Глава 15
Выбрасываем энтропию под автобус
Признаюсь, что сомневаюсь в разъяснениях Эддингтона по поводу стрелы времени
Общий объем неупорядоченности во Вселенной, который измеряется показателем, называемым физиками энтропией, постоянно возрастает по мере нашего продвижения из прошлого в будущее. С другой стороны, общий порядок во Вселенной, который определяется сложностью и постоянством структур, тоже постоянно возрастает по мере того, как мы движемся из прошлого в будущее.
Фримен Дайсон
Ощущаете ли вы сейчас, что загадка стрелы времени наконец-то разрешена? Убедили ли вас аргументы Эддингтона и мои попытки повторить их? Или, как и многие физики, которых я об этом спрашивал, чувствуете, что не совсем уверены в них?
Должен признаться: думаю, что объяснение стрелы времени энтропией глубоко ошибочно. Написание нескольких последних глав – начиная с главы 11 – было для меня трудным делом, но я хотел дать Эддингтону все возможные шансы, прежде чем представлять свои возражения.
Существуют ли альтернативные объяснения по поводу стрелы времени? Да, существуют, причем несколько, включая возможность того, что квантовая физика, гораздо более таинственная, чем теория относительности, определяет направление стрелы. Есть иное объяснение – что направление стрелы определяется созданием нового времени тем же самым Большим взрывом, в результате которого постоянно возникает новое пространство. Не могу доказать, какое из этих объяснений истинно, но убежден, что объяснения Эддингтона ошибочны.
Есть ли способы проверить, какая из этих теорий правильная?
Успешные испытания теории
Посмотрите на Эйнштейна, чтобы понять стандарт качества теории. Создав первый вариант теории относительности, впоследствии получивший название специальной теории относительности (СТО), он сделал определенные предсказания по поводу поведения времени и длины вещей, находящихся в движении. Десять лет спустя он спрогнозировал изменение этого поведения в гравитационных полях. В 1919 году Эддингтон экспериментально подтвердил предположения Эйнштейна относительно отклонения солнечного света. Первое обнаружение эквивалентности массы-энергии было описано Георгием Гамовым в научном докладе 1930 года, где он указал, что «дефект массы» ядра связан с отрицательной энергией ядерных сил. Руководствуясь теорией Эйнштейна, Дирак предрек существование антивещества (позитрона), которое в 1932 году было обнаружено Карлом Андерсоном. В 1938 году Герберт Ивес и Джордж Стилвел открыли и подтвердили реальность уравнений Эйнштейна, касающихся замедления времени. Эквивалентность массы-энергии наблюдалась в 1940-х годах, когда рассматривалась взаимная аннигиляция электрона и позитрона. Все эффекты теории относительности – замедление времени, сжатие длины движущихся предметов и эквивалентность массы-энергии – сегодня повседневно наблюдаются в современных физических лабораториях.
Эйнштейн очень щепетильно относился к опровержениям своих теорий. В 1945 году между физиками возникли серьезные противоречия в определении возраста Земли (по радиоактивным скальным остаткам) и Вселенной (по расширению Хаббла). Когда Эйнштейн обновлял в тот год свою книгу The Meaning of Relativity («Основы теории относительности»), он писал:
Возраст Вселенной – в том смысле, как мы его здесь понимаем, конечно, – должен превышать возраст куска радиоактивного материала, который мы нашли в земной коре. Однако, поскольку возраст этих минеральных остатков точно и надежно определен, космологическая теория будет опровергнута, если начнет противоречить этим результатам. В этом случае я не вижу никакого разумного решения проблемы.
Эйнштейну не пришлось дезавуировать общую теорию относительности. Ошибочным оказался эксперимент, а не теория. Хаббл не признался, что перепутал две очень маленькие звезды, проводя свои измерения. После того как эта ошибка была вскрыта и выполнены новые вычисления, исправленный возраст Вселенной оказался больше возраста Земли, как и должно было быть. Но очень интересно читать через столько лет, что теория может оказаться неправильной, если числовые результаты эксперимента не изменятся.
В следующем абзаце я изложу предсказания, сделанные Эддингтоном в контексте его теории 1928 года относительно стрелы времени, включая все прогнозы, которые были сделаны позже другими теоретиками, трудившимися над этой теорией.
[Этот абзац специально оставлен пустым.]
