Книга: Физиология человека. Общая. Спортивная. Возрастная
Назад: Раздел I Общая спортивная физиология
Дальше: Раздел II Частная спортивная физиология

5.2. Предстартовые состояния

Предстартовые состояния возникают задолго до выступления, за несколько дней и недель до ответственных стартов – мысленная настройка на соревнование, повышение мотивации, рост двигательной активности во время сна, повышение обмена веществ, увеличение мышечной силы, содержания гормонов, эритроцитов и гемоглобина в крови.
Эти проявления усиливаются за несколько часов до старта и еще более за несколько минут перед началом работы, когда возникает собственно стартовое состояние.
5.2.1. Формы проявления и физиологические механизмы предстартовых состояний
Предстартовые состояния возникают по механизму условных рефлексов. Физиологические изменения возникают на условные сигналы, которыми являются раздражители, сопутствующие предшествующим занятиям (вид стадиона, спортивного зала, наличие соперников, спортивная форма и др.).
В мозгу человека перед выполнением какого-либо произвольного действия рождаются замысел и план предстоящего действия. Происходят изменения электрической активности в коре больших полушарий – усиливаются межцентральные взаимосвязи, изменяется амплитуда потенциалов и огибающая их кривая, появляется отражающая подготовительные процессы условная негативная волна (так называемая «волна ожидания»), наблюдаются медленные потенциалы в темпе предстоящего движения («меченые ритмы» ЭЭГ), в моторной коре возникают так называемые премоторные и моторные потенциалы. Все эти изменения отражают подготовку мозга к предстоящему действию и вызывают сопутствующие вегетативные сдвиги и изменения моторной системы, т. е. происходит актуализация рабочей доминанты со всеми ее моторными и вегетативными компонентами.
Различают предстартовые изменения двух видов – не специфические (при любой работе) и специфические (связанные со спецификой предстоящих упражнений).
К числу неспецифических изменений относят три формы предстартовых состояний: боевую готовность, предстартовую лихорадку и предстартовую апатию.
Боевая готовность обеспечивает наилучший психологический настрой и функциональную подготовку спортсменов к работе. Наблюдается оптимальный уровень физиологических сдвигов – повышенная возбудимость нервных центров и мышечных волокон, адекватная величина поступления глюкозы в кровь из печени, благоприятное превышение концентрации норадреналина над адреналином, оптимальное усиление частоты и глубины дыхания и частоты сердцебиений, укорочение времени двигательных реакций.
В случае возникновения предстартовой лихорадки возбудимость мозга чрезмерно повышена, что вызывает нарушение тонких механизмов межмышечной координации, излишние энерготраты и преждевременный дорабочий расход углеводов, избыточные кардиореспираторные реакции. При этом у спортсменов отмечена повышенная нервозность, возникают фальстарты, а движения начинаются в неоправданно быстром темпе и вскоре приводят к истощению ресурсов организма.
В противоположность этому, состояние предстартовой апатии характеризуется недостаточным уровнем возбудимости центральной нервной системы, увеличением времени двигательной реакции, невысокими изменениями в состоянии скелетных мышц и вегетативных функций, подавленностью и неуверенностью спортсмена в своих силах. В процессе– длительной работы негативные сдвиги состояний лихорадки и апатии могут преодолеваться, но при кратковременных упражнениях такой возможности нет.
Специфические предстартовые реакции отражают особенности предстоящей работы. Например, функциональные изменения в организме выше перед бегом на короткие дистанции по сравнению с предстоящим бегом на длинные дистанции; они больше перед соревнованиями по сравнению с обычной тренировкой. В коре больших полушарий больше активируются те зоны, которые должны вовлекаться в работу; перед циклическими упражнениями возникают колебания потенциалов в темпе предстоящего движения.
5.2.2. Регуляция предстартовых состояний
Чрезмерные предстартовые реакции снижаются у спортсменов по мере привыкания к соревновательным условиям.
На формы проявления предстартовых реакций оказывает влияние тип нервной системы: у спортсменов с сильными уравновешенными нервными процессами – сангвиников и флегматиков – чаще наблюдается боевая готовность, у холериков – предстартовая лихорадка; меланхолики в трудных ситуациях подвержены предстартовой апатии.
Умение тренера провести необходимую беседу или переключить спортсмена на другой вид деятельности способствует оптимизации предстартовых состояний. Используют для этого и массаж. Однако наибольшее регулирующее воздействие оказывает правильно проведенная разминка. В случае предстартовой лихорадки необходимо проводить разминку в невысоком темпе, подключить глубокие ритмичные дыхания (гипервентиляцию), так как дыхательный центр оказывает мощное нормализующее влияние на кору больших полушарий. При апатии, наоборот, требуется проведение разминки в быстром темпе для повышения возбудимости в нервной и мышечной системах.

5.3. Разминка и врабатывание

В подготовке организма к предстоящей работе очень велика роль разминки, так как здесь к условно-рефлекторному механизму предстартовых состояний подключаются безусловно-рефлекторные реакции, вызванные работой мышц.
5.3.1. Разминка
Различают общую и специальную часть разминки.
Общая разминка неспецифична. Она направлена на повышение функционального состояния организма и создание оптимального возбуждения центральных и периферических звеньев двигательного аппарата. Еще до начала работы создаются условия для формирования новых двигательных навыков и наилучшего проявления физических качеств. Разогревание мышц снижает их вязкость, повышает гибкость суставно-связочного аппарата, способствует отдаче тканям кислорода из оксигемоглобина крови, активирует ферменты и ускоряет протекание биохимических реакций. Однако разминка не должна доводить спортсмена до выраженного утомления и вызывать повышение температуры тела выше 38 °C, что вызовет отрицательный эффект.
Специальная часть разминки обеспечивает специфическую подготовку к предстоящей работе именно тех нервных центров и скелетных мышц, которые несут основную нагрузку. Происходит оживление рабочих доминант и созданных на их базе двигательных динамических стереотипов, вегетативные сдвиги достигают уровня, необходимого для быстрого вхождения в работу.
Оптимальная длительность разминки составляет 10–30 мин, а интервал до работы не должен превышать 15 мин, после чего эффект разминки снижается.
5.3.2. Врабатывание
Периоды покоя и работы характеризуются относительно устойчивым состоянием функций организма, с отлаженной их регуляцией. Между ними имеются два переходных периода – врабатывания (от покоя к работе) и восстановления (от работы к покою).
Период врабатывания отсчитывают от начала работы до появления устойчивого состояния.
Во время врабатывания осуществляются два процесса:
– переход организма на рабочий уровень;
– сонастройка различных функций.
Врабатывание различных функций отличается гетерохронностью, т. е. разновременностью, и увеличением вариативности их показателей.
Сначала и очень быстро врабатываются двигательные функции, а затем более инертные вегетативные. Из вегетативных показателей быстрее всего нарастают до рабочего уровня частотные параметры – частота сердечных сокращений и дыхания, затем объемные характеристики – ударный и минутный объемы крови, глубина вдоха и минутный объем дыхания. За их перестройками следует рост потребления кислорода и, позже всего, налаживание терморегуляции (этот момент сопровождается потоотделением). Инерция вегетативных сдвигов связана, в частности, с тем, что в начальные моменты работы мощная моторная доминанта оказывает отрицательное (тормозное) влияние на вегетативные центры.
Более быстрое врабатывание наблюдается у квалифицированных спортсменов, в молодом возрасте (у подростков) и в период спортивной формы у спортсмена.
Увеличение вариативности отражает поиски различными функциями рабочего уровня сдвигов, адекватного для данного упражнения. Анализ длительности сердечных и дыхательных циклов показывает их большой разброс в этот трудный для организма переходный период. С переходом к устойчивому состоянию при работе постоянной мощности вариативность функций снижается. Например, коэффициент вариации длительности сердечных циклов составляет у бегунов-разрядников в покое 5-10 %, при врабатывании – 25–30 %, в устойчивом состоянии – 2–4%.
Период врабатывания может завершаться появлением «мертвой точки». Она возникает у недостаточно подготовленных спортсменов в результате дискоординации двигательных и вегетативных функций. При слишком интенсивных движениях и замедленной перестройке вегетативных процессов нарастает заметный кислородный долг, возникает тяжелое субъективное состояние, Происходит рост содержания лактата в крови, pH крови снижается до 7,2 и менее. У спортсмена наблюдаются одышка и нарушения сердечного ритма (аритмия, экстрасистолия), уменьшается жизненная емкость легких. В ЭМГ увеличивается амплитуда потенциалов работающих мышц, в ЭЭГ развивается десинхронизация активности. В этот период работоспособность резко падает. Она возрастает лишь после волевого преодоления «мертвой точки», когда открывается «второе дыхание», или в результате снижения интенсивности работы. Подобное состояние может неоднократно повторяться во время длительной работы при повышениях ее мощности, неадекватных возможностям спортсмена.

