Книга: Сейчас. Физика времени
Назад: Глава 19 Эйнштейн повержен Убеждение Эйнштейна, что квантовая физика ошибочна, опровергнуто с помощью ключевого эксперимента…
Дальше: Часть IV Физика и реальность

Глава 20
Вот и путешествие назад во времени
Открыт позитрон – позже Фейнман определил его как электрон, движущийся назад во времени…

Так, если мои расчеты верны, то, когда эта малышка разгонится до 88 миль в час,… ты такое увидишь, Марти!
Д-р Эммет Браун при запуске машины времени в фильме «Назад в будущее»
Нечто, выглядевшее как электрон с неправильным зарядом (положительным, а не отрицательным), было открыто 2 августа 1932 года Карлом Андерсоном. В своей статье он назвал эту частицу позитроном и объяснил ее как антивещество, предсказанное Полем Дираком годом ранее. Через 17 лет Ричард Фейнман предположил, что обнаруженная Андерсоном частица представляет собой электрон, движущийся назад во времени.
Андерсон использовал камеру Вильсона (туманная камера) – устройство, регистрирующее стремительный пролет электронов и протонов с помощью частиц жидкости, которые конденсируются из пара на их пути следования; на фото, которое он сделал, эти частицы выглядят как маленькие черные точки. Позитрон входит снизу, проходит сквозь тонкий свинцовый лист, после чего выходит сверху. Его маршрут искривляется, потому что Андерсон поместил камеру Вильсона в сильное магнитное поле. След (трек) пролетевшей частицы загибается влево: это свидетельствует о ее положительном заряде, как у протона, – но то, как трек загибается, говорит, что частица гораздо легче протона. В верхней части изображения кривизна следа больше – это означает замедление частицы, то есть подтверждает, что она прилетела снизу.
Описание этого события как пролета обычного электрона, движущегося назад во времени, может показаться странным, однако именно такой подход стал стандартным при рассмотрении подобных частиц в продвинутых квантовых вычислениях. Придумал его Ричард Фейнман. Движение назад во времени стало одним из обычных инструментов, и многие физики пользуются им практически ежедневно. В ходе изучения продвинутых курсов по квантовой физике студентов учат пользоваться методами с обратным ходом времени. Даже в «простых» вычислениях, таких как столкновение двух электронов, фигурируют частицы (как правило, фотоны), движущиеся назад во времени.
Никто не решился бы без убедительных причин вводить в расчеты движение назад во времени. В этом случае одной из убедительных причин стала нелепая теория позитрона, предложенная Дираком незадолго до работы Фейнмана.