Пустой абзац представляет пророчества Эддингтона и других физиков, которые связывают стрелу времени с энтропией. Просто таких предсказаний нет. Современные ученые, которые разделяют теорию энтропии с ее стрелой времени, признают существование этой слабости в теории. Иногда они выказывают оптимизм по поводу того, что такие предсказания лежат буквально за ближайшим углом. Однако ко времени публикации этой книги – к 2016 году – минуло 88 лет с той поры, как Эддингтон предложил свою теорию в качестве объяснения стрелы времени. Но до сих пор не было ни одной попытки ее экспериментально подтвердить – ни законченной, ни хотя бы предложенной.
Или такие попытки были? Если бы были обнаружены какие-то связанные с теорией эффекты, они были бы широко обнародованы в доказательство правоты теории. Однако, хотя таких эффектов нет, этот отрицательный результат не рассматривается как аргумент против теории. Это потому, что теория Эддингтона не делает никаких предсказаний, а только объясняет явление. Теорию, которая ничего не предсказывает, невозможно опровергнуть. Я предлагаю, чтобы в отношении тех теорий, которые могут быть проверены, но не могут быть опровергнуты (фальсифицированы), использовался термин псевдотеории.
Если время связано с энтропией, можно ли увидеть какие-то проявления этой связи? В теории относительности их полно. Местная гравитация влияет на скорость хода часов. Разве локальная энтропия не должна проявляться так же? Когда ночью энтропия земной поверхности снижается, не следует ли ожидать изменений в скорости течения времени, например его локального замедления? Нет, этого не происходит. Почему? Если бы такое замедление удалось обнаружить, это, безусловно, рассматривалось бы как триумф теории Эддингтона, хотя он никогда не предсказывал таких явлений.
Согласно стандартной модели, увеличение энтропии во Вселенной определяет направление стрелы времени. Так давайте взглянем на энтропию Вселенной. Где же она?
Энтропия Вселенной
Энтропия, какой ее знал Эддингтон, касалась Земли, Солнца, Солнечной системы, других звезд, туманностей, света звезд и других объектов, которые могут быть обнаружены. Со времен Эддингтона мы выяснили, что она составляет лишь микроскопическую часть общей энтропии Вселенной.
Первое свидетельство существования великой энтропии, которой никто не ожидал, появилось с открытием Пензиасом и Уилсоном космического микроволнового излучения. Энтропия этого излучения относительно мала в расчете на кубический метр, но оно заполняет все космическое пространство, в отличие от обычной материи. В результате, по нашим оценкам, энтропия этих микроволн в 10 миллионов раз больше, чем энтропия всех звезд и планет, вместе взятых.
Как меняется со временем необъятная энтропия космических микроволн? Поразительно, но никак. По мере расширения Вселенной микроволны заполняют пространство, но теряют энергию. Общий результат в том, что энтропия остается постоянной. Но время движется вперед. Следует ли отсутствие изменения энтропии принимать за аргумент, опровергающий направление стрелы?
Физики уверены, что Вселенная располагает тремя большими вместилищами энтропии, но ни одно из них до сих пор не обнаружено и его существование не подтверждено. Все они, по существу, лишь теоретические построения. Первое такое вместилище состоит из нейтрино, оставшихся после Большого взрыва. Их так же много, как и фотонов в микроволновом излучении, но они взаимодействуют с веществом еще меньше фотонов. Таких нейтрино насчитывается три вида (электронное, мюонное и тау-нейтрино), и поскольку они не взаимодействуют, их энтропия постоянна и сравнима с энтропией фотонов в микроволнах.
Второй большой источник скрытой энтропии находится в сверхмассивных черных дырах. Энтропия черной дыры была впервые вычислена Яаковом Бекенштейном и Стивеном Хокингом. Большинство теоретиков согласились с их результатами, но экспериментальных подтверждений пока нет. Поскольку работа этих ученых находится на самом краю наших знаний об относительности и квантовой физике, чрезвычайно важно все-таки узнать, окажется она правильной или ошибочной.
Давайте предположим, что рассчитанная по формуле Бекенштейна-Хокинга энтропия сверхмассивных черных дыр полностью подавляет энтропию материи, микроволн и нейтрино во Вселенной. Значит, направление стрелы времени на Земле определяет черная дыра, расположенная в центре нашего Млечного Пути?
Вот вам важный факт об энтропии. Номинально черная дыра находится от нас на расстоянии 14 миллиардов световых лет. Но энтропия тоже глубоко, рядом с поверхностью черной дыры. Если предположить, что она только что сформировалась, то энтропия находится от нас на расстоянии бесконечности. В реальности она будет от нас просто очень далеко, на расстоянии количества лет с начала своего формирования, помноженного на скорость света. В любом случае, эта энтропия в миллиардах световых лет от нас. Как она может на таком расстоянии оказать влияние на наше время?