5.4. Устойчивое состояние при циклических упражнениях

При длительной циклической работе относительно постоянной мощности (в зонах большой и умеренной мощности, частично субмаксимальной мощности) в организме спортсмена возникает устойчивое состояние (steady state), которое продолжается от момента завершения врабатывания до начала утомления.
5.4.1. Виды устойчивого состояния
По характеру снабжения организма кислородом выделяют два вида устойчивого состояния:
– кажущееся (или ложное) устойчивое состояние (при работе большой и субмаксимальной мощности), когда спортсмен достигает уровня максимального потребления кислорода, но это потребление не покрывает высокого кислородного запроса и образуется значительный кислородный долг;
– истинное устойчивое состояние при работе умеренной мощности, когда потребление кислорода соответствует кислородному запросу и кислородный долг почти не образуется.
5.4.2. Физиологические особенности устойчивого состояния при циклических упражнениях
За исключением кратковременных циклических упражнений максимальной мощности, во всех других зонах мощности после окончания врабатывания устанавливается устойчивое состояние. При этом мощность работы, несмотря на некоторые отклонения, практически близка к постоянной.
Такое состояние характеризуется следующими особенностями:
– мобилизация всех систем организма на высокий рабочий уровень (главным образом, кардиореспираторной системы и системы крови, обеспечивающих достижение МПК);
– стабилизация множества показателей, влияющих на спортивные результаты – длины и частоты шагов, амплитуды колебаний общего центра масс, частоты и глубины дыхания, частоты сердечных сокращений, уровня потребления кислорода и пр.; некоторые показатели могут монотонно возрастать (например, температура тела), или снижаться (например, оксигенация крови);
– согласование работы различных систем организма, которое сменяет их дискоординацию в период врабатывания – например, устанавливается определенное соотношение темпа дыхания и движения (1:1, 1:3 и др.).
У тренированных спортсменов выраженность устойчивого состояния и КПД работы больше, чем у нетренированных лиц. Оно у них дольше продолжается.

5.5. Особые состояния организма при ациклических, статических и упражнениях переменной мощности

Различные виды стандартных ациклических упражнений, а также ситуационных упражнений характеризуются переменной мощностью работы, т. е. отсутствием классических форм устойчивого состояния.
5.5.1. Особые состояния при стандартных ациклических и статических упражнениях
Выполнение различных упражнений в гимнастике, прыжках в воду, тяжелой атлетике, метаниях, прыжках в длину, в высоту, с шестом, стрельбе и т. п. весьма кратковременно. В отличие от длительных циклических упражнений здесь невозможно достижение устойчивого состояния по потреблению кислорода и другим физиологическим показателям.
Однако повторная работа в этих видах спорта вызывает своеобразное проявление процесса врабатывания и последующей стабилизации функций. Каждое предыдущее выполнение упражнения служит разминкой для последующего и вызывает врабатывание организма с постепенным нарастанием функциональных сдвигов, вплоть до необходимого рабочего уровня с повышением КПД работы.
5.5.2. Особые состояния при ситуационных упражнениях
В спортивных играх и единоборствах (бокс, борьба, фехтование) деятельность спортсмена характеризуется не только изменением текущей ситуации, но и переменной мощностью работы. Несмотря на постоянные изменения мощности, после прохождения врабатывания различные соматические и вегетативные показатели устанавливаются в пределах некоторого оптимального рабочего диапазона. Например, при игре в баскетбол ЧСС держится в пределах 130–180 уд./мин. Хотя на уровень 180 уд./мин этот показатель поднимается лишь в отдельных эпизодах игры, зато он не снижается менее 130 уд./мин в моменты игровых пауз. Поддержание этого оптимального диапазона функциональных возможностей требует необходимых затрат энергии и произвольных усилий. У каждого спортсмена имеется индивидуальная длительность непрерывного сохранения такого состояния.
Оптимальная доза непрерывной работы зависит от врожденных особенностей, уровня спортивного мастерства, технической или тактической направленности тренировочного занятия, интенсивности деятельности и других причин. Фехтовальщики, например, используют различные микропаузы для некоторого восстановления функций организма. Эти паузы не должны быть длительными, чтобы не снизить достигнутый рабочий уровень (чтобы не увеличилось время двигательной реакции, не повысилась его вариативность, не снизилась точность уколов), зато они позволяют избежать быстрого наступления утомления, сохранить высокий уровень внимания, несколько восстановить двигательные и вегетативные функции.

6. Физическая работоспособность спортсмена

Физическая работоспособность спортсмена является выражением жизнедеятельности человека, имеющим в своей основе движение, универсальность которого была блестяще охарактеризована еще И.М. Сеченовым. Она проявляется в различных формах мышечной деятельности и зависит от способности и готовности человека к физической работе.
В настоящее время физическая работоспособность наиболее широко исследуется в спортивной практике, представляя несомненный интерес для специалистов как медико-биологического, так и спортивно-педагогического направлений. Физическая работоспособность – одна из важнейших составляющих спортивного успеха. Это качество является также определяющим во многих видах производственной деятельности, необходимым в повседневной жизни, тренируемым и косвенно отражающим состояние физического развития и здоровья человека, его пригодность к занятиям физической культурой и спортом.

6.1. Понятие о физической работоспособности и методические подходы к ее определению

