Книга: Атомы у нас дома. Удивительная наука за повседневными вещами
Назад: Умное стекло
Дальше: Глава 9. Продавленные диваны, скрипящие полы

То видно, то нет

Одно из самых интересных, даже обескураживающих свойств стекла состоит в том, что когда вы сквозь него смотрите, то видите обманчивую картину того, что происходит за ним. Если вы прогуливаетесь по улице и случайно бросаете взгляд в окно магазина или чьего-то дома, то видите очень немногое. Когда же вы внутри помещения и видите, что кто-то заглядывает через окна, вам кажется, что этот человек может рассмотреть всё вокруг вас в деталях. Именно поэтому люди используют разные шторы, занавески, жалюзи и т. д.
Но на самом деле всё совсем не так. Причина в том, что внутри помещения обычно гораздо меньше света, чем снаружи. Насколько? Очевидно, что это зависит от времени года, времени суток, состояния погоды и вашего местоположения на Земле (что в конечном счете влияет на ваше положение по отношению к Солнцу). Однако в широком смысле естественная освещенность вне помещения в среднем в 2000 раз превышает таковую внутри него.
Если вы в комнате, то за ее окном значительно светлее. Поэтому вы легко можете видеть световые лучи, проникающие в помещение и приносящие изображение происходящего снаружи. Вне помещения вас окружает много света. Но внутри дома его гораздо меньше, и еще меньше его проникает наружу сквозь окна. Хотя стекло и выглядит прозрачным, оно пропускает не весь свет, падающий на него. Около 10–15 % этого света оно отражает. Даже если в помещении и есть свет, не весь он может проникнуть сквозь окна наружу. Именно поэтому, как ни удивительно, окна обычно хранят тайны вашей частной жизни, даже если на них нет штор.
Ночью, разумеется, всё меняется с точностью до наоборот. Когда садится солнце и мы остаемся с уличным освещением и слабым молочным светом луны (если она полная), на открытом пространстве света остается очень мало. Обычная внутренняя освещенность помещений в 500 раз выше, чем освещенность внешнего пространства луной. Если при включенном комнатном освещении вы в темноте посмотрите в окно, то едва разглядите человека, заглядывающего в ваше окно снаружи. В лучшем случае вы увидите в окне свое отражение. А вот человек на улице увидит вас и всё происходящее в комнате очень отчетливо.
Можно и без штор
Большинство из нас защищают свою личную жизнь от посторонних глаз при помощи штор, жалюзи или даже ставень. Но у всех них есть существенные недостатки – в первую очередь тот факт, что нужно постоянно поддерживать их чистоту. Как хорошо было бы, если бы нам удалось избавиться от них и превращать окна из прозрачных в непрозрачные щелчком выключателя. Уже есть окна, в которых используются стекла, меняющие прозрачность и цвет. Они называются электрохромными (способными менять цвет) и работают по тому же принципу, что и аккумуляторные батареи в ноутбуках или смартфонах.
В аккумуляторных батареях есть два электрода (положительный и отрицательный, анод и катод) и расположенное между ними химическое вещество, называемое электролитом. Когда батарея заряжается, катионы лития (атомы без электронов) двигаются по электролиту в одном направлении, запасая энергию. Когда батарея отсоединена от зарядного устройства и используется в ноутбуке, ионы лития движутся в ней в обратном направлении, высвобождая энергию в форме электрического поля.
То же происходит и в электрохромных окнах – своеобразном очень тонком аналоге аккумуляторной батареи (между двумя листами стекла расположено три слоя активного химического вещества). Получается что-то вроде многослойного бутерброда. Два листа стекла выполняют функции положительного и отрицательного электродов. Три слоя в середине «бутерброда» устроены так: верхний – источник ионов лития, средний – электролит, который проводит ионы, а нижний – кристаллизованный оксид вольфрама, хорошо поглощающий ионы. Когда стекло работает в нормальном режиме, позволяя свету проходить сквозь него, ионы расположены в верхнем слое. Когда вы хотите затемнить окно и сделать его непрозрачным, вы поворачиваете выключатель. Под действием электрического поля ионы из первого слоя сквозь электролит начинают поступать в кристаллы оксида вольфрама и удерживаются ими. В результате стекло резко темнеет, свет сквозь него уже не проходит. Если пустить ток в обратном направлении, ионы начнут возвращаться в первый слой «бутерброда», и стекло снова станет прозрачным.
Черное и белое
Будучи подростками, я и мои ровесники мечтали об одной крутой штуке: фотохромных очках, стекла которых автоматически темнели при солнечном свете. Телереклама подобна гравитации: отрицать ее трудно, хотя и возможно. И вот когда я наконец купил такие очки на последние карманные деньги, то был весьма разочарован: они очень быстро темнели, но требовалось очень много времени на то, чтобы стекла опять посветлели. Хуже того, они не совсем нормально работали в закрытом пространстве (например, в машине) и по неведомой мне причине становились очень темными в холодные дни. К счастью, наука меня редко так разочаровывает, даже если практическое применение ее достижений оказывается неудачным.
Вы, видимо, знаете, что старомодная фотопленка (та, что продавалась в круглых черных коробочках и требовала проявки) работает на принципе использования галоидного серебра (простые химические соединения серебра), которое содержится в пластмассе. Когда свет попадает на пленку, галиды серебра превращаются в микроскопические кусочки серебра, затемняя участки, на которые падают лучи. Именно поэтому фотографический негатив «обратен» изображению. На нем светлые участки выглядят темными и наоборот. Опустите негатив в специальный химический состав, пропустите через него свет на специальную фотобумагу – и вы получите старомодную фотографию с использованием технологии, которую применял еще Уильям Талбот (известный английский физик и химик, 1800–1877) в XIX веке.
Кто изобрел фотохромное стекло?
Фотохромные очки работают по тому же принципу. В первых образцах использовалось настоящее стекло (не пластик), и изобретены они Уильямом Армистедом и Дональдом Стуки из компании Corning Glass в 1962 году. Как и фотопленка, стекло содержало кристаллы галоидного серебра (примерно 0,1 % по массе), которые темнеют под воздействием света и светлеют в темноте. Почему так происходит? Ультрафиолет в солнечном свете вызывает химическую реакцию, которая превращает частички прозрачного галида серебра в непрозрачные кристаллы галоидного серебра, которые заставляют стекло темнеть (но не делают его непрозрачным) за минуту-другую. Если заглянуть в очках из такого стекла в темное помещение, где нет ультрафиолета, химическая реакция пойдет в обратном направлении и стекла очков посветлеют.
В современных фотохромных линзах (продающихся под названием Transitions) серебро и стекло не используются. Они изготавливаются на основе сложных пластмасс, называемых нафтопиранами (полиметилметакрилат), которые меняют структуру под воздействием ультрафиолета. В помещении их структура поглощает относительно мало света. На улице все иначе: ультрафиолет меняет их структуру так, что она поглощает значительно больше видимого света, затемняя линзы. На атомарном уровне множество молекул одновременно задерживает солнечный свет примерно так же, как ставни, закрывающие окна. Уберите ультрафиолетовое излучение – и молекулы пластика вернутся в первоначальную форму, открыв «ставни» перед вашими глазами.
Проблема фотохромных линз (стеклянных или пластиковых – не важно) в том, что работать их заставляет ультрафиолет. В солнечный день на улице его много, а через простое стекло в закрытое пространство его проникает мало. В автомашине или поезде оно почти отсутствует. И в помещениях фотохромные стекла очков почти не темнеют. Именно поэтому они почти бесполезны при вождении.
Назад: Умное стекло
Дальше: Глава 9. Продавленные диваны, скрипящие полы