Может быть и еще один, более огромный источник энтропии. Он расположен в том, что физики называют горизонтом событий, на расстоянии 14 миллиардов световых лет. Эта энтропия быстро увеличивается по мере расширения Вселенной. Но она «убегает» от нас со скоростью света. И она очень далеко.
Помните, что связь между увеличением энтропии и течением времени не установлена. Это всего лишь размышления, основанные на определенной корреляции параметров – то есть на том факте, что оба процесса развиваются. Такой теории нет, в том смысле, как, например, существует общая теория относительности. Может быть, когда-нибудь подобные теории и появятся. Я этого не исключаю, однако с трудом верится, что они покажут, как отдаленные энтропии определяют стрелу времени, или свяжут нас с не изменяющейся (и почти внутренне не взаимодействующей) энтропией микроволнового излучения.
Мы знаем, что корреляция параметров еще не подразумевает наличия причинно-следственной связи между ними. Есть даже латинское выражение, обозначающее эту ошибку в мышлении: cum hoc ergo propter hoc. Буквально значит: «с этим – значит, по причине этого». Это выражение относится к тому ошибочному представлению, что если два явления коррелируют между собой, значит, они причинно связаны, то есть одно оказывается причиной появления второго. Если применить такие логические построения, можно прийти к заключению, например, что сон в обуви вызывает похмелье, рост продаж мороженого ведет к большему количеству утопающих или еще к каким-то столь же абсурдным выводам. Однако именно физики часто не признают, что попадают в эту логическую ловушку, утверждая, что стрела времени определяется энтропией.
Видный философ науки Карл Поппер утверждал: чтобы какая-то теория считалась научной, должна существовать возможность ее опровержения. Объяснение стрелы времени теорией энтропии как раз этому условию не удовлетворяет.
Теории, которые нельзя опровергнуть, включают в себя спиритизм, логические умозаключения, астрологию и связь между стрелой времени и энтропией. Возможно, вы вспомните и о других подобных. Из упомянутых астрология ближе всего к тому, чтобы быть опровергаемой. Описание тонкого эксперимента Шона Карлсона (в котором я выступал как научный консультант и в ходе которого для приобретения астрологических карт использовалась часть моей премии Уотермана) было опубликовано в престижном журнале Nature. Шон проверял фундаментальный постулат астрологии – о том, что точное время рождения человека коррелирует с его личными качествами. Он использовал двойной слепой метод, который приветствовался (до тех пор, пока не появились результаты) самыми уважаемыми астрологами мира. (Да, существует множество таких людей, и большинство из них имеют докторские степени по психологии.) После того как полученные Карлсоном результаты опровергли этот базовый постулат астрологии, ее адепты испытали шок и разочарование (все-таки они относились к своей работе серьезно), но никто от профессии не отказался. Так что с точки зрения ученых астрология может быть опровергнута – но ее мастера проявляют стойкость в отношении своего дискредитированного дела.
Согласно греческому мифу, Антей был богатырем, сохранявшим свою огромную силу только до тех пор, пока какой-нибудь частью тела касался земли. Думаю, это своеобразная метафора по отношению к современному «интеллигентному» фермеру: если он не будет каждый день пачкать руки землей, не получит никакого урожая. Любимым делом Антея было зазывать прохожих на борьбу с собой. Он всегда побеждал соперников, часто убивал и использовал их черепа, чтобы строить храм. В конце концов он вступил в схватку с Геркулесом. Тот уже был близок к поражению, когда вдруг вспомнил, что для сохранения силы Антею необходим контакт с землей. Геркулес поднял Антея над землей и раздавил его руками.
Теоретическая физика должна иметь контакт с землей, настаивая на необходимости проверяемых и опровергаемых экспериментальных результатов. Если бы Эддингтон обнаружил другую величину отклонения луча света возле Солнца во время его затмения, это могло бы показать, что Эйнштейн ошибался. Если бы разогнанные до околосветовых скоростей частицы не имели бы продолжительное время жизни, это опять-таки говорило бы, что Эйнштейн в своей теории был неправ. То же самое произошло бы, если бы для глобальной системы позиционирования (GPS) не пришлось вводить корректировку на замедление времени, которое вызывается одновременно и земной гравитацией, и скоростью спутников.
Да, эйнштейновская теория броуновского движения вскоре после ее опубликования была признана ошибочной. Серия экспериментов опровергла ее. Именно в тот период совершил самоубийство Людвиг Больцман, отец до сих пор оспариваемой статистической физики. Однако дальнейшие экспериментальные исследования показали, что в первых опытах имелись ошибки. Предсказания Эйнштейна подтвердились. На это ушло четыре года.