Термин «физическая работоспособность» употребляется достаточно широко, однако ему не дано пока единого теоретически и практически обоснованного определения. Предложенные определения работоспособности (Виноградов М.И., 1969; Косилов С.А., 1965; Карпман В.Л., 1974; Аулик И.В., 1977; Astrand R, 1954; Lehman G., 1967; и др.), по мнению ряда специалистов, нередко носят односторонний характер и не всегда учитывают при этом функциональное состояние организма и эффективность труда.
С учетом изложенного, В.П. Загрядский и А.С. Егоров (1971) предложили определять работоспособность как способность человека совершать конкретную деятельность в рамках заданных параметров времени и эффективности труда. При этом оценивать работоспособность следует по критериям профессиональной деятельности и состояния функций организма, другими словами, с помощью прямых и косвенных ее показателей.
Развивая дальше эти представления и проводя многочисленные обследования специалистов различного профиля деятельности, И.А. Сапов, А.С. Солодков, В.С. Щеголев и В.И. Кулешов (1976, 1986) внесли некоторые дополнения в определение работоспособности человека и, главное, уточнили характер прямых показателей, обосновали и предложили небольшой комплекс информативных косвенных констант, ввели количественный интегральный показатель для оценки работоспособности. Под последней авторы понимают способность человека выполнять в заданных параметрах и конкретных условиях профессиональную деятельность, сопровождающуюся обратимыми (в сроки регламентированного отдыха) функциональными изменениями в организме.
Адаптируя приведенное выше определение работоспособности к практике спорта, следует указать, что прямые показатели у спортсменов позволяют оценивать их спортивную деятельность как с количественной (метры, секунды, килограммы, очки и т. д.), так и с качественной (надежность и точность выполнения конкретных физических упражнений) стороны. С этой точки зрения все методики исследования прямых показателей работоспособности подразделяются на количественные, качественные и комбинированные. С помощью комбинированных методик исследования можно оценивать как производительность, так надежность и точность спортивной деятельности.
К косвенным критериям работоспособности относят различные клинико-физиологические, биохимические и психофизиологические показатели, характеризующие изменения функций организма в процессе работы. Другими словами, косвенные критерии работоспособности представляют собой реакции организма на определенную нагрузку и указывают на то, какой физиологической ценой для человека обходится эта работа, т. е. чем, например, организм спортсмена расплачивается за достигнутые секунды, метры, килограммы и т. д. Кроме этого установлено, что косвенные показатели работоспособности в процессе труда ухудшаются значительно раньше, чем ее прямые критерии. Это дает основание использовать различные физиологические методики для прогнозирования работоспособности человека, а также для выяснения механизмов адаптации к конкретной профессиональной деятельности, оценке развития утомления и анализа других функциональных состояний организма.
При оценке работоспособности и функционального состояния человека необходимо также учитывать его субъективное состояние (усталость), являющееся довольно информативным показателем. Ощущая усталость, человек снижает темп работы или вовсе прекращает ее. Этим самым предотвращается функциональное истощение различных органов и систем и обеспечивается возможность быстрого восстановления работоспособности человека. А.А. Ухтомский считал ощущение усталости одним из наиболее чувствительных показателей снижения работоспособности и развития утомления: «Так называемые субъективные показания столь же объективны, как и всякие другие для того, кто умеет их понимать и расшифровывать. Физиолог более чем кто-либо знает, что за всяким субъективным переживанием кроется физико-химическое событие в организме» (Ухтомский А.А., Собр. соч. – Л., 1952. Т. 3. – С. 134).
Обобщенные данные по оценке работоспособности человека с учетом его субъективного и функционального состояния, прямых и косвенных показателей работоспособности представлены в табл. 6, составленной И.А. Саповым, А.С. Солодковым, В.С. Щеголевым и В. И. Кулешовым (1986). Располагая такими данными и сопоставляя их с фактически наблюдаемыми сдвигами у человека в период любой его деятельности, можно с достаточной достоверностью судить о динамике работоспособности, утомления и переутомления и при необходимости рекомендовать проведение соответствующих оздоровительных мероприятий.

6.2. Принципы и методы тестирования физической работоспособности

Определение уровня физической работоспособности у человека осуществляется путем применения тестов с максимальными и субмаксимальными мощностями физических нагрузок. Все тесты, о которых в дальнейшем пойдет речь, хорошо и подробно изложены в специальных пособиях (Карпман В.Л. с соавт., 1988; Аулик И.А., 1990; и др.)
В данном разделе будут изложены лишь общие принципы тестирования и их физиологическая характеристика.
В тестах с максимальными мощностями физических нагрузок испытуемый выполняет работу с прогрессивным увеличением ее мощности до истощения (до отказа). К числу таких проб относят тест Vita Maxima, тест Новакки и др. Применение этих тестов имеет и определенные недостатки: во-первых, пробы небезопасны для испытуемых и потому должны выполняться при обязательном присутствии врача; во-вторых, момент произвольного отказа – критерий очень субъективный и зависит от мотивации испытания и других факторов.
Тесты с субмаксимальной мощностью нагрузок осуществляются с регистрацией физиологических показателей во время работы или после ее окончания. Тесты данной группы технически проще, но их показатели зависят не только от проделанной работы, но и от особенностей восстановительных процессов. К их числу относятся хорошо известные пробы С.П. Летунова, Гарвардский степ-тест, PWC 170, тест Мастера и др. Принципиальная особенность этих проб заключается в том, что между мощностью мышечной работы и длительностью ее выполнения имеется обратно пропорциональная зависимость, и с целью определения физической работоспособности для таких случаев построены специальные номограммы.

 

Таблица 6
Схема оценки работоспособности

 

В практике физиологии труда, спорта и спортивной медицины наиболее широкое распространение получило тестирование физической работоспособности по ЧСС. Это объясняется в первую очередь тем, что ЧСС является легко регистрируемым физиологическим параметром. Не менее важно и то, что ЧСС линейно связана с мощностью внешней механической работы, с одной стороны, и количеством потребляемого при нагрузке кислорода, – с другой.
Анализ литературы, посвященной проблеме определения физической работоспособности по ЧСС, позволяет говорить о следующих подходах. Первый, наиболее простой, заключается в измерении ЧСС при выполнении физической работы какой-то определенной мощности (например, 1000 кГм/мин). Идея тестирования физической работоспособности в данном случае состоит в том, что выраженность учащения сердцебиения обратно пропорциональна физической подготовленности человека, т. е. чем чаще сердечный ритм при нагрузке такой мощности, тем ниже работоспособность человека, и наоборот.
Второй подход состоит в определении той мощности мышечной работы, которая необходима для повышения ЧСС до определенного уровня. Такой подход является наиболее перспективным, но он технически более сложен и требует серьезного физиологического обоснования.
Сложности физиологического обоснования такого подхода к тестированию физической работоспособности обусловлены несколькими моментами: возможными предпатологическими изменениями сердечно-сосудистой системы; различными типами кровообращения, при которых одинаковое кровоснабжение мышц может обеспечиваться различной величиной ЧСС; неодинаковой физиологической ценой учащения сердечной деятельности при физических нагрузках, определяемой так называемым законом исходных величин, и т. д.
Среди спортсменов эти различия в значительной степени сглаживаются сходством возраста, хорошим здоровьем, тенденцией к брадикардии в покое, расширением функциональных резервов сердечно-сосудистой системы и возможностей их использования
при физических нагрузках. Это обстоятельство, по-видимому, определило использование в современном спорте теста PWC (PWC – это первые буквы английского термина «физическая работоспособность» – Physical Working Capacity), который ориентирован на достижение определенной ЧСС (170 сердечных сокращений в 1 минуту).
Испытуемому предлагается выполнение на велоэргометре или в степ-тесте двух 5-минутных нагрузок умеренной мощности с интервалом 3 мин, после которых измеряют ЧСС.
Расчет показателя PWC170 производится по следующей формуле:

 

 

где W1 и W2мощность первой и второй нагрузки; ƒ1 и ƒ2 – ЧСС в конце первой и второй нагрузки.
В настоящее время считается общепринятым, что ЧСС, равная 170 уд./мин, с физиологической точки зрения характеризует собой начало оптимальной рабочей зоны функционирования кардиореспираторной системы, а с методической – начало выраженной нелинейности на кривой зависимости ЧСС от мощности физической работы. Существенным физиологическим доводом в пользу выбора уровня ЧСС в данной пробе служит и тот факт, что при частоте пульса больше 170 уд./мин рост минутного объема крови если и происходит, то уже сопровождается относительным снижением систолического объема крови.
Проба PWCI70 рекомендована Всемирной организацией здравоохранения для оценки физической работоспособности человека. Перспективы использования этой пробы в спорте очень широки, так как принцип ее пригоден для определения как общей, так и специальной работоспособности спортсменов.
Широко распространенной пробой также является разработанный в США Гарвардский степ-тест. Этот тест рассчитан на оценку работоспособности у здоровых молодых людей, так как от исследуемых лиц требуется значительное напряжение. Гарвардский тест заключается в подъемах на ступеньку высотой 50 см для мужчин и 40 см для женщин в течение 5 минут в темпе 30 подъемов в 1 мин (2 шага в 1 с).
После окончания работы в течение 30 секунд второй минуты восстановления подсчитывают количество ударов пульса и вычисляют индекс Гарвардского степ-теста (ИГСТ) по формуле:

 

 

Более точно можно рассчитать ИГСТ, если пульс считать 3 раза – в первые 30 секунд 2-й, 3-й и 4-й минут восстановления; в этом случае ИГСТ вычисляют по формуле:

 

 

где t – время восхождения на ступеньку (с); ƒ1, ƒ2, ƒ3 – число пульсовых ударов за 30 секунд 2-й, 3-й и 4-й минут восстановления.
Оценку работоспособности проводят по табл. 7.
Одним из распространенных и точных методов является определение физической работоспособности по величине максимального потребления кислорода (МПК). Этот метод высоко оценивает Международная биологическая программа, которая рекомендует для оценки физической работоспособности использовать информацию о величине аэробной производительности.
Как известно, величина потребляемого мышцами кислорода эквивалентна производимой ими работе. Следовательно, потребление организмом кислорода возрастает пропорционально мощности выполняемой работы. МПК характеризует собой то предельное количество кислорода, которое может быть использовано организмом в единицу времени.
Аэробная возможность (аэробная мощность) человека определяется прежде всего максимальной для него скоростью потребления кислорода. Чем выше МПК, тем больше (при прочих равных условиях) абсолютная мощность максимальной аэробной нагрузки. МПК зависит от двух функциональных систем: кислород-транспортной системы (органы дыхания, кровь, сердечно-сосудистая система) и системы утилизации кислорода, главным образом – мышечной.

 

Таблица 7
Оценка физической работоспособности но индексу Гарвардского степ-теста (по: И.В. Аулик, 1979)

 

Максимальное потребление кислорода может быть определено с помощью максимальных проб (прямой метод) и субмаксимальных проб (непрямой метод). Для определения МПК прямым методом используются чаще всего велоэргометр или тредбан и газоанализаторы. При применении прямого метода от испытуемого требуется желание выполнить работу до отказа, что не всегда достижимо. Поэтому было разработано несколько методов непрямого определения МПК, основанных на линейной зависимости МПК и1 ICC при работе определенной мощности. Эта зависимость выражается графически на соответствующих номограммах.
В дальнейшем обнаруженная взаимосвязь была описана простым линейным уравнением, широко используемым с научно-прикладными и учебными целями для нетренированных лиц и спортсменов скоростно-силовых видов спорта:

 

МПК = 1,7 ×PWC170 + 1240.

 

Для определения МПК у высококвалифицированных спортсменов циклических видов спорта В.Л. Карпман (1987) предложил следующую формулу:

 

МПК = 2,2 × PWC170 +1070.

 

По мнению автора, и PWC170, и МПК примерно в равной степени характеризуют физическую работоспособность человека: коэффициент корреляции между ними очень высок (0,7–0,9 по данным различных авторов), хотя взаимосвязь этих показателей и не носит строго линейного характера. Тем не менее названные константы могут быть рекомендованы в практических целях для анализа тренировочного процесса.

6.3. Связь физической работоспособности с направленностью тренировочного процесса в спорте

Определение физической работоспособности по тесту PWC широко вошло в практику спортивной физиологии и медицины. В связи с этим повысилась актуальность вопроса о диагностическом и прогностическом значении теста – в какой мере этот неспецифический показатель может быть использован для поиска оптимального тренировочного процесса спортсменов различной специализации.
К настоящему времени имеется достаточное количество исследований по этому вопросу. В общей форме ответ наметился уже при анализе антропометрических данных спортсменов, которые довольно тесно сопряжены с направленностью тренировочного процесса. Так, В.Л. Карпман и соавторы (1988) высказали предположение (и подтвердили его простыми формулами для боксеров и борцов) о линейной зависимости между массой тела и абсолютными величинами PWC, Вместе с тем они отметили, что относительные значения (в расчете на 1 кг веса) с нарастанием массы тела даже имеют тенденцию к снижению, по-видимому, за счет увеличения жировой ткани (баскетболисты, ватерполисты). А наибольшие относительные величины PWG„0 наблюдаются у спортсменов, тренирующих качество выносливости.
Для борцов и боксеров В.Л. Карпман с соавторами (1988) предложил следующие формулы:

 

PWC170 (для боксеров) = 15,0 Р + 300,
PWC170 (для борцов) = 19,0 Р+50,
где Р – масса тела.

 

Возможно, спортивная практика и подтверждает такую закономерность, но раскрыть физиологическую сущность ее с помощью данных формул не представляется возможным.
Выяснено, что спортсмены скоростно-силовой группы (борцы, боксеры, гимнасты) отстают по показателям PWC170и МПК даже от менее квалифицированных лыжников, гребцов, футболистов. Физическая работоспособность высококвалифицированных лыжников выше, чем бегунов, как в обычных условиях, так и в «климатической» камере при температуре +40 °C, а затем на «высоте» 3000 м.
Универсальная зависимость ЧСС от мощности работы позволяет в циклических видах спорта оценивать специальную работоспособность по сдвигам ЧСС в определенном диапазоне (методом телепульсометрии) и по скорости перемещения спортсмена.
Необходимо также коснуться одной методической стороны теста PWC170, которая обозначалась и при анализе собственного материала и на которую, по нашему мнению, пока обращается недостаточное внимание. Это – вопрос о специфичности для спортсмена самой тестовой нагрузки. Очевидно, что работа на тредбане или велоэргометре будет более привычной (и более экономной) для велосипедистов, бегунов, лыжников, чем для спортсменов других специализаций. Возможно, что с этим частично связаны и упоминавшиеся уже различия параметров физической работоспособности между группой боксеров, борцов, гимнастов и группой лыжников, гребцов, футболистов. Некоторые авторы считают общепринятый тест PWC170 недостаточно информативным для ряда видов спорта и предлагают раздельное выполнение нагрузки как ногами, так и руками, указывая что соотношение физической работоспособности нижних и верхних конечностей претерпевает существенные возрастные изменения,

6.4. Резервы физической работоспособности

Актуальность данного раздела обусловлена тем, что современные высшие спортивные достижения невозможны без максимального напряжения физических и духовных сил человека. Следовательно, знание этих закономерностей необходимо как тренеру, физиологу и спортивному врачу, так и самому спортсмену.
Общефизиологическое значение этой проблемы состоит в том, что на примере спортивной деятельности она раскрывает значение пластичности нервной системы как для реакций срочной адаптации, так и для формирования сложных функциональных систем долговременного значения (И.П. Павлов, Л.А. Орбели, П.К. Анохин). Если при этом учесть высказанную еще И.М. Сеченовым мысль об универсальности мышечного сокращения, как важнейшего жизненного акта, то становится очевидным, что проблема резервов физической работоспособности сопряжена со многими фундаментальными законами общей физиологии человека.
Наиболее важной характеристикой резервных возможностей организма является адаптационная сущность, эволюционно выработанная способность организма выдерживать большую, чем обычно нагрузку (Бресткин М.П., 1968). Исследование физической работоспособности спортсмена (особенно высшей квалификации) дает уникальный фактический материал для оценки и анализа функций организма в зоне видовых предельных напряжений. Поэтому можно считать, что лимитирующими факторами физической работоспособности спортсмена являются индивидуальные пределы использования им своих структурно-функциональных резервов различных органов и систем. В табл. 8 (данные различных авторов) представлены основные сведения по характеристике функциональных резервов при физической работе разной мощности. Из материалов этой таблицы следует, что основными резервами являются функциональные возможности ЦНС, нервно-мышечного аппарата, кардиореспираторной системы, метаболические и биоэнергетические процессы. Очевидно, что при различных мощностях работы и в разных видах спорта степень участия этих систем будет неодинаковой.

