом будущем.

Фальсификация космологического происхождения времени. Часть II

Еще один возможный способ фальсифицировать (проверить) космологическое происхождение времени зависит от верности инфляционной теории, то есть идеи о том, что в первую миллионную долю секунды Вселенная расширялась со скоростью, многократно превосходящей скорость света. Период такого ускорения предшествовал нынешнему периоду ускорения, и если четырехмерная концепция пространства-времени верна, то расширяться, по идее, должно было не только пространство, но и время. Имеем ли мы возможность наблюдать первую миллионную долю секунды Большого взрыва?
Как ни поразительно, ответ – «может быть». Сейчас о самом раннем доступном для нас периоде после Большого взрыва позволяет судить такое средство зондирования, как микроволновое (реликтовое) излучение; картина его распределения во Вселенной соответствует времени примерно через полмиллиона лет после начала. Но некий потенциальный сигнал возник раньше, в первую миллионную долю секунды: это гравитационное излучение. Есть надежда, что очень скоро мы научимся регистрировать первичные гравитационные волны и они позволят взглянуть на картину, значительно более близкую к моменту творения, возможно, даже в пределах периода, который необходим для наблюдения инфляции. Чтобы увидеть гравитационные волны, нужно посмотреть на обусловленную ими картину микроволнового космического излучения; в первую очередь на его поляризацию.
Некоторое время кое-кто из физиков считал, что нам удалось наблюдать именно это. Первый отчет об открытии таких гравитационных волн был сделан в марте 2014 года проектом под названием BICEP2 (Background Imaging of Cosmic Extragalactic Polarization 2). Этот проект измеряет микроволновое излучение со станции, расположенной на южном полюсе, где экстремальные холода вымораживают из атмосферы водяные пары, мешающие наземным измерениям. К несчастью, результат оказался ложной тревогой; скорее всего, прибор наблюдал помехи от излучения, создаваемого космической пылью.
Сейчас планируются новые, более высокоточные измерения, и есть вполне реальная надежда, что скоро мы действительно увидим гравитационные волны из очень молодой Вселенной, буквально из периода инфляции. И не исключено, что удастся отличить чисто пространственное расширение от расширения, в которое вовлечены и пространство, и время.