Самая абсурдная теория этой книги

Когда Андерсон увидел свой позитрон, ему и в голову не пришло, что это может быть электрон, движущийся назад во времени. Он считал, что это пузырек, пустота, движущаяся дырка в бесконечном море отрицательных электронов, густо заполняющих пространство. Я серьезно. Как бы абсурдно это ни звучало, именно такое предсказание хотел подтвердить Андерсон своим экспериментом. Идея принадлежала не Андерсону; это была концепция Поля Дирака – человека, которому удалось объединить новые квантовые идеи (о том, что электрон представляет собой волну) с эйнштейновской теорией относительности (хотя к вопросу о мгновенном коллапсе волновой функции он не обращался).
Уравнение Шрёдингера не было релятивистским; оно не включало в себя никакие эффекты, фигурировавшие у Эйнштейна в теории относительности. Дирак же попытался создать релятивистскую квантовую теорию электрона и выбрал для этого подход, который показался ему логичным и прямолинейным. Он сформировал представление о том, как должно выглядеть нужное уравнение (в частности, решил, что в нем должна присутствовать простая зависимость от времени), а затем занялся проработкой математики. Математическая часть, кстати сказать, оказалась на удивление сложной, ее с трудом понимает до конца даже продвинутый аспирант-физик. Но цель Дирака – добиться, чтобы зависимость от времени осталась простой, – была выполнена.
Уравнение, выведенное Дираком, работало необычайно хорошо. Без всяких дополнительных параметров и коэффициентов оно автоматически содержало ранее известный факт наличия у электрона спина, верно выдавало разрешенные значения этого спина и даже учитывало то, что каждый электрон представляет собой не только маленький электрический заряд, но и маленький магнит. С некоторым простым ограничением уравнение Дирака давало точную и адекватную количественную характеристику магнитных свойств электрона. Ученый опубликовал свою теорию в январе 1928 года. Уравнение произвело сильное впечатление. Это была, возможно, самая выдающаяся работа в области теоретической физики после того, как Эйнштейн верно объяснил прецессию эллиптической орбиты Меркурия на основании общей теории относительности.
Оставалась одна небольшая (на самом деле громадная) проблема. Теория Дирака предсказывала, что электрон может иметь либо позитивную энергию покоя +mc², либо отрицательную энергию покоя −mc². Это очень плохо; никто никогда не видел отрицательной массы. Но еще хуже, возможно, было то, что существование состояний с отрицательной энергией подразумевало нестабильность электрона. Любой электрон с положительной энергией способен был спонтанно перескочить в состояние с отрицательной энергией, потеряв при этом энергию 2mc² (предположительно, с излучаемыми фотонами). Ни один электрон с положительной массой не протянул бы и миллионной доли секунды, прежде чем превратиться в электрон с отрицательной массой. Тем не менее всем известны электроны именно с положительной массой, и они не распадаются. Частиц с отрицательной массой никто никогда не видел. В первой статье Дирак откровенно заявил, что пока игнорирует эту проблему, но из-за нее считает свою теорию незавершенной. Он писал:
Таким образом, результирующая теория – всего лишь приближение, но, судя по всему, она достаточно хороша, чтобы описать [известный спин и магнетизм электрона] без произвольных предположений.
Два года спустя Дирак «решил» проблему отрицательной энергии с помощью одной из самых необыкновенных (я бы даже сказал, нелепых) гипотез, когда-либо выдвинутых в физике. Было известно, что атомы способны удерживать лишь ограниченное число электронов. Дело в том, что их орбитали – области пространства вокруг ядра атома, которые могут занимать электроны, – вмещают по два электрона каждая. (Это эмпирическое правило ввел в свое время Вольфганг Паули, и сегодня оно называется принципом запрета Паули (или просто принципом Паули). Позже, с появлением теории квантовой физики, это правило получило обоснование.) Дирак дал аналогичное решение для пустого пространства. Он предположил, что все состояния отрицательной энергии, бесконечное их количество, уже заполнены электронами с отрицательной энергией. Вакуум настолько полон электронами с отрицательной энергией, что места для них просто не осталось. Электроны с положительной энергией не могут отдать свою энергию и перейти на одну из орбиталей с отрицательной энергией, потому что эти орбитали уже до предела заняты. Он говорил о пустом пространстве как о заполненном до краев море электронов с отрицательной энергией.
Но разве это не подразумевало, что пустое пространство не пусто, а обладает бесконечным зарядом и к тому же имеет бесконечную (хотя и отрицательную) плотность энергии? Да. Как такое может быть? Разве мы не заметили бы этого? Дирак говорил, что нет. Это и есть вакуум. Поскольку заряд распределен равномерно, мы живем в нем и при этом ничего не замечаем. Замечает ли рыба воду? Вся наша физика основана на том, что происходит в этой сплошной равномерной среде. Мы не замечаем бесконечного моря заряженных частиц, потому что оно никогда не меняется. По сравнению с гипотезой Дирака картинка Максвелла с крохотными вращающимися шестеренками выглядела простой.
Громадная отрицательная плотность энергии по Дираку должна была бы, по идее, давать громадные гравитационные эффекты, но сам он никогда не обращался к этому вопросу – вероятно, потому, что о расширении Вселенной, открытом с помощью «Хаббла», было объявлено всего 9 месяцев назад и объяснение динамики этого расширения, опубликованное Леметром в малоизвестном журнале, еще не получило особой известности. Гравитационные эффекты отрицательного моря Дирака (так стали называть эту умозрительную модель вакуума. Прим. ред.) связаны с современной проблемой того, что теоретические расчеты темной энергии, как упоминалось в , дают ошибку в 10120 раз.
Физик меньшего масштаба провозгласил бы новый «принцип запрета», согласно которому состояния с отрицательной энергией попросту исключаются из рассмотрения; электроны не могут их занимать. Но не Дирак. Он заявил, что если в уравнении имеются такие состояния, то они должны существовать, а проблемы, вызванные этим, так или иначе придется решать. Лучшим выходом из положения, которое он сумел найти, стало бесконечное море отрицательной энергии. Дирак никогда не пытался объяснить, откуда взялось это море или почему оно заполнено только от отрицательной бесконечности до нуля, а также почему не существует моря заполненных состояний с положительной энергией.
Только в мире физики, не успевшей еще оправиться от шока многочисленных головоломных сюрпризов (замедление времени, лоренцево сокращение длины объекта, искривление пространства-времени, квантованный свет), такая абсурдная гипотеза могла быть встречена серьезно. Однако это так. Возможно, она была вовсе не абсурдной, а блестящей. Мало того, даже сегодня она психологически поддерживает тех, кто выдвигает современные безумные гипотезы, такие как идея о нашем 11-мерном пространстве-времени.
Дирак развил свою идею еще дальше. Время от времени в один из электронов с отрицательной энергией в этом бесконечном море попадает другая частица, после чего он получает дополнительную энергию и покидает море. В частности, может перескочить в состояние с положительной энергией (эти состояния не заняты). Тогда на его месте останется пузырек, который Дирак назвал дыркой. Дырка может двигаться по бесконечному морю, как пузырьки воздуха движутся в толще воды (движется в основном вода вокруг пузырька, а не то небольшое количество газа, которое в нем находится), и отсутствие отрицательного заряда в море отрицательного заряда ведет себя так, как если бы оно представляло собой положительный заряд. Было ли это предсказанием антивещества? Пока нет. Дирак заявил, что такие дырки – это протоны! В декабре 1929 года он написал статью Theory of Electrons and Protons («Теория электронов и протонов»), в которой изложил эту концепцию.