 

Таблица 8
Функциональные резервы при физической работе различной мощности

 

При работе максимальной мощности из-за ее кратковременности главным энергетическим резервом являются анаэробные процессы (запас АТФ и КрФ, анаэробный гликолиз, скорость ресинтеза АТФ), а функциональным резервом – способность нервных центров поддерживать высокий темп активности, сохраняя необходимые межцентральные взаимосвязи. При этой работе мобилизуются и расширяются резервы силы и быстроты.
При работе субмаксимальной мощности биологически активные вещества нарушенного метаболизма в большом количестве поступают в кровь. Действуя на хеморецепторы сосудов и тканей, они рефлекторно вызывают максимальное повышение функций сердечно-сосудистой и дыхательной систем. Еще большему повышению системного артериального тонуса способствуют вазодилятаторы гипоксического происхождения, способствующие одновременно увеличению капиллярного кровотока.
Функциональными резервами при работе субмаксимальной мощности являются буферные системы организма и резервная щелочность крови – важнейшие факторы, тормозящие нарушение гомеостаза в условиях гипоксии и интенсивного гликолиза; дальнейшее усиление работы кардиореспираторной системы. Значимым остается гликолитический вклад в биоэнергетику работающих мышц и выносливость нервных центров к интенсивной работе в условиях недостатка кислорода.
При работе большой мощности физиологические резервы в общем те же, что и при субмаксимальной работе, но первостепенное значение имеют следующие факторы: поддержание высокого (около предельного) уровня работы кардиореспираторной системы; оптимальное перераспределение крови; резервы воды и механизмов физической терморегуляции. Ряд авторов энергетическими резервами такой работы считают не только аэробные, но и анаэробные процессы, а также метаболизм жиров.
При работе умеренной мощности резервами служат пределы выносливости ЦНС, запасы гликогена и глюкозы, а также жиры и процессы глюконеогенеза, интенсивно усиливающиеся при стрессе. К важным условиям длительного обеспечения такой работы относят резервы воды и солей и эффективность процессов физической терморегуляции.
Общие сведения о резервных возможностях различных звеньев системы транспорта кислорода представлены в табл. 9, из которой видно, что наибольшим (двадцатикратным) резервом адаптации обладает система внешнего дыхания. Но даже при таких функциональных возможностях она может вносить определенный вклад в ограничение физической работоспособности спортсмена.
Аппарат кровообращения занимает особое место, поскольку является основным лимитирующим звеном транспорта кислорода. Кроме того, сердечно-сосудистая система служит тонким индикатором цены адаптации организма к различным факторам внешней среды и к физическим нагрузкам. Об этой же ее роли свидетельствуют формирование так называемого «спортивного сердца» и участившиеся в последнее время предпатологические и патологические изменения функции сердца при высоких спортивных нагрузках. К числу таких изменений можно отнести нарушения сердечного ритма, возникновение синдрома дистрофии миокарда вследствие физического перенапряжения и другие сдвиги.

 

Таблица 9
Предельные сдвиги в висцеральных системах при мышечной работе
(по: В.П. Загрядскому, З.К. Сулимо-Самуйлло, 1976)

 

В табл. 10 показано, что сердечно-сосудистая система обладает мощным резервом перераспределения кровотока, и по его суммарной мощности на первом месте стоит скелетная мускулатура.
Среди всех органов и тканей мышцы занимают главенствующее положение по своему влиянию на центральную гемодинамику. Это объясняется большой массой скелетных мышц (около 40 % массы тела) и их способностью к быстрому изменению уровня функциональной активности в широких пределах: в состоянии покоя кровоток в поперечно-полосатых мышцах составляет 15–20 % от минутного объема крови (МОК), а при тяжелой работе он может достигать 80–85 % от МОК.

 

Таблица 10
Распределение кровотока в покое и при физических нагрузках различной интенсивности
(по: Н.М. Амосову и Н.А. Брендету, 1975)

 

В нашу задачу не входил анализ биохимических основ физической работоспособности спортсменов. Этой проблеме посвящены многие работы биохимиков спорта. Но есть два биохимических аспекта, без которых невозможно рассматривать физиологические резервы работоспособности человека. Первый – биоэнергетическое обеспечение мышечного сокращения, которое выступает в роли резервного фактора при нагрузке различной мощности и направленности физической работы. Второй аспект – регулирующая роль метаболитов, образующихся при мышечной деятельности, которые являются пусковым звеном (через хеморецепторы) централизации кровообращения, препятствующей нарушению тонуса сосудов. Сдвиги биохимических констант при напряженной мышечной работе (метаболический ацидоз, гипоксия и гипоксемия, гиперкапния) являются также важнейшими факторами рефлекторной и гуморальной регуляции различных звеньев кардиореспираторной системы, включая дыхательный и сосудодвигательный центры.
Все перечисленное выше функциональные резервы физической работоспособности должны рассматриваться не изолированно, а во временной, динамической взаимосвязи. Поэтому построение и тренировочного процесса, и восстановительных мероприятий, и реабилитации должно быть тоже динамическим и комплексным, учитывающим разнообразие адаптивных перестроек в организме спортсмена при физических нагрузках и закономерную последовательность их включения и функционирования на всех этапах его жизнедеятельности.

7. Физиологические основы утомления спортсменов

Теоретическое и практическое значение проблемы утомления определяется тем, что ее закономерности являются физиологической основой работоспособности человека и научной организации труда. Это прежде всего предполагает приведение условий труда человека в соответствие с его психофизиологическими возможностями.

