Глава 9. Беспокойная Вселенная
из которой вы узнаете о расширении Вселенной, сингулярности и начале времени
«Если пространство пластично, – рассуждал Эйнштейн, – и если оно реагирует на количество материи, то, если бы я знал, сколько материи имеется во всем космосе и как она распределена, я мог бы использовать свои уравнения, чтобы рассчитать форму Вселенной». Как мы уже отмечали, Эйнштейн сделал гигантский шаг вперед, когда всего через год после публикации своей общей теории относительности экстраполировал ее на весь космос. Точно так же когда-то поступил и Ньютон со своим законом всемирного тяготения. Эйнштейн вывел свою новую теорию из-за пределов Солнечной системы, где она уже была испытана, и распространил на всю Вселенную, будучи уверенным, что в ней действуют одни и те же физические принципы. Он предположил, что космос является сферическим и статичным, а затем продолжил упрощение. Поскольку точных данных о распределении материи в космосе получить невозможно, Эйнштейн логично предположил, что в среднем в достаточно больших объемах пространства материя распределена одинаково. Такое приближение работает только для по-настоящему огромных пространств, включающих в себя миллионы галактик и простирающихся на множество световых лет. Математически это означает, что плотность материи, то есть ее количество в объеме, является примерно постоянной величиной. В больших объемах содержится больше материи в той же пропорции. Уравнения Эйнштейна определяли геометрию пространства на основании распределения материи, а значит, геометрия должна была отражать эту однородность, выражая ее в простейшей из возможных форм – в сфере. Эйнштейну удалось рассчитать «радиус» этого сферического космоса, а чтобы сделать свою модель стабильной, он добавил в нее странную константу, которую мы сегодня называем космологической постоянной. На этом он прекратил работу, будучи уверенным, что его теория (с некоторыми поправками и коррективами) может ответить на один из старейших вопросов в истории: «Какую форму имеет космос?»
В 1929 году, всего через 12 лет после публикации работы Эйнштейна, ставшей первым трудом по современной космологии, все резко изменилось. Американский астроном Эдвин Хаббл опубликовал результаты своих наблюдений за дальними галактиками, указывающие на то, что они удаляются от Млечного Пути со скоростями, пропорциональными расстоянию до них. Иными словами, галактика, находящаяся в два раза дальше от нашей, чем ее соседка, двигалась в два раза быстрее. В распоряжении Хаббла имелся самый большой телескоп того времени, рефлектор диаметром 100 дюймов, установленный на горе Маунт-Вилсон в Калифорнии. С его помощью он мог видеть дальше и точнее, чем кто-либо до него. Примерно за десять лет до этого Весто Слайфер писал о том, что свет далеких галактик имеет тенденцию отклоняться в красную часть спектра сильнее, чем более близких. Сегодня данное явление известно как красное смещение. Что оно могло означать? Ответ на этот вопрос был получен австрийским физиком Кристианом Доплером еще в XIX веке. Любая волна растягивается по мере смещения ее источника (или наблюдателя). Мы знаем это из экспериментов со звуковыми волнами. Например, по мере того, как машина скорой помощи с включенной сиреной подъезжает ближе к нам, высота звука постепенно повышается, а когда она удаляется от нас, звук становится ниже. Доплер предположил существование этого эффекта в 1842 году, а в 1845 году подтвердил его с помощью эксперимента с участием поезда и нескольких музыкантов, дующих в рога. «Эффект Доплера» распространяется и на световые волны, но здесь вместо высоты звука варьируется частота (при этом у синего цвета она выше, чем у красного). Итак, когда астрономы говорят о красном смещении, они имеют в виду растяжение световых волн в результате удаления источника. Синее смещение, наоборот, означает, что источник (или наблюдатель) приближается. Благодаря Доплеру рождается потрясающая связь между повседневным и космическим: теперь каждый раз, заслышав на улице сирену скорой помощи, вы можете думать о миллиардах галактик, разбегающихся в небесах.
Итак, в очередной раз мощный новый инструмент изменил наш взгляд на Вселенную. Еще до Эдвина Хаббла некоторые теоретики размышляли о том, что она может не быть статичной, что, вполне вероятно, она изменяется со временем. Первым подобную мысль высказал голландский ученый Виллем де Ситтер, критиковавший кажущуюся необоснованной идею Эйнштейна о статичном космосе: «Все экстраполяции неточны… Перед нами лишь фотоснимок мира, и мы не можем и не должны утверждать…что мир навсегда останется таким же, как и в момент съемки». Пытаясь понять поведение материи в бесконечной Вселенной, де Ситтер в 1917 году предложил другую модель, которая предполагала почти полное отсутствие в космосе материи. Единственным вкладом Эйнштейна в эту концепцию пространства-времени был сам придуманный им термин «пространство-время». С помощью уравнений де Ситтер продемонстрировал, что любой материальный объект должен двигаться со все возрастающим ускорением. Еще через несколько лет русский метеоролог Александр Фридман, приверженец теории Эйнштейна, математически доказал, что ни одно из уравнений общей теории относительности не указывало на обязательную статичность Вселенной. Наоборот, с течением времени она могла расширяться или сжиматься, как воздушный шарик. В таком случае плотность материи также изменялась бы со временем – уменьшаясь при расширении и увеличиваясь при сжатии (представьте себе, что вы переставляете мебель из маленькой комнаты в большой зал или, наоборот, из гостиной в чулан и как от этого меняется количество свободного пространства). Открытый Хабблом закон линейного расширения (указывающий на то, что скорость расхождения далеких галактик пропорциональна расстоянию до них) подтвердил правоту Фридмана. Незачем было делать космос статичным, а тем более вводить для этого искусственные постоянные.