Дирак неохотно предсказывает антивещество

У пузырьковой теории протона Дирака была одна серьезная проблема. Герман Вейль показал, что пузырек в этом случае должен двигаться так, как если бы он обладал той же массой, что и электрон, – но в то время уже было известно, что протон в 1836 раз тяжелее электрона. Конечно, ошибка в 1836 раз – явление не то чтобы совершенно беспрецедентное, но, безусловно, вызов. У Дирака не было хорошего ответа на вопрос о разнице масс. Теория до конца не сформировалась; ее еще придется дорабатывать. Дирак ссылался на недавние расчеты Эддингтона, говорил, что они обнадеживают, однако несогласованность массы протона с теорией представляла серьезную нерешенную проблему, и ею нужно было заниматься.
Еще одна серьезная проблема выявилась три месяца спустя после выхода статьи Дирака о протоне. Роберт Оппенгеймер (позже он приобрел известность как руководитель Манхэттенского проекта по созданию атомной бомбы) написал статью, в которой указывал, что протоны Дирака, его дырки, должны притягиваться к электронам, а при встрече такая пара должна аннигилировать, разрушая друг друга и излучая всю энергию, заключенную в их массе, в виде гамма-лучей. Ни протоны, ни электроны не должны были существовать в обычном веществе более одной миллионной доли секунды. На самом же деле все не так: электроны и протоны счастливо уживаются в атомах и не думают аннигилировать. Получалось, что теория Дирака противоречит самым фундаментальным наблюдательным данным.
Наконец, в мае 1931 года Дирак написал статью, в которой упомянул одно отчаянное решение. Примечательно, что большая часть статьи была посвящена совершенно другой теме: связи между электрическим и магнитным полями. Название статьи – Quantised Singularities in the Electromagnetic Field («Квантованные сингулярности в электромагнитном поле») – ничего не говорит о том, что в ней содержится краткий комментарий по поводу проблемы отрицательной энергии; всего 2 из 36 абзацев статьи посвящены этому вопросу. Создается впечатление, что Дираку откровенно не нравилось решение, которое он вынужден был изобрести, – предсказание антивещества. В статье говорится:
Дырка, если бы таковая существовала, была бы частицей нового типа, неизвестного экспериментальной физике, и имела бы ту же массу, что и электрон, и противоположный заряд. Такую частицу можно назвать антиэлектроном.
Дирак объяснил, что антиэлектроны отсутствуют в природе, потому что при возникновении тут же аннигилируют с электронами – строго по предсказанию Оппенгеймера. Вот почему мы их не видим. В принципе, антиэлектроны можно было бы создать в лаборатории с помощью высокоэнергетических гамма-лучей, но Дирак считал, что эта задача выходит за рамки доступных на тот момент технических возможностей. По его словам:
Однако с учетом интенсивности гамма-лучей, доступных в настоящее время, эта вероятность пренебрежимо мала.
Гораздо приятнее сознавать, что ты можешь разрешить уже известную загадку, к примеру о магнетизме электрона, чем делать вынужденные предсказания. Если антивещество существует, почему антиэлектроны никто не видел? Дирак не был исследователем и слабо разбирался в реальных ограничениях и возможностях экспериментов. Будь его представления о современных экспериментах более полными, он встревожился бы еще сильнее в связи с собственным предсказанием – у экспериментаторов уже несколько лет было средство, позволявшее наблюдать предсказанные им антиэлектроны. Его осторожная оговорка о «пренебрежимо малой вероятности» была совершенно не нужна.
Сегодня мы знаем, что антиэлектроны Дирака тогда действительно уже наблюдались – но рожденные под воздействием высокоэнергетических космических лучей, а не лабораторных гамма-лучей (в этом Дирак был прав). Космические лучи – это естественное излучение, наблюдаемое на поверхности Земли и приходящее из космоса (этот факт продемонстрировал физик Виктор Гесс еще в 1910-е годы). Эти первозданные космические лучи, взаимодействуя с атмосферой Земли, порождают антиэлектроны и другие античастицы. В 1927-м, за год до публикации Дираком первоначальной теории электрона, русский ученый Дмитрий Скобельцын в экспериментах, нацеленных на исследование космических лучей, наблюдал, скорее всего, именно позитроны. Однако у него не было способа ни измерить заряд (определить, положительный он или отрицательный), ни наблюдать процесс аннигиляции, так что он не мог отличить вещество от антивещества.
В 1929 году, тоже до предсказания Дираком антиэлектрона, физик Чжунъяо Чжао, работавший в Калифорнийском технологическом институте в соседнем кабинете с Карлом Андерсоном, наблюдал странный эффект при поглощении веществом электронов, порожденных космическими лучами (по крайней мере, физик считал, что это были они). Электроны вели себя не так, как ожидалось. После появления теории Дирака Андерсон верно решил, что разницу в поведении частиц можно было бы объяснить, предположив присутствие здесь же антиэлектронов. Такая интерпретация вдохновила его на создание совершенной камеры Вильсона с сильным магнитным полем и свинцовым барьером, который позволял определить направление движения частицы (поскольку при пролете сквозь свинец она заметно теряла энергию).
Андерсон совершил открытие и опубликовал свой снимок. Ему удалось всех убедить в существовании антивещества. Дирак был прав. Редакторы журнала предложили Андерсону назвать обнаруженные им частицы позитронами, и название закрепилось.
Мой наставник Луис Альварес был знаком с Андерсоном и очень ценил его работу. Он рассказал об одном моменте, который тревожил ученого и о котором, кажется, никто раньше не писал. В 1930-е годы среди студентов и молодых ученых в большой моде были всевозможные розыгрыши. Сам Альварес тоже гордился кое-какими ловкими трюками, которые ему в свое время удалось проделать с другими физиками, и особенно с надменными профессорами. Поэтому Андерсон, вооруженный первым снимком антиэлектрона, страшно боялся, что кто-то его просто разыграл. Шутнику достаточно было вставить дополнительное зеркало перед автоматизированной камерой Андерсона, и траектория электрона на снимке загнулась бы в противоположную сторону. Так что Андерсон снова тщательно проверил фото и даже сравнил его на всякий случай с внешним видом аппарата, чтобы убедиться, что снимок настоящий. В итоге все же опубликовал его – и вошел в историю.
В 1933 году Дирак получил Нобелевскую премию за то, что тогда называли теорией электронов и позитронов. В своей нобелевской лекции он объяснил, что, собственно, сделал, но ни разу не упомянул ни Вейля, ни Оппенгеймера, ни Андерсона.