7.1. Определение и физиологические механизмы развития утомления

Утомление является важнейпгей проблемой физиологии спорта и одним из наиболее актуальных вопросов медико-биологической оценки тренировочной и соревновательной деятельности спортсменов. Знание механизмов утомления и стадий его развития позволяет правильно оценить функциональное состояние и работоспособность спортсменов и должно учитываться при разработке мероприятий, направленных на сохранение здоровья и достижение высоких спортивных результатов.
К настоящему времени имеется около 100 определений понятия утомления и ряд теорий его происхождения. Обилие формулировок само по себе указывает на еще недостаточное знание этого сложного явления и его механизмов. С физиологической точки зрения, утомление является функциональным состоянием организма, вызванным умственной или физической работой, при котором могут наблюдаться временное снижение работоспособности, изменение функций организма и появление субъективного ощущения усталости (Солодков А.С., 1978). Исходя из этого, принято выделять два основных вида утомления – физическое и умственное, хотя такое деление достаточно условно.
Таким образом, главным и объективным признаком утомления человека является снижение его работоспособности.
Однако понижение работоспособности не всегда является симптомом утомления. Работоспособность может снизиться вследствие пребывания человека в неблагоприятных условиях (высокая температура и влажность воздуха, пониженное парциальное давление кислорода во вдыхаемом воздухе и др.). С другой стороны, длительная работа с умеренным напряжением может протекать на фоне выраженного утомления, но без снижения производительности. Следовательно, снижение работоспособности является признаком утомления только тогда, когда известно, что оно наступило вследствие конкретно выполненной физической или умственной работы. При утомлении работоспособность снижается временно, она быстро восстанавливается при ежедневном обычном отдыхе. Состояние утомления имеет свою динамику – усиливается во время работы и уменьшается в процессе отдыха (активного, пассивного и сна). Утомление можно рассматривать как естественное нормальное функциональное состояние организма в процессе труда.
Другим важным критерием оценки утомления является изменение функций организма в период работы. При этом в зависимости от степени утомления функциональные сдвиги могут носить различный характер. В начальной стадии утомления клинико-физиологические и психофизиологические показатели отличаются неустойчивостью и разнонаправленным характером изменений, однако их колебания, как правило, не выходят за пределы физиологических нормативов. При хроническом утомлении, и особенно переутомлении, имеет место одно направленное значительное ухудшение всех функциональных показателей организма с одновременным снижением уровня профессиональной деятельности человека (Солодков А.С., 1978, 1990).
Процесс утомления характеризуется и еще одним признакомсубъективным симптомом, усталостью (тяжесть в голове, конечностях, общая слабость, разбитость, вялость, недомогание, трудность выполнения работы и т. д.). А.А. Ухтомский усмотрел в усталости не только субъективный признак наличия развивающегося утомления, но и нечто другое и большее, что имеет весьма важное практическое значение. Он считал, что усталость является одновременно и «натуральным предупредителем утомления». Ощущая усталость, человек снижает темп работы или вовсе ее прекращает. Этим самым предотвращается «функциональное истощение» корковых клеток и обеспечивается возможность быстрого восстановления работоспособности человека. Автор считал ощущение усталости одним из наиболее чувствительных показателей утомления.
Однако выраженность усталости не всегда соответствует степени утомления, т. е. объективным прямым и косвенным показателям работоспособности. В основе этого несоответствия в первую очередь лежит разная эмоциональная настройка работающего на выполняемую работу При выполнении приятной или социально значимой работы, при высокой мотивации работающего, усталость не возникает у него в течение длительного времени. Наоборот, при бесцельной, неинтересной работе усталость может возникнуть, когда объективно утомление или вовсе еще не наступило, или выраженность его далеко не соответствует степени усталости.
Следовательно, один и тот же признак утомления является информативным только в конкретных условиях деятельности и при определенном состоянии организма. Поэтому для констатации утомления в каждом виде работы целесообразно использовать особый набор прямых и косвенных показателей, адекватный для данного вида труда.
Настойчивые попытки многих исследователей проникнуть в тайны физиологических механизмов состояния утомления привели к накоплению обширного экспериментального материала. На основе этих данных было создано много гипотез и теорий, но в настоящее время в качестве самостоятельных они могут выступать только в историческом аспекте. К их числу следует отнести теорию истощения энергетических ресурсов в мышцах Шиффа (1868), теорию засорения мышц продуктами обмена Пфлюгера (1872), теорию отравления метаболитами Вейхарда (1902) и теорию задушения (вследствие недостатка кислорода) Ферворна (1903). Все эти так называемые локально-гуморальные теории не полностью вскрывают механизмы утомления, так как в качестве его основной причины рассматривают лишь местные изменения в мышечной ткани, и частные сдвиги принимаются за общие процессы. Однако каждая из этих теорий правильно отражала одну из многих сторон сложного процесса утомления.
Наиболее распространенная в нашей стране центрально-нервная теория утомления, сформулированная И.М. Сеченовым в 1903 году, всесторонне развитая и дополненная А.А. Ухтомским, связывает возникновение утомления только с деятельностью нервной системы, в частности, коры больших полушарий. При этом предполагалось, что основой механизма утомления является ослабление основных нервных процессов в коре головного мозга, нарушение их уравновешенности с относительным преобладанием процесса возбуждения над более ослабленным процессом внутреннего торможения и развитием охранительного торможения.
Однако современные электрофизиологические и биохимические методы исследования и полученные на их основе экспериментальные данные не позволяют свести причины утомления к изменениям в каком-то одном органе или системе органов, в том числе нервной системе. Следовательно, приписывать возникновение первичного утомления какой-либо одной системе неправомерно. В зависимости от состояния функций организма и характера деятельности человека первичное возникновение утомления вариативно и может наблюдаться в различных органах и системах организма.
Мышечная работа связана с вовлечением в деятельность многих органов и формированием в организме специальной функциональной системы адаптации, обеспечивающей конкретную деятельность человека. Поэтому на снижение работоспособности влияет возникновение функциональных изменений не только в нервной системе, но и в других рабочих звеньях – скелетных мышцах, органах дыхания, кровообращения, системе крови, железах внутренней секреции и др. Таким образом, согласно современным представлениям о физическом утомлении, оно связано, во-первых, с развитием функциональных изменений во многих органах и системах, во-вторых, с различным сочетанием деятельности органов и систем, ухудшение функций которых наблюдается при том или ином виде физических упражнений. Поэтому создание общей теории о физиологических механизмах утомления не может основываться на отдельных системах организма и должно учитывать все многообразие и вариативность характера сдвигов функций, обусловливающих ту или иную деятельность человека. В зависимости от характера работы, ее напряженности и продолжительности ведущая роль в развитии утомления может принадлежать различным функциональным системам.
Итак, утомление является нормальной физиологической реакцией организма на работу. С одной стороны, оно служит очень важным для работающего человека фактором, так как препятствует крайнему истощению организма, переходу его в патологическое состояние, являясь сигналом необходимости прекратить работу и перейти к отдыху. Наряду с этим, утомление играет существенную роль, способствуя тренировке функций организма, их совершенствованию и развитию. С другой стороны, утомление ведет к снижению работоспособности спортсменов, к неэкономичному расходованию энергии и уменьшению функциональных резервов организма. Эта сторона утомления является невыгодной, нарушающей длительное выполнение спортивных нагрузок.