Концепция расширяющейся Вселенной часто вводит людей в замешательство. Большинство наивно (и неверно) представляет расширение чем-то вроде взрыва бомбы, а галактики – осколками, разлетающимися к краям космоса. Почему эта картина неверна? Потому, что она предполагает, что космос остается неизменным, а галактики движутся по нему, хотя на самом деле происходит совершенно противоположный процесс – пространство расширяется и тащит за собой галактики, как течение реки – мелкие щепки. Это космическое движение даже называют потоком Хаббла. Разумеется, гравитационное притяжение, возникающее между галактиками или их группами (галактическими кластерами), может вызывать отклонения от потока, называемые пекулярными движениями. Например, наша ближайшая галактическая соседка, Андромеда, движется по направлению столкновения с Млечным Путем. Моделирование и данные, полученные с помощью телескопа «Хаббл», указывают на то, что это произойдет примерно через четыре миллиарда лет.
Открытие Хаббла и его подтверждение подняли представления о пластичности пространства до новых высот. Наблюдая за локальными отклонениями вблизи звезд, мы можем видеть, что теория Эйнштейна верно предсказывает растяжение пространства как реакцию на содержащуюся в нем материю (по крайней мере в наблюдаемой Вселенной, так как ни о чем ином мы не можем говорить с определенностью). Но все становится гораздо интереснее, когда мы задумываемся, что было до расширения, то есть когда заглядываем в прошлое. Если сейчас космос растет, значит, в прошлом галактики находились ближе друг к другу. Чем дальше мы проникаем в прошлое в нашем мысленном эксперименте, тем меньше становится расстояние между ними. Так происходит до тех пор, пока все они не оказываются сжатыми в одной точке. Но как это возможно? Как все сущее может уместиться в одной точке в пространстве? Все еще больше усложняется, когда мы понимаем, что точка – это всего лишь математическая концепция, не существующая в реальном мире. Как же тогда объяснить происходящее? Теория Хаббла описывает космос, существование которого началось в определенный момент в прошлом. Эта точка начала называется сингулярностью.
В 1960-х годах физики Стивен Хокинг и Роджер Пенроуз доказали, что, принимая во внимание разумные предположения о характеристиках материи, любая расширяющаяся вселенная должна иметь в своем прошлом сингулярность. Но вот в чем состоит затруднение: так как при движении назад во времени объем космоса постоянно уменьшается, а вся материя постепенно сжимается в одну точку, плотность этой точки постоянно растет. Представьте себе забитый людьми вагон метро, который сначала уменьшили до размера консервной банки, потом – горошины, затем – атома и т. д. Очевидно, что плотность материи станет при этом бесконечно высокой, а пространство вокруг нее окажется бесконечно искривленным. Время остановится, так как сингулярность достигается при t = 0 (начало времени). Но ни одна физическая теория не может безнаказанно оперировать бесконечными величинами. Значит, что-то должно быть не так.
Когда математики сталкиваются с сингулярностью (например, при делении любого числа на ноль), они, так сказать, изучают ее границы, чтобы найти выход из нее. К примеру, вместо деления на ноль можно использовать деление на бесконечно малое число. Возможно, существует путь, при котором можно избежать сингулярности, но все равно попасть в нужную точку (то есть обойти ее, как вы объезжаете яму на дороге). В физике наличие сингулярности – это серьезный звоночек, показывающий, что теория, которую вы используете, скорее всего, неверна. В ней чего-то не хватает, и это что-то обычно включает в себя новую физику. Например, использование законов Ньютона для объяснения того, как ведут себя тела на скоростях, близких к световым, ведет к появлению ошибок – неверных теней на стене платоновской пещеры. Сегодня мы знаем, что для получения ответов нужно применять специальную теорию относительности Эйнштейна. То же касается и сильной гравитации: ньютоновские законы хороши для описания достаточно слабого гравитационного притяжения, но требуют корректирования рядом с массивными объектами (например, Солнцем).
Ни одна теория не является полной или окончательной. Новые значения требуют новых формул, а те, в свою очередь, – новых экспериментальных подтверждений, зависящих от доступных технологий. В поисках предсказанных эффектов для тестирования своих теорий ученые частенько сталкиваются с чем-то неожиданным, толкающим их назад к расчетам и, вполне возможно, к новым знаниям. Большинство физиков, участвовавших в поисках бозона Хиггса и работавших на Большом адронном коллайдере в Швейцарии, с гораздо большей радостью обнаружили бы частицу, не соответствующую предсказаниям Стандартной модели физики частиц. Неожиданности ведут к изменениям.
Космическая сингулярность указывает на необходимость в новой физике, выходящей за пределы, которые устанавливает общая теория относительности Эйнштейна. Поскольку в самом начале времен расстояния были крайне небольшими, такая новая физика должна объяснить, как пространство, время и материя действуют на коротких дистанциях. Физика макромира сталкивается с микромиром. Мы вступаем в царство «квантовой гравитации», в котором общая теория относительности сочетается с квантовой физикой (физикой атомов и субатомных компонентов). Происходит невероятный скачок – исследования Вселенной и ее истории приводят нас к мельчайшим единицам материи. Насколько нам известно сегодня, макро – и микромир накрепко связаны между собой. Ученые не смогут понять происхождение Вселенной до тех пор, пока не узнают, как квантовая физика влияет на геометрию пространства-времени. Но перед тем, как мы перейдем к этому вопросу, давайте рассмотрим некоторые из фундаментальных последствий влияния современной космологии на границы наших знаний. Начнем с конечности скорости света и понятия «сейчас».