Возрожденный эфир

После Эйнштейна и до Дирака вакуум рассматривался как пустое пространство. Эйнштейн показал, что движение по отношению к абсолютному пространству необнаружимо, так что нет смысла и говорить о строении того, чего нет. Казалось, эфир тихо умер и пропал из лексикона физиков. Вакуум – это отсутствие чего бы то ни было; как число нуль, он не существует. Затем Дирак объявил, что вакуум до отказа набит электронами с отрицательной энергией. Получалось, что в нем не только присутствуют какие-то составные части; он к тому же обладает бесконечным отрицательным зарядом и бесконечной же отрицательной энергией.
Несмотря на обнаружившуюся вдруг структуру вакуума, измерить движение сквозь него по-прежнему было невозможно. Теория Дирака была выстроена в рамках математического аппарата, связанного с теорией относительности Эйнштейна, и движение по отношению к заполненному до отказа морю электронов с отрицательной энергией оказывалось необнаружимым. В определенном смысле возродился старый добрый эфир. Более того, возможно, именно это бесконечное море обеспечивало среду, колебания которой обусловливали распространение света. Электромагнитные волны были аналогичны океанским, только двигались не по воде, а по бесконечному морю электронов с отрицательной энергией.
На курсе электромагнетизма в Колумбийском университете меня учили, что эфира не существует, что была доказана ненужность и бессмысленность этой концепции, после чего ученые от нее отказались. Но позже, в аспирантуре Калифорнийского университета в Беркли мой профессор Эйвинд Вихман (тот самый, кто предложил использовать в эксперименте Фридмана−Клаузера кальций) отмечал с улыбкой, что эфир никогда и никуда не уходил из физики; его просто переименовали. Сегодня мы называем его вакуумом.
Если почитать про вакуум в учебнике физики для аспирантов, выяснится, что это гораздо более сложная штука, чем эфир Максвелла. Вакуум лоренц-инвариантен, а это означает, что, двигаясь сквозь него, заметить его невозможно; вакуумного «ветра» не существует. Вакуум содержит энергию. Он может быть поляризован, то есть реагирует на электрическое поле разделением своих «виртуальных» зарядов. Поляризацию можно выявить и измерить, посмотрев на энергетические уровни в атоме водорода (посредством явления, известного как лэмбовский сдвиг); можно также зарегистрировать ее непосредственно по силе, с которой вакуум воздействует на металлические пластины (эффект Казимира). В настоящее время считается, что вакуум постоянно порождает вещество и антивещество, которые почти мгновенно аннигилируют – за исключением случая, когда все это происходит вблизи черной дыры. Эта особенность приобрела существенное значение в теории излучения черной дыры Стивена Хокинга (излучение Хокинга), представляющей собой эвристическое объяснение излучения. Согласно этой теории, сильное гравитационное поле вблизи поверхности Шварцшильда разделяет возникающие там фоновые пары частиц и античастиц прежде, чем они успеют аннигилировать; одну из частиц пары оно всасывает внутрь черной дыры, вторую излучает в бесконечность.
Современная концепция вакуума рассматривает его как материальный объект. Он не движется (по крайней мере, обнаружить это невозможно), но может расширяться, и это весьма важно для понимания Большого взрыва. Вакуум содержит постоянное поле Хиггса; оно заполняет все пространство целиком и отвечает за придание частицам их массы. Он содержит также темную энергию, ответственную за ускорение расширения Вселенной. В общем, вакуум устроен намного сложнее, чем придуманный Максвеллом набор колес и шестеренок.

Фейнман обращает время вспять

На то, чтобы вырасти из идеи Дирака о бесконечном море и отказаться от нее, потребовалось 17 лет. Возможно, это могло произойти и раньше, но вмешалась ужасная война и отвлекла героя обратного времени – Ричарда Фейнмана. Он участвовал в реализации Манхэттенского проекта, наблюдал взрыв первой атомной бомбы, а затем вернулся к занятиям фундаментальной физикой в Принстоне, где читал лекции перед умнейшими людьми и демонстрировал им, что излучение не показывает асимметрии времени. Фейнман был великим энциклопедистом и ученым, сумевшим осветить буквально каждую проблему физики, о которой когда-либо задумывался. А задумывался он о многих аспектах, от электромагнетизма до физики элементарных частиц, сверхпроводимости и статистической физики.
В уравнениях Дирака – мало того, во всех уравнениях квантовой физики – слагаемое, связанное с энергией, всегда содержит также и время и выглядит как произведение Et. Позитроны Дирака имели это слагаемое со знаком минус: −Et. (Такая комбинация возникла вследствие работы Эмми Нётер, о которой мы говорили в .) Дирак интерпретировал знак минус как символ присутствия отрицательной энергии. Фейнман же предположил, что уравнения вместо этого могут указывать на положительную энергию в сочетании с отрицательным временем. Время, движущееся вспять, возможно, звучит нелепо, но задумайтесь сами: правда ли это более нелепо, чем бесконечное море электронов с отрицательной энергией?
Фейнман не был первым, рассмотревшим обратное время, но именно он превратил его в подробно разработанную теорию. Он предположил, что на самом деле позитрон – это электрон, движущийся назад во времени. Такое определение сразу же объясняло, почему он обладает той же массой, что и электрон; это и есть электрон, и он обладает положительной энергией. На самом деле электроны здесь сохранили свой отрицательный заряд; просто движение назад во времени придавало бы им иллюзию положительного электрического заряда. Бесконечного моря отрицательной энергии больше не требовалось; отрицательный знак перекочевал от энергии к времени.
Фейнман разработал совершенно новый подход к квантовой физике, и в первую очередь физике полей – тех самых силовых линий, которые выходят из зарядов и магнитов. Фейнман нашел систему уравнений, которые можно было бы использовать для расчета всех квантовых процессов в электромагнетизме, – а затем вдруг понял кое-что еще более поразительное. Каждое из его уравнений можно было изобразить в виде простой диаграммы. И оказалось, что можно, получив новую вычислительную задачу, не разбираться в сложных уравнениях, а нарисовать вместо этого все диаграммы, которые только придут на ум в рамках сформулированных Фейнманом правил, а затем, пользуясь еще одним набором правил, записать соответствующие уравнения – и получить ответ, то есть квантово-физическую амплитуду вероятности будущего процесса (обычно это столкновение частиц). Результат оказался необычайно простым и эффектным, и Фейнман даже предположил, что диаграммы здесь, возможно, более фундаментальны, чем их описание.
Предложенный Фейнманом подход сделал квантовую физику такой интуитивно понятной, что сегодня большинство ученых мыслят в терминах этих диаграмм Фейнмана. Предположим, к примеру, что мы хотим знать, как поведут себя электрон и позитрон, если столкнутся друг с другом в пространстве.
Эту простую диаграмму можно было бы назвать диаграммой «аннигиляции», поскольку позитрон и электрон здесь исчезают, превращаясь в фотон, который затем вновь распадается на электрон и позитрон. В фейнмановском подходе эта диаграмма соответствует конкретному уравнению, которое позволяет определить амплитуду рассеяния; кроме того, из него можно рассчитать вероятность рассеяния.
Но по сформулированным Фейнманом правилам, основанным на уравнениях, в диаграмму придется добавить еще одну амплитуду. Полученную схему можно назвать диаграммой обмена. Электрон и позитрон так же входят слева и уходят направо. Но здесь уходят те же самые частицы, которые и вошли в начале процесса. Рассеяние происходит оттого, что позитрон и электрон обмениваются фотоном. Обмен фотоном заставляет электрон и позитрон изменить траектории; он обеспечивает эквивалент силы, или взаимодействия, между ними. Обратите внимание, что здесь ликвидирована вся концепция силы; электрон отклоняется от своего пути не из-за действия силы, а потому, что поглощает фотон. На диаграммах фотон скрыт от наблюдения, он появляется лишь на время и называется виртуальным фотоном. Поскольку срок его жизни невелик, к нему не предъявляется даже требование отсутствия массы; в теории Фейнмана виртуальные фотоны, как правило, имеют массу покоя.
Чтобы вычислить полную амплитуду – величину, отражающую полную вероятность рассеяния, следует сложить амплитуды для обеих диаграмм. Это кажется разумным, если особенно не задумываться. На одной диаграмме первоначальный электрон исчезает, а справа возникает, рождается заново другой электрон. На другой диаграмме входит и уходит один и тот же электрон. Тем не менее два эти процесса протекают одновременно. Физика не может сказать, тот же самый этот исходящий электрон или новый. Мало того, на самом деле он оказывается одновременно и тем, и другим. Эти частицы по-настоящему идентичны и неразличимы. Повторим: исходящий электрон – одновременно тот, что вошел в картинку, и другой, рожденный заново. Такой вот получается кот Шрёдингера! Вероятность этого процесса определяется через амплитуды обеих диаграмм; амплитуды складываются, а их сумма затем возводится в квадрат.
Помните совет Фейнмана: не думайте, как такое может быть, или сойдете с ума.
А теперь давайте вернемся к обратному ходу времени. В новом фейнмановском подходе к позитронам первая диаграмма полностью эквивалентна (то есть дает ту же амплитуду вероятности) второй диаграмме. Но произошли небольшие изменения. То, что раньше рассматривалось как позитрон, теперь стало электроном, движущимся назад во времени.
Диаграммы Фейнмана – ключевой элемент нынешних квантовых вычислений, каждый день ими пользуются тысячи людей. Существуют компьютерные программы для оценки амплитуд вероятности сложных фейнмановских диаграмм (к примеру, тех, где происходит обмен двумя или более фотонами). На этих схемах антивещество представлено как обычное вещество, движущееся назад во времени. Более того, частицы, двигаясь назад во времени, несут с собой информацию о будущем. Они несут с собой импульс и энергию будущих частиц, которые появляются на правой стороне диаграмм. Фейнман утверждал, что на новый подход его вдохновило исследование излучения – работа, которую он представлял перед Эйнштейном и другими великими умами и которая показала, что классическое излучение движется как вперед, так и назад во времени.
Фейнмановское обратное время, хотя и противоречит нашему ощущению реальности, тем самым порождая тревогу, в принципе, не создает никаких проблем с физикой, потому что в уравнениях направление хода времени не нужно и никак не используется.
Хокинг в своей «Краткой истории времени» тоже ссылается на фейнмановскую парадигму обратного времени, но не готов принять ее как путешествие назад во времени. Он утверждает (без объяснений), что, по его убеждению, подобное движение назад во времени возможно только в микроскопическом, но не в большом человеческом мире.
Могут ли оказаться все электроны на самом деле позитронами, движущимися назад во времени? Или, может быть, мы сделаны из позитронов, а электроны в наших телах – на самом деле позитроны, движущиеся назад во времени? Да, все эти предположения не только возможны, но и стали составной частью современной теории – или, как утверждают некоторые, одного из вариантов интерпретации современной теории.
Кто же прав – Дирак или Фейнман? Что такое позитроны – пузырьки в бесконечном море или электроны, движущиеся назад во времени? Физики в большинстве своем предпочитают фейнмановскую картину. Кажется, она лучше отвечает критерию бритвы Оккама – принципа, согласно которому из всех возможных объяснений некоторого явления всегда принимать следует простейшее. Однако не существует эмпирического способа продемонстрировать всем желающим, что обратное движение во времени действительно имеет место, а бесконечное море частиц с отрицательной энергией не соответствует действительности. Кроме того, безусловно, возможен и третий вариант: обе теории ошибочны. Диаграммы Фейнмана целиком выводятся из квантовой теории поля, и мы, возможно, просто слишком далеко заходим в своих интерпретациях, воспринимая их буквально, а не в качестве мнемонических правил для запоминания фейнмановских уравнений. Но, возможно, и нет.

Мы все – одно

В своей книге «Вы, конечно, шутите, мистер Фейнман!» Фейнман рассказывает, что однажды ему позвонил возбужденный наставник Джон Уилер, который сказал: «Я знаю, почему все электроны имеют одинаковый заряд и одну и ту же массу!» Фейнман спросил почему. Уилер ответил: «Потому что все они – это один и тот же электрон!»
Ученый мгновенно понял идею Уилера. На фейнмановской диаграмме при рассеянии электрон отскакивает обратно в прошлое. Ясно, что позитрон и электрон будут обладать одной и той же массой, потому что на самом деле это одна и та же частица. Но предположим, что когда-то, в отдаленном прошлом, движущийся назад во времени электрон вновь рассеется на чем-то, отразится и снова двинется вперед во времени. Тогда у нас будут уже два электрона, существующие одновременно, но на самом деле они окажутся одной и той же частицей. Может быть, все электроны связаны таким образом и существует лишь один, который мечется назад и вперед во времени.
Фейнман пишет, что отверг эту идею не потому, что она была слишком безумной (ничто в физике не может быть слишком безумным), но потому, что она, судя по всему, предсказывала, что позитронов и электронов во Вселенной должно быть одинаковое количество. Но если это так, где же все позитроны? (Характерно, что первая реакция великого теоретика, такого как Фейнман, на новую гипотезу – сразу же попытаться ее опровергнуть.) Уилер предположил, что они где-то прячутся – скажем, внутри протонов.
В настоящее время идея Уилера представляется более правдоподобной. Как я уже упоминал, Андрей Сахаров показал (в 1967 году), что крохотная известная разница между веществом и антивеществом («нарушение CP-симметрии») позволяет нам постулировать почти, но все же не совсем равное число частиц и античастиц в ранней Вселенной. Тогда после аннигиляции большинства из них мы получим нынешнюю Вселенную с преобладанием вещества.
Возможно, когда-нибудь кто-нибудь организует на основе идеи Уилера новую религию. Человеческая душа после смерти движется назад во времени, рассеивается (отражается) и становится душой, движущейся вперед, – другой личностью. Это происходит многократно. Может быть, во Вселенной существует всего одна душа. Приятным аспектом такой религии стало бы то, что в ней не требуется постулировать Золотое правило. Мало того, Золотое правило неизбежно возникает само по себе: то, что ты делаешь с другими, на самом деле делаешь с самим собой.