7.2. Факторы утомления и состояние функций организма

Основным фактором, вызывающим утомление, является физическая или умственная нагрузка, падающая на афферентные системы во время работы. Зависимость между величиной нагрузки и степенью утомления почти всегда бывает линейной, то есть чем больше нагрузка, тем более выраженным и ранним является утомление. Помимо абсолютной величины нагрузки, на характере развития утомления сказывается еще и ряд ее особенностей, среди которых следует выделить: статический или динамический характер нагрузки, постоянный или периодический ее характер и интенсивность нагрузки.
Наряду с основным фактором (рабочей нагрузкой), ведущим к утомлению, существует ряд дополнительных или способствующих факторов. Эти факторы сами по себе не ведут к развитию утомления, однако, сочетаясь с действием основного, способствуют более раннему и выраженному наступлению утомления.
К числу дополнительных факторов можно отнести:
• факторы внешней среды (температура, влажность, газовый состав, барометрическое давление и др.);
• факторы, связанные с нарушением режимов труда и отдыха;
• факторы, обусловленные изменением привычных суточных биоритмов, и выключение сенсорных раздражений;
• социальные факторы, мотивация, взаимоотношения в команде и др.
Субъективные и объективные признаки утомления весьма многообразны, и их выраженность в значительной мере зависит от характера выполняемых упражнений и психофизиологических особенностей человека. К субъективным признакам утомления относится чувство усталости, общее или локальное. При этом появляются боли и чувство онемения в конечностях, пояснице, мышцах спины и шеи, желание прекратить работу или изменить ее ритм и др.
Еще более разнообразными являются объективные признаки. При любом виде утомления детальное обследование может обнаружить изменения в характере функционирования любой системы организма, начиная от двигательной, сердечно-сосудистой и центральной нервной систем и кончая такими, казалось бы не связанными с непосредственной работой системами, как пищеварительная и выделительная. Такое многообразие изменений отражает закономерности функционирования организма как единого целого и характеризует непосредственные реакции обеспечения функциональной нагрузки, а также адаптационные и компенсаторные сдвиги.
При утомлении со стороны центральной нервной системы отмечаются нарушение межцентральных взаимосвязей в коре головного мозга, ослабление условно-рефлекторных реакций, неравномерность сухожильных рефлексов, а при переутомлении – развитие неврозоподобных состояний.
Изменения сердечно-сосудистой и дыхательной систем характеризуются тахикардией, лабильностью артериального давления, неадекватными реакциями на дозированную физическую нагрузку, некоторыми электрокардиографическими сдвигами. Кроме того, снижается насыщение артериальной крови кислородом, учащается дыхание и ухудшается легочная вентиляция, которая при переутомлении может существенно уменьшаться.
В крови снижается количество эритроцитов и гемоглобина, отмечается лейкоцитоз, несколько угнетается фагоцитарная активность лейкоцитов и уменьшается количество тромбоцитов. При переутомлении иногда отмечают болезненность и увеличение печени, нарушение белкового и углеводного обмена.
Однако все эти изменения не возникают одновременно и не развиваются в одном и том же направлении. Их динамика определяется рядом закономерностей; лишь обнаружив эти закономерности, можно не только понять ход развития утомления, но и дать правильную оценку состоянию человека и активно противодействовать развивающемуся утомлению.
Изменения возникают в первую очередь в тех органах и системах, которые непосредственно осуществляют выполнение спортивной деятельности. При физической работе – это мышечная система и двигательный анализатор. Одновременно изменения могут появляться в тех системах и органах, которые обеспечивают функционирование этих основных работающих систем – дыхательной, сердечно-сосудистой, крови и др. С другой стороны, может быть и такое положение, когда уже имеет место снижение функций организма (основных и обеспечивающих систем), а спортивная работоспособность еще сохраняется на высоком уровне. Это зависит от морально-волевых качеств спортсмена, мотивации и др.
Изменения в некоторых системах, не связанных непосредственно с обеспечением выполнения специальных упражнений, при утомлении имеют принципиально иной генез и либо являются вторичными, имеющими общий, неспецифический характер, либо имеют регуляторное или компенсаторное значение, то есть направлены на сбалансирование функционального состояния организма. Из сказанного становится очевидным, что ведущее значение в развитии явлений утомления имеет центральная нервная система, обеспечивающая интеграцию всех систем организма, регуляцию и приспособление этих систем во время работы. Возникшие в процессе утомления изменения функционального состояния центральной нервной системы отражают таким образом двойственный процесс – изменения, связанные с перестройкой функционирования регулируемых систем, и сдвиги, возникающие в связи с процессом утомления в самих нервных структурах.
Утомление динамично по своей сущности и в своем развитии имеет несколько последовательно возникающих признаков. Первый признак возникновения утомления при физической работе – нарушение автоматичности рабочих движений. Второй признак, который наиболее четко может быть установлен, – нарушение координации движений. Третий признак – значительное напряжение вегетативных функций при одновременном падении производительности работы, а затем и нарушение самого вегетативного компонента. При выраженных степенях утомления новые, мало усвоенные двигательные навыки могут угаснуть полностью. При этом очень часто растормаживаются старые, более прочные навыки, не соответствующие новой обстановке. В спортивной практике это может служить причиной возникновения различных срывов, травм и т. д.

7.3. Особенности утомления при различных видах физических нагрузок

Один из основных признаков утомления – снижение работоспособности, которая в процессе выполнения различных физических упражнений изменяется по разным причинам; поэтому и физиологические механизмы развития утомления неодинаковы. Они обусловлены мощностью работы, ее длительностью, характером упражнений, сложностью их выполнения и пр.
При выполнении циклической работы максимальной мощности основной причиной снижения работоспособности и развития утомления является уменьшение подвижности основных нервных процессов в ЦНС с преобладанием торможения вследствие большого потока эфферентной импульсации от нервных центров к мышцам и афферентных импульсов от работающих мышц к центрам. Разрушается рабочая система взаимосвязанной активности корковых нейронов. Кроме того, в нейронах падает уровень содержания АТФ и креатинфосфата, и в структурах мозга повышается содержание тормозного медиатора – гамма-аминомасляной кислоты. Существенное значение в развитии утомления при этом имеет изменение функционального состояния самих мышц, снижение их возбудимости, лабильности и скорости расслабления.
При циклической работе субмаксимальной мощности ведущими причинами утомления являются угнетение деятельности нервных центров и изменения внутренней среды организма. Причина этого большой недостаток кислорода, вследствие которого развивается гипоксемия, снижается pH крови, в 20–25 раз увеличивается содержание молочной кислоты в крови. Кислородный долг достигает максимальных величин -20-22 л. Недоокисленные продукты обмена веществ, всасываясь в кровь, ухудшают деятельность нервных клеток. Напряженная деятельность нервных центров осуществляется на фоне кислородной недостаточности, что и приводит к быстрому развитию утомления.
Циклическая работа большой мощности приводит к развитию утомления вследствие дискоординации моторных и вегетативных функций. На протяжении нескольких десятков минут должна поддерживаться весьма напряженная работа сердечно-сосудистой и дыхательной систем для обеспечения интенсивно работающего организма необходимым количеством кислорода. При этой работе кислородный запрос несколько превышает потребление кислорода, и кислородный долг достигает 12–15 л. Суммарный расход энергии при такой работе очень велик, при этом расходуется до 200 г глюкозы, что приводит к некоторому ее снижению в крови. Происходит также уменьшение в крови гормонов некоторых желез внутренней секреции (гипофиза, надпочечников).
Длительность выполнения циклической работы умеренной мощности приводит к развитию охранительного торможения в ЦНС, истощению энергоресурсов, напряжению функций кислородтранспортной системы, желез внутренней системы и изменению обмена веществ. В организме снижаются запасы гликогена, что ведет к уменьшению содержания глюкозы в крови. Значительная потеря организмом воды и солей, изменение их количественного соотношения, нарушение терморегуляции также ведут к понижению работоспособности и возникновению утомления у спортсменов. В механизме развития утомления при длительной физической работе могут играть определенную роль изменения белкового обмена и снижение функций желез внутренней секреции. При этом в крови снижается концентрация глюко– и минералкортикоидов, катехоламинов и гормонов щитовидной железы. Вследствие этих изменений, а также в результате длительного влияния монотонных афферентных раздражений в нервных центрах возникает торможение. Угнетение деятельности этих центров приводит к снижению эффективности регуляции движений и нарушению их координации. При длительном выполнении работы в разных климатических условиях развитие утомления, кроме того, может быть ускорено нарушением терморегуляции.
При различных видах ациклических движений механизмы развития утомления также неодинаковы. В частности, при выполнении ситуационных упражнений, при разных формах работы переменной мощности большие нагрузки испытывают высшие отделы головного мозга и сенсорные системы, так как спортсменам необходимо постоянно анализировать изменяющуюся ситуацию, программировать свои действия и осуществлять переключение темпа и структуры движений, что и приводит к развитию утомления. В некоторых видах спорта (например, футболе) существенная роль принадлежит недостаточности кислородного обеспечения и развитию кислородного долга. При выполнении гимнастических упражнений и в единоборствах, утомление развивается вследствие ухудшения пропускной способности мозга и снижения функционального состояния мышц (уменьшается их сила и возбудимость, снижается скорость сокращения и расслабления). При статической работе основными причинами утомления являются непрерывное напряжение нервных центров и мышц, выключение деятельности менее устойчивых мышечных волокон и большой поток афферентных и эфферентных импульсов между мышцами и моторными центрами.

