Книга: Состав: Как нас обманывают производители продуктов питания
Назад: Безобразное разнообразие
Дальше: Штрихкод ДНК в действии

Штрихкод жизни

Однако подобно тому, как сортировке деталей Lego может помешать обычная запечатанная упаковка, анализу белков может помешать самая обычная печь. Описанная нами техника проста, недорога и дает быстрый результат, но ее применение в пищевой индустрии ограниченно, поскольку белки денатурируются в результате термической обработки, а также многих других распространенных методов обработки продуктов. Кроме того, белки по-разному представлены в разных тканях: к примеру, белковый профиль, полученный из образца кожи белокорого палтуса, скорее всего, будет отличаться от профиля, полученного из его мышечной ткани. И наконец, некоторые методы белкового анализа не способны выявить различие между близкородственными видами. Именно по этим причинам ученые вынуждены обращаться непосредственно к источнику, к исходной схеме, задающей строение белков и самой жизни, – ДНК. Она не разрушается с такой легкостью под воздействием высоких температур и присутствует практически во всех клетках живых организмов (за исключением эритроцитов). Немаловажно, что в последние годы технологии анализа ДНК стали более доступными с точки зрения стоимости.
В академических кругах принято считать, что первый случай использования анализа ДНК для выявления неверной маркировки рыбы описан в кратком сообщении, опубликованном в журнале Nature в 2004 г. Питер Марко, работавший тогда в Университете Северной Каролины, а нынче в Гавайском университете, и команда ученых под его началом использовали анализ ДНК, чтобы подтвердить, что три четверти рыбы, продаваемой в США под названием красного луциана, на самом деле не принадлежат к виду Lutjanus campechanus. Исследовались образцы, купленные у девяти разных поставщиков в восьми штатах; ДНК сравнивали с образцами из базы данных GenBank. Оказалось, что 77 % образцов не являются красным луцианом. С учетом погрешности метода можно утверждать, что от 60 до 94 % всех образцов были маркированы неверно. Из забракованных образцов пять принадлежали к другим видам атлантических луцианов, и два оказались длинноперым луцианом, обитающим в Индо-Тихоокеанской области. Несколько видов так и не удалось опознать, поскольку они либо были пойманы в других регионах, либо не были включены в базу данных по причине их редкости.
Вполне возможно, что неверная маркировка образцов, относящихся к другим видам луциановых рыб, была невинной ошибкой рыболовов, не сумевших прямо на борту отличить близкородственных рыб в одном улове. К сожалению, такие случаи приводят к неточностям в статистике улова – завышению цифр по вылову (и, соответственно, численности популяции) красного луциана и занижению цифр по видам, которые были приняты за него. Однако рыбы, пойманные на другом конце света, скорее всего, были отнесены к неправильному виду уже позднее, поскольку маловероятно, чтобы индонезийский рыбак перепутал длинноперого луциана, плавающего в тихоокеанских водах, с его атлантическим собратом. Так или иначе, на каком бы этапе в цепи поставок это ни произошло, столь широкое распространение неверной маркировки, согласно выводам Марко и его команды, создает у покупателей ложное впечатление о доступности редкой рыбы.
За год до того, как Марко опубликовал результаты своего исследования, профессор Пол Хеберт из Гуэлфского университета в Канаде предложил применять штриховое кодирование ДНК для идентификации видов. Как вы, вероятно, помните, мы уже обсуждали этот метод применительно к меду в главе 2. В отличие от ситуации с растениями, для создания штрихкода животных Хеберт и его коллеги предложили использовать участок ДНК длиной в 650 пар оснований, отвечающий за кодирование субъединицы I цитохром с-оксидазы, известной также как COI. Она представляет собой одну из субъединиц, составляющих фермент под названием цитохром с-оксидаза, присутствующий в энергетической станции каждой клетки – митохондрии. Цитохром с-оксидаза играет важную роль в процессе производства энергии клеткой.
Анализ митохондриальной ДНК имеет несколько преимуществ. Во-первых, доступность материала: митохондриальная ДНК имеет гораздо большую распространенность, чем ядерная ДНК. У большинства клеток ядро только одно, зато имеются сотни митохондрий. Раз уж об этом зашла речь, в клетках печени человека насчитывается до 2000 митохондрий. Это означает, что извлечь образец митохондриальной ДНК гораздо проще. Во-вторых, митохондриальной ДНК свойственна бóльшая частота мутаций, чем ядерной ДНК, а это значит, что с ее помощью легче найти различия между видами. В-третьих, митохондриальная ДНК наследуется только от одного из родителей, что облегчает задачу секвенирования генов. Люди, как и другие млекопитающие, наследуют равные доли ядерной ДНК от яйцеклетки матери и сперматозоида отца. Поэтому мы обладаем двумя полными наборами хромосом – то есть двумя версиями каждого гена. Иначе говоря, наши клетки диплоидны. Однако митохондрии, которые проникают в яйцеклетку из сперматозоида, разрушаются на раннем этапе развития, и у нас остается только материнская митохондрия, а следовательно, только одна копия митохондриальной ДНК (гаплоидная).
Хеберт и его коллеги проанализировали описанный участок ДНК и изучили занесенные в базу GenBank последовательности COI более 26 000 животных, принадлежащих к 11 таксономическим группам (например, черви, ракообразные, жуки, мухи, осы и пчелы, бабочки, хордовые, медузы и моллюски). Они выяснили, что этот метод позволяет определить любой вид, за исключением медуз и кораллов (стрекающих). Митохондриальная ДНК стрекающих, как и растений, эволюционирует медленнее, поэтому для создания их штрихкода необходимо использовать другой участок ДНК. Впрочем, для наших задач важнее то, что метод оказался очень полезен для идентификации рыб и других морских обитателей.
В 2005 г. Роберт Ханнер, доцент Гуэлфского университета и заместитель директора канадского отделения проекта «Штрихкод жизни», начал работу над базой данных Fish Barcode of Life (FISH-BOL), чтобы создать максимально полную коллекцию образцов морских обитателей. Это был один из первых целенаправленных проектов по созданию базы штрихкодов определенной таксономической группы, и ученые всего мира работали над сбором и анализом референсных образцов. На момент выхода этой книги в базе насчитывалось более 10 700 штрихкодов морских видов.
Назад: Безобразное разнообразие
Дальше: Штрихкод ДНК в действии