Будущее физики

Иногда мне хочется, чтобы Платон оказался прав и все эти вопросы можно было решить в ученых беседах и чистых размышлениях, а абсолютным арбитром истины стал разум. Но история физики говорит, что Платон ошибался. Нам необходимо сохранять контакт с реальным физическим миром, как Антею нужно было касаться земли.
Квантовая запутанность уже с нами и никуда не денется. «Жуткое дальнодействие» уже не пустые рассуждения, а экспериментальный результат, продемонстрированный Фридманом и Клаузером, а также многочисленными последующими экспериментами. Несмотря на то что мы не можем передавать вещество или информацию быстрее скорости света, мгновенный коллапс волновой функции – неудобная проблема, наводящая на мысль, что какой-то другой подход мог бы выявить новые, неожиданные аспекты. Я лелею надежду, что кто-нибудь сумеет переформулировать квантовую физику так, чтобы исчезла нужда в амплитудах вероятности. Когда я учился в Беркли, теоретик Джеффри Чу попытался сделать это с помощью подхода, который он называл «теорией s-матриц». В некоторых важных отношениях его работа привела к созданию современной стандартной модели; цель не была достигнута, и устранить квантовые амплитуды и волновые функции не удалось. Тем временем дальнейшие работы по поиску совершенно новых подходов были отложены в долгий ящик из-за необычайного успеха стандартной модели элементарных частиц. Стандартная модель – лучшая за всю историю физики теория, если говорить о ее способности делать точные предсказания, которые затем подтверждаются экспериментально.
Так зачем же что-то менять в теории квантовой физики, если она так замечательно работает? Несмотря на успех стандартной модели, думаю, эта теория еще будет переформулирована. Когда это произойдет, амплитуды перестанут коллапсировать со сверхсветовой скоростью, а позитроны (осмелюсь предположить) не будут больше считаться ни дырками в бесконечном море частиц с отрицательной энергией, ни электронами, движущимися назад во времени. Это был просто удобный способ рассматривать их в контексте пространственно-временных диаграмм, где течение времени полностью отсутствует.
Еще одним огромным шагом в развитии квантовой физики, к тому же отчаянно необходимым, должна стать концепция измерения. Мало кто из физиков на самом деле верит, что для измерения действительно необходимо человеческое сознание. Шрёдингер привел убедительный пример с котом. Но что же такое измерение? Роджер Пенроуз утверждает, что существует некий микромеханизм, часть природы, которая проводит множество измерений. Квантовое состояние, приведшее к возникновению в процессе Большого взрыва структуры, которую мы наблюдаем, не должно было ждать, пока Пензиас и Уилсон откроют реликтовое микроволновое излучение, а Млечный Путь не застыл неподвижно во Вселенной до того момента, когда моя группа вычислила скорость его движения. (Кстати, в какой момент он должен был двинуться – когда аппарат измерил анизотропию или когда я взглянул на данные?) Луна была на небе и до того, как Эйнштейн посмотрел на нее. Какой-то естественный механизм уже заставил волновую функцию – суперпозицию бесконечного числа возможных вселенных – коллапсировать задолго до появления человека (или живого мира).
Развитие техники сделало экспериментальные исследования в области теории измерений намного более реальными. Давно уже для создания запутанных фотонов не нужны пучки атомов кальция; их можно получать, освещая лазерным лучом специальный кристалл, к примеру BBO (бета-борат бария, β-BaB2O4) или KTP (титанил-фосфат калия, KTiOPO4). В результате эксперименты по исследованию квантовых измерений движутся вперед семимильными шагами.
Один из наиболее интересных результатов получен при изучении «отложенного выбора», когда сначала собираются измерения по всем состояниям поляризации и только потом полученные данные анализируются. В подобных экспериментах проверяется, действительно ли измерение неразрывно связано с присутствием человека и его решением, и результаты указывают, что это не так. Хорошо, в этом нет ничего удивительного, но для настоящего прорыва необходимо найти что-нибудь неожиданное, какой-то сюрприз, каким стал для физиков в свое время эксперимент Майкельсона−Морли.
Новые лазерные методы дали возможность тестировать запутанность на гораздо больших расстояниях, чем те, с которыми пытались работать Фридман и Клаузер. На первой полосе New York Times от 22 октября 2015 года был заголовок: «Прости, Эйнштейн, но “жуткое дальнодействие”, кажется, реально». Группа исследователей из Делфтского технического университета в Нидерландах проверила сверхсветовые эффекты, связанные с запутанностью двух электронов на двух разных концах университетского кампуса, то есть на расстоянии, превышающем километр. И вновь копенгагенская интерпретация с ее сверхсветовым действием могла праздновать победу.
Наблюдение гравитационной волны в 2015 году аппаратом LIGO позволяет предложить третье испытание теории сейчас – теории возникновения времени. Когда две черные дыры сливаются воедино и коллапсируют, вокруг них локально должно генерироваться новое время, что можно заметить по возрастанию задержки между предсказанным и наблюдаемым сигналом. Единственная волна, которую пока удалось зарегистрировать, слишком неопределенна для проверки этого предсказания, но если бы нам удалось пронаблюдать множество подобных событий – или более близкое событие с более мощным сигналом, то присутствие или отсутствие этой задержки могло подтвердить или опровергнуть теорию сейчас.
Назад: Часть V Сейчас
Дальше: Глава 25 Смысл понятия сейчас Все детали пазла на месте. Как выглядит картина целиком?

Игорь Леонидович Новожилов
Господь Бог Всемогущий молитвами Святого Вонифатия и Приснодевы Марии, Афонской Отроковицы Божественной и Святого Панелиимона, избавь от психических болезней население планеты сей, старанием Всех Архистратигов Божиих ходатайством Всех Ангелов Божиих, работой трудной Всех Безсеребрянников Божиих. Аминь.
Евгений
Перезвоните мне пожалуйста 8 (962) 685-78-93,для связи со мной нажмите цифру 2, Евгений.
Антон
Перезвоните мне пожалуйста 8 (962) 685-78-93 Антон.