Частица Бога ломает стрелу энтропии
Позвольте сформулировать еще одно предсказание, которое не было сделано Эддингтоном, но явно следует из его теории. Согласно общепринятой космологической модели, в ранней Вселенной у частиц не было массы. Электроны, кварки и все другие частицы были такими же безмассовыми, как фотоны. Это удивительное состояние Вселенной стало главным ключом ее развития и того, что великие теории объединения обрели математический смысл. Позже, по мере эволюции Вселенной, частицы (по общепризнанной теории) «приобрели массу» через так называемый механизм Хиггса.
Если говорить проще, механизм Хиггса подразумевает, что вся Вселенная внезапно заполнилась полями Хиггса. Это произошло в процессе спонтанного нарушения симметрии. До этого не имеющие массы частицы, которые двигались сквозь эти поля, вели себя так, как будто приобретали массу. Здесь масса – это иллюзия, хотя она обладает всеми свойствами, которых от нее можно ожидать согласно теории относительности.
Эта теория постулировала, что какой-то «фрагмент» поля Хиггса мог создаться после высокоэнергетического столкновения. Такое предсказание было экспериментально подтверждено 4 июля 2012 года, когда ЦЕРН (Европейская организация по ядерным исследованиям) – большой исследовательский центр под Женевой – сообщил об открытии новой частицы (бозона Хиггса).
Леон Ледерман, мой учитель в Колумбийском университете, получивший Нобелевскую премию за открытие мюонного нейтрино, написал о Хиггсе книгу под названием The God Particle («Частица Бога»). Ледерман утверждает, что идея названия принадлежала редактору, и возможно, это наименование увеличило продажи книги в десять, а то и более раз. Причиной появления словосочетания «частица Бога» стало то, что поля Хиггса придали частицам массу, а без этого никогда не возникло бы атомов, молекул, планет или звезд. Возможно, это правильно, хотя по той же логической схеме мы могли бы и электрон назвать частицей Бога, потому что без электронов мы точно так же не могли бы существовать; или фотон; или вообще любую другую частицу из списка элементарных. Между физиками существует консенсус: они решили, что называть какую-то частицу «божьей» – последнее дело, даже более последнее, чем именовать два кварка «истинным» и «прелестным» (что некоторые и попытались сделать). Тем не менее такое название привлекло внимание публики, и я даже использовал его в обозначении раздела.
Теория Хиггса была восторженно признана научным сообществом, когда в 2012 году Питер Хиггс и Франсуа Энглер получили Нобелевскую премию по физике за предсказание бозона Хиггса. Конечно, для Хиггса сама награда стала делом гораздо менее значительным, чем тот факт, что целый важный раздел физики назвали его именем. Энглер вынужден был довольствоваться Нобелевской премией.
Предсказание Хиггса оказалось еще одним ударом по утверждению Эддингтона о наличии причинно-следственной связи между энтропией и временем. И вот почему. В первоначальном Большом взрыве, еще до появления полей Хиггса, все частицы были безмассовыми. Есть все основания полагать, что в этот период, даже после начала расширения Вселенной, безмассовые частицы участвовали в термальном распределении энергии, то есть получаемом при максимальной энтропии.
Однако с конца 1970-х годов уже было известно, что энтропия совокупности безмассовых частиц не меняется по мере расширения Вселенной. Ключевым моментом стало то, что в ранней Вселенной энтропия всего вещества содержалась в безмассовых разогретых частицах, так что она не увеличивалась. Если бы стрела времени действительно направлялась ростом энтропии, не было бы никакой стрелы. Время должно было остановиться. Мы никогда не покинули бы ту эру. С остановившимся временем и расширение Вселенной должно было прекратиться (или, во всяком случае, не продолжаться). В отсутствие времени вы не были бы сейчас здесь и не читали бы эту книгу.
Но время не остановилось. Вселенная расширялась, «илем» безмассовых частиц остывал, в результате спонтанного нарушения симметрии возникли поля Хиггса, и частицы стали вести себя так, будто приобрели массу. И вот мы оказались там, где мы есть.
Физики много размышляли над смыслом времени в самой начальной стадии Вселенной (первая миллионная доля секунды). Поскольку пространство было таким однообразно горячим, они опасались, что нельзя найти ничего, служащего в тот период часами. Из-за высокой энергии частиц и большой плотности вещества даже радиоактивный распад пошел бы вспять. Каким же тогда образом время вообще можно определить?