Может ли человек путешествовать назад во времени

Фейнмановский электрон, движущийся назад во времени, на первый взгляд не имеет непосредственного отношения к вопросу, который так волнует читателей научной фантастики: как насчет путешествия человека в прошлое? Сейчас (после «Машины времени» Герберта Уэллса, написанной в 1895 году), когда научная фантастика старается ориентироваться на недавние научные открытия, подобные перемещения во времени обычно «осуществляются» двумя способами: движением быстрее света или кротовыми норами.
Когда в фильме «Супермен» герой обнаруживает, что Лоис Лейн мертва, он летит быстрее скорости света, сдвигается в прошлое и принимает меры, чтобы предотвратить ее гибель, – ведь в его новой системе отсчета это еще не случилось. Но несмотря на то что герой действует как будто по теории относительности, на самом деле совершенное им противоречит уравнениям Эйнштейна. Если помните, я показал, что движение быстрее скорости света способно менять последовательность разделенных событий. Тахионная пушка может поразить цель прежде, чем выстрелит. Но наблюдатели никогда не разойдутся во мнениях, несмотря на то что такое оружие делает причинно-следственную связь двусмысленной. Если Лоис Лейн умирает в одной системе отсчета, она умирает и во всех остальных, хотя и в разные моменты времени. И чтобы спасти ее, как это делается в фильме, пришлось бы постулировать, что с теорией относительности что-то не так. Но тогда зачем летать быстрее скорости света? Если вы не стараетесь согласовывать свой сюжет с современной физикой, почему не встать просто на научно-фантастическую позицию и не заставить Супермена с его супермозгом построить машину времени по Уэллсу?
Касательно путешествий во времени, мы можем воспользоваться тем, что кротовая нора способна соединять одну локацию в пространстве-времени с другой, которая расположена не только в другой точке пространства, но и в ином, возможно более раннем, времени. Представьте рулон старой кинопленки, представляющий ход пространства-времени. А теперь сложите пленку и поднесите событие, которое уже произошло, к настоящему моменту. Теперь перепрыгните на соседний виток – и вы в прошлом. Героиня Элли Эрроуэй летала через такую кротовую нору в (чудесном) романе Карла Сагана Contact. Если вам хочется увидеть яркое изображение кротовой норы, посмотрите, как Джоди Фостер (она играет Элли) проваливается в нее в (не слишком удачном) фильме, снятом по этому роману. Не так давно Кип Торн – один из ключевых физиков, связавших кротовые норы с путешествиями во времени, – выступил в роли исполнительного продюсера масштабного научно-фантастического фильма «Интерстеллар», в котором обыгрывается такая возможность.
Путешествия во времени настолько умозрительны, что обычно не рассматриваются как тема для серьезной профессиональной публикации. Было, однако, знаменитое исключение – в 1988 году Торн с двумя коллегами из Калифорнийского технологического института опубликовал статью в очень престижном научном журнале Physical Review Letters под интригующим заголовком «Wormholes, Time Machines, and the Weak Energy Condition» («Кротовые норы, машины времени и слабое энергетическое условие»). Термин слабое энергетическое условие имеет отношение к вопросу о стабильности кротовых нор. Далее я буду ссылаться на эту работу как на «статью о машине времени». В аннотации к ней говорится:
Утверждается, что если законы физики позволяют продвинутой цивилизации создать и поддерживать кротовую нору в пространстве для межзвездных путешествий, то ее можно преобразовать в машину времени, при наличии которой появится, возможно, способ нарушения причинности.
Это была очень специализированная и очень осторожная статья; вероятно, именно ей мы в наибольшей степени обязаны широкой популярностью предположения, что путешествия во времени через кротовые норы возможны, – хотя авторы и не утверждают этого. Они выдвигают гипотезу, что некая будущая высокоразвитая цивилизация могла бы, в принципе, создать кротовую нору, соединяющую две различных области как во времени, так и в пространстве. Никакого практического способа сделать это в статье не предлагается; авторы просто говорят, что при достаточной способности аккумулировать громадные энергетические ресурсы ничто (ну, почти ничто) из известных законов физики не запрещает этого делать. Проходить через такие кротовые норы можно как туда, так и обратно, поэтому, утверждают они, можно прыгнуть в такую нору и выйти не только в другом месте, но в и другом времени, даже в прошлом.
Это максимум, что до сих пор сумели сделать серьезные физики в плане разработки механизма машины времени. Авторы делают вывод:
Следовательно, проходя в поздние сроки сквозь кротовую нору от правого входа к левому, можно путешествовать назад во времени… и из-за этого нарушать причинность.
Нарушение причинности, как показывает парадокс с тахионным убийством, подразумевает отрицание свободы воли. В качестве наглядного примера авторы статьи о машине времени вновь вспоминают кота Шрёдингера! Они говорят:
Пространство-время кротовой норы может служить полезным испытательным стендом для идей, имеющих отношение к причинности, «свободной воле» и квантовой теории измерения…
Если взять печально знаменитый пример, то может ли высокоразвитое существо измерить кота Шрёдингера, выяснить, что он жив в момент P (и тем самым «заставить его волновую функцию коллапсировать» в состояние «жив»), а затем вернуться назад во времени через кротовую нору и убить кота (заставить его волновую функцию коллапсировать в состояние «мертв»), прежде чем наступит время [события «кот жив»]?