7.4. Предутомление, хроническое утомление и переутомление

В последние десятилетия выдвинуто представление о предку томлен и и, или скрытом утомлении, под которым понимается наличие при работе существенных функциональных изменений со стороны некоторых органов и систем, но компенсированных другими функциями, вследствие чего работоспособность человека сохраняется на прежнем уровне. Такая трактовка начальных явлений утомления вполне оправдана. Действительно при выполнении некоторых циклических упражнений (легкая атлетика, бег на коньках и лыжах, велогонки, плавание) при неизменной скорости движения отмечается учащение темпа и уменьшение длины шага (гребка). Снижение же скорости передвижения начинается лишь тогда, когда учащение темпа уже не компенсирует уменьшение шага или когда темп также начинает урежаться. При этом важно подчеркнуть, что учащение темпа и уменьшение шага возникает задолго до того времени, когда для спортсмена становится невозможным сохранять исходные величины этих показателей. Аналогично этому поддержание необходимого рабочего уровня минутного объема дыхания (и соответственно, потребления кислорода) возможно за счет повышения частоты дыхания, компенсирующего понижение глубины дыхания в начальные моменты утомления (рис. 27). Следовательно, такие рано возникающие изменения носят профилактический характер, они направлены на предупреждение или задержку развития утомления и свидетельствуют о совершенстве регуляции различных органов и систем.
Таким образом, развитие скрытого утомления обусловлено изменениями координации двигательных и вегетативных функций без снижения эффективности работы. В физиологическом механизме возникновения этой стадии утомления важная роль принадлежит условным рефлексам и развитию экстраполяции. Благодаря им хорошо тренированный человек значительно лучше использует функциональные резервы организма для смены форм координации двигательных и вегетативных функций с целью предотвращения или отсрочки развития утомления.

 

Рис. 27. Изменения минутного объема дыхания (МОД), частоты дыхания (ЧД) и глубины дыхания (ГД) в процессе бега:
по абсциссе: время, мин: цифры сверху – температура тела;
по ординате: слева – МОД, л/мин, и ЧД, вд./мин, справа – ГД, л

 

Иногда скрытую стадию утомления еще называют компенсированной, а при существенно выраженных признаках утомления – декомпенсированной формой (Моногаров В.Д., 1986). Такая классификация утомления, на наш взгляд, является неудачной как по форме, так и по содержанию. Утомление – это нормальная реакция организма на работу. Компенсация и особенно декомпенсация функций – это совокупность реакций организма на патологические процессы, на повреждения в органах и системах. Соединение нормального функционального состояния организма с патологическими его проявлениями некорректно и теряет всякий физиологический смысл как в теоретическом плане, так и особенно при разработке практических мероприятий по предупреждению развития утомления. Поэтому наиболее целесообразно выделять просто утомление (без каких-либо определений) как нормальное функциональное состояние организма во время работы, признаки которого полностью исчезают после обычного (регламентированного) отдыха. При длительной или интенсивной работе, нарушении режимов труда и отдыха симптомы утомления кумулируются, и оно может переходить в хроническое утомление и переутомление (Солодков А.С., 1978).
Хроническое утомление – пограничное функциональное состояние организма, которое характеризуется сохранением к началу очередного трудового цикла субъективных и объективных признаков утомления от предыдущей работы, для ликвидации которых необходим дополнительный отдых. Хроническое утомление возникает во время длительной работы при нарушении режимов труда и отдыха. Основными субъективными признаками его являются ощущение усталости перед началом работы, быстрая утомляемость, раздражительность, неустойчивое настроение; объективно при этом отмечается выраженное изменение функций организма, значительное снижение спортивных результатов и появление ошибочных действий.
При хроническом утомлении необходимый уровень спортивной работоспособности может поддерживаться лишь кратковременно за счет повышения биологической цены и быстрого расходования функциональных резервов организма. Для ликвидации неблагоприятных изменений функций организма и сохранения спортивной работоспособности необходимо устранить нарушения режимов тренировок и отдыха и предоставить спортсменам дополнительный отдых. При несоблюдении этих мероприятий хроническое утомление может перейти в переутомление.
Переутомление патологическое состояние организма, которое характеризуется постоянным ощущением усталости, вялостью, нарушением сна и аппетита, болями в области сердца и других частях тела. Для ликвидации этих симптомов дополнительного отдыха недостаточно, требуется специальное лечение. Наряду с перечисленными объективными признаками переутомления проявляются резкие изменения функций организма, часть которых выходит за пределы нормальных колебаний: потливость, одышка, снижение массы тела, расстройства внимания и памяти, атипичные реакции на функциональные пробы, которые часто не доводятся до конца.
Главный объективный критерий переутомлениярезкое снижение спортивных результатов и появление грубых ошибок при выполнении специальных физических упражнений. Спортсмены с признаками переутомления должны быть отстранены от тренировок и соревнований и подвергнуты медицинской коррекции.
Осуществленная в последние годы физиологами труда (Сапов И.А., Солодков А.С., Щеголев В.С., 1986) количественная оценка работоспособности различных специалистов позволила установить, что снижение прямых и косвенных ее показателей до 15 % (по сравнению с исходными) свидетельствует о развитии в организме явлений утомления, 16–19 %о наличии хронического утомления, а снижение на 20 % и более – о возникновении переутомления.

8. Физиологическая характеристика восстановительных процессов

Восстановительные процессы – важнейшее звено работоспособности спортсмена. Способность к восстановлению при мышечной деятельности является естественным свойством организма, существенно определяющим его тренируемость. Поэтому скорость и характер восстановления различных функций после физических нагрузок являются одним из критериев оценки функциональной подготовленности спортсменов.

8.1. Общая характеристика процессов восстановления

Во время мышечной деятельности в организме спортсменов происходят связанные друг с другом анаболические и катаболические процессы, при этом диссимиляция преобладает над ассимиляцией. В соответствии с концепцией академика В. А. Энгельгардта (1953), всякая реакция расщепления вызывает или усиливает в организме реакции ресинтеза, которые после прекращения трудовой деятельности ведут к преобладанию процессов ассимиляции. В это время восполняются израсходованные при тренировочной и соревновательной работе энергоресурсы, ликвидируется кислородный долг, удаляются продукты распада, нормализуются нейроэндокринные, анимальные и вегетативные системы, стабилизируется гомеостаз. Вся совокупность происходящих в этот период физиологических, биохимических и структурных изменений, которые обеспечивают переход организма от рабочего уровня к исходному (дорабочему) состоянию, и объединяется понятием восстановление.
При характеристике восстановительных процессов следует исходить из учения И.П. Павлова о том, что процессы истощения и восстановления в организме (деятельном органе) тесно связаны между собой и с процессами возбуждения и торможения в ЦНС. Это положение полностью подтверждено экспериментальными исследованиями Г.В. Фольборта (1951), в которых была установлена тесная связь между процессами истощения и восстановления функциональных потенциалов в работающем органе. Показано также, чем больше энергетические траты во время работы, тем интенсивнее процессы их восстановления. Но если истощение функциональных потенциалов в процессе работы превышает оптимальный уровень, то полного восстановления не происходит. В этом случае физическая нагрузка вызывает дальнейшее угнетение процессов клеточного анаболизма. При несоответствии реакций обновления в клетках катаболическим процессам в организме могут возникать структурные изменения, ведущие к расстройству функций и даже повреждению клеток.
После окончания физических нагрузок в организме человека некоторое время сохраняются функциональные изменения, присущие периоду спортивной деятельности, и лишь затем начинают осуществляться основные восстановительные процессы, которые носят неоднородный характер. Важно подчеркнуть, что вследствие функциональных и структурных перестроек, осуществляющихся в процессе восстановления, функциональные резервы организма расