Временное приклеивание
Знание «электрической» схемы работы клея дает нам ключ к пониманию и второго типа склеивания – временного. Это сила трения, которая не дает нам поскользнуться, когда мы быстро идем по полу. Если бы не она, ходить было бы невозможно. Каждый раз, когда вы ставили бы ногу на пол, он ускользал бы из-под вас. Невозможно было бы ездить на машине: колеса просто прокручивались бы, и вы бы оставались на месте. Трение – разновидность клея, действующего в течение определенного времени. Оно «приклеивает» ногу или колесо именно настолько, насколько нужно для того, чтобы продвинуться вперед.
Как работает трение
Трение работает по тому же принципу, что и электростатический клей, действие которого мы рассматривали чуть выше. Когда встречаются две поверхности, атомы одной из них находятся в непосредственной близости от атомов другой (точнее, на расстоянии пяти атомных диаметров). Этого достаточно, чтобы удержать на короткое время две поверхности рядом. Если трение работает по принципу клея, почему поверхности не склеиваются на долгое время? Если вы припарковали машину на улице, почему она не приклеивается к дорожному покрытию навсегда? Почему вы можете на ней уехать?
Всё дело в масштабах. Трение (приклеивание с малой силой) и адгезия (приклеивание с большой силой) различаются силой притягивания поверхностей. Сила трения между шинами припаркованной машины и дорогой достаточно велика для того, чтобы преодолеть обычные силы, на нее воздействующие. Сила гравитации (обусловленная массой машины) не может сдвинуть ее с места, как, например, и та сила, которой располагаете вы. Машина оказывается как будто «приклеенной» к земле. Но вы можете легко преодолеть эти силы, медленно тронувшись на ней вперед. С другой стороны, если угол наклона поверхности, на которой стоит автомобиль, превышает определенную величину, машина покатится вниз. При критической величине этого угла сила трения уже не удержит его.
Гекконовый клей
Машины – большие и тяжелые устройства. И даже игрушечные машинки (с каким-то образом зафиксированными колесами) не останутся на месте, если их поставить на поверхность с сильным уклоном. Но представьте себе совсем маленькие и легкие машинки с большими и очень мягкими шинами. Каждая бороздка их протекторов состоит, в свою очередь, из еще более мелких шин, а те – из еще более мелких. Если сконструировать такую структуру правильно, мы получим миллиарды микроскопических шин, прикрепляющихся к поверхности. Если машина с такими шинами не будет слишком тяжелой, мы можем разместить ее на стене и она способна будет даже проехаться по потолку. Так мы создадим автомобиль-геккон – разновидность Человека-паука в виде ящерицы, который может забираться на стены. Геккон способен ходить по стенам и потолку благодаря уникальной конструкции своих лап. На его пальцах есть очень тонкие щетинки, которые называются setae. Они, в свою очередь, покрыты тысячами еще более мелких, микроскопических щетинок с плоскими концами, которые называются spatula. Все вместе они образуют невидимый глазу волосяной покров на лапках ящерицы, который создает очень значительную силу электростатического притяжения. Так что гекконы «прилипают» к любым поверхностям под воздействием сил электрического поля. Именно поэтому они могут легко бегать по стенам и потолку. Если бы ваши руки и ноги создавали такую же притягивающую силу, как лапки гекконов (разумеется, относительно вашего веса), то вы смогли бы передвигаться по потолку с 20-т рюкзаком на плечах.
Сила трения как сила временного прилипания может быть преодолена другой, более значительной силой. Это утверждение справедливо для клея любого вида, как бы прочно он ни скреплял поверхности. Приложите к месту склеивания достаточно большую силу, и она разорвет либо силы притяжения (адгезии) между клеем и поверхностью, либо силы сцепления (когезии) в самом клее. Или, если клей достаточно сильный, скрепленные им материалы могут разрушиться, высвободив этот клей, который, надеюсь, не принесет вам никакого вреда.