В основе этой головоломки – логическая ошибка, которая кроется в утверждении, что время движется благодаря энтропии. Все как раз наоборот.
Как же Эддингтону удалось нас обмануть?
Почему утверждения Эддингтона относительно энтропии оказались такими убедительными? Мне нравится случайное объяснение Э. Ф. Бозмана во введении к книге Эддингтона 1928 года издания. Бозман говорит, что автор продвинул свою гипотезу «с помощью тонких аналогий и мягкого убеждения». Такой подход к утверждению теории в корне разнится с обычным требованием ее экспериментального подтверждения, которое только и может убедить физиков, что теория верна. На Поппера такой подход впечатления не произвел бы.
Эддингтон (и практически все авторы научно-популярных книг по этому вопросу) любит приводить примеры увеличения энтропии. Уроните чашку, и она разобьется на кусочки. Прокрутите пленку кинофильма задом наперед, и на экране возникнет неправильная картинка. Однако чашки у нас есть. Как же они появились? Вместо эпизода с разбивающимися чашками покажите фильм о фабрике по их производству, и вы получите совершенно другое впечатление. Люди придумали чашки. Они нашли материалы с высокой энтропией, обработали их, совместили все необходимые компоненты и стали изготавливать чайные чашки. Без этого производства не было бы чашек с низкой энтропией, которые можно разбивать. Прокрутите эту пленку назад, чтобы она показала, как чашка снова превращается в глину и воду, и обратное течение времени станет очевидным.
Мы окружены примерами уменьшающейся энтропии. Мы пишем книги, строим дома, создаем города, учимся. Кристаллы вырастают. Деревья захватывают и поглощают углекислый газ, содержащийся в нем углерод растворяется в воде и почве, а потом на его основе создаются замечательные организованные структуры. Энтропия дерева значительно ниже, чем энтропия газа, воды и находящихся в почве минералов, которые входят в состав древесных структур.
Человек срубает эти деревья с низкой энтропией, разрезает их на доски и строит из них дома. Если вы посмотрите фильм о строительстве дома, легко поймете направление времени по увеличению порядка, а не беспорядка на строительной площадке – вы определите это по уменьшающейся энтропии. Аргументы авторов, упоминающих о разбитых чашках, не носят всеобщего характера. Они основываются только на тех примерах, в которых энтропия очевидно увеличивается. А мы живем в реальном мире, который улучшается благодаря уменьшению энтропии. (Вообще направленный подбор примеров – уже модель локального уменьшения энтропии. Кстати, таковым можно назвать и написание книги.)
Конечно, энтропия Вселенной увеличивается, когда мы строим дом. Большая часть этого роста берет начало от теплового излучения, выбрасываемого в космическое пространство. Локально энтропия уменьшается. Прибавьте сюда фотоны, которые улетают в бесконечность, и общая энтропия снизится.
Даже в космическом пространстве мы видим уменьшение энтропии. Из первичного «бульона», состоявшего из газов, частиц и плазмы, формируются звезда и планета возле нее, и начинается жизнь. Ранняя Земля вначале была гомогенной кашей, горячей и жидкой. По мере остывания эта субстанция дифференцировалась и становилась более организованной, концентрируя железо в ядре, скальные массы возле поверхности (земной коры), а газы – в атмосфере. Впоследствии она оказалась неизмеримо более организованной, уменьшая свою энтропию так же, как теряет ее остывающая чашка с кофе. Конечно, при этом Земля выбрасывала в окружающее пространство большое количество тепла, которое увеличивало энтропию Вселенной. Эта энтропия была излучена в бесконечность, тогда как энтропия Земли в это время уменьшалась.
Прокрутите фильм о формировании Земли вперед и назад. Вам будет понятно, что правильный именно тот вариант, который показывает уменьшение энтропии. На нем вы видите формирование на Земле структур, а не их разрушение в хаос. История Земли от ее перехода из газообразного в жидкое, а затем в твердое состояние; эволюция жизни, человечества – все это летопись не увеличивающейся, а уменьшающейся локальной энтропии. История цивилизации – это описание не разбивания чашек, а их создания.
Эддингтоновская связь энтропии со стрелой времени никогда не могла быть опровергнута. Что хуже, под ней никогда не было эмпирической базы, да она и не развивала таковую – за почти 90 лет с тех пор, как была постулирована. Единственным ее оправданием служило то, что и энтропия, и время увеличиваются. Но это только корреляция, а не причинно-следственная связь. Cum hoc ergo propter hoc. Как же Эддингтону удалось нас обмануть?
Но это сделал не Эддингтон. Мы обманули сами себя.