Нигде в статье о машине времени не обсуждается стрела времени, не оговаривается, что эта стрела должна указывать вдоль направления кротовой норы даже после того, как достигает прошлого. Путешественники во времени, проходящие сквозь кротовую нору, должны делать это, не меняя направления стрелы, чтобы добраться до места назначения, ощущая нормальное течение времени. Это принципиально важный, но не рассмотренный момент.
Я сказал бы, что подлинное путешествие во времени, если таковое возможно, означало бы, что субъективное сейчас путешественника должно перемещаться из настоящего в прошлое. В статье о машине времени не разбирается вопрос, что движение по такой траектории сделало бы с представлением путешественника о моменте сейчас. Авторы говорят, что кротовая нора позволяет нарисовать «замкнутую времениподобную кривую», что на жаргоне физиков означает траекторию, содержащую участок, который уводит в прошлое. Но может ли человек двигаться по этой траектории и субъективно ощущать поступательное движение времени, сохраняя при этом память о том, что уже стало будущим? Я всегда могу развернуть стрелку на электроне и назвать его позитроном, движущимся назад во времени, но будет ли это то самое путешествие, о котором писал Герберт Уэллс?
Еще одна ловушка статьи состоит в том, что кротовая нора в ней описывается как очень нестабильная и короткоживущая – настолько, что человеку просто не хватит времени пройти сквозь нее, прежде чем она исчезнет. Там оставлена лазейка: если физики и инженеры придумают, как придать «плотность отрицательной энергии» большой области пространства, кротовая нора может оказаться более устойчивой. Пока не известно никакого способа сделать это, но ничто в физике, как нам представляется, не исключает этого абсолютно. Однако с таким требованием вся демонстрация реализуемости стабильных кротовых нор рушится, вне зависимости от остальных возражений. Вся концепция становится умозрительной, поскольку требует какой-то новой физики. Авторы говорят об этом достаточно ясно. Они утверждают: «Вопрос, можно ли создавать кротовые норы и поддерживать их существование, связан с глубокими и слабо изученными проблемами». Реальность наличия таких кротовых нор напоминает задачу о тахионах: сам по себе факт, что ничто в современной физике не исключает их полностью, не означает, что они действительно есть.
Наконец, даже если по поводу течения времени еще можно что-то ответить, а требуемые поля отрицательной энергии удастся найти, остается еще вопрос причинности и свободы воли. Этот момент в статье разбирается хотя бы в том плане, что применяется прием reductio ad absurdum (доведение до абсурда, лат. Прим. ред.): приводится уже упомянутый пример с котом Шрёдингера. С ним тесно связан также парадокс убитого дедушки, в котором вы перемещаетесь назад во времени и убиваете собственного дедушку. Поскольку без дедушки не может быть и вас, то как бы вы смогли такое проделать, если вас нет и никогда не было? Один из возможных ответов на этот парадокс состоит в том, что вы не обладаете свободой воли, так что даже если бы вам удалось переместиться в прошлое, убить своего дедушку вы бы все равно не смогли. А то, что в какой-то момент вы родились, наглядно демонстрирует, что вы этого не делали.
Один из способов сохранить свободу воли – постулировать существование некой космической «цензуры»; то есть вы можете переместиться назад во времени, но не можете изменить того, что уже произошло. Именно это случается с Клэр в романе (и телесериале) «Чужестранка». Она пытается что-то изменить, используя знание будущего, но обстоятельства всегда складываются так, что ее действия ни к чему не приводят: (осторожно, спойлер!) она думает, что убивает предка своего мужа, только чтобы выяснить: ее муж – потомок не родного ребенка этого предка, а приемного. В фильме «Назад в будущее» путешествие в прошлое может изменить настоящее и действительно меняет его – с забавным результатом: по каким-то необъясненным причинам воспоминания путешественника при этом не страдают и не изменяются.
Однако важнее, на мой взгляд, другой вопрос: какой смысл путешествовать назад во времени, если не можешь ничего изменить?
Как говорит Сара Коннор в другом фильме, где фигурирует перемещение в прошлое, – в «Терминаторе»: «Господи, можно сойти с ума, думая обо всем этом».
Анализ путешествий во времени с точки зрения физики предполагает стандартную неизменную пространственно-временную диаграмму. В самом деле, сейчас большая часть вычислений в физике проводится именно так, и физический мир представляется именно так, но мы все знаем, что это не мир нашего чувственного опыта. Если все в будущем и в прошлом заранее предопределено, какую ценность могут иметь путешествия во времени? На стандартной пространственно-временной диаграмме нет никакой возможности указать момент сейчас, а путешествуя во времени, менять мы хотим именно этот момент.
Кротовые норы – очень интересный объект физических расчетов, привлекающий к тому же пристальное внимание научно-фантастического (и мультипликационного) сообщества. Не исключено, что кротовые норы – это способ изменять свое положение со скоростью, превышающей скорость света. Но если нам на самом деле нужны путешествия во времени, сперва необходимо разобраться в том, что подразумевается под словом сейчас.
Назад: Глава 19 Эйнштейн повержен Убеждение Эйнштейна, что квантовая физика ошибочна, опровергнуто с помощью ключевого эксперимента…
Дальше: Часть IV Физика и реальность

Игорь Леонидович Новожилов
Господь Бог Всемогущий молитвами Святого Вонифатия и Приснодевы Марии, Афонской Отроковицы Божественной и Святого Панелиимона, избавь от психических болезней население планеты сей, старанием Всех Архистратигов Божиих ходатайством Всех Ангелов Божиих, работой трудной Всех Безсеребрянников Божиих. Аминь.
Евгений
Перезвоните мне пожалуйста 8 (962) 685-78-93,для связи со мной нажмите цифру 2, Евгений.
Антон
Перезвоните мне пожалуйста 8 (962) 685-78-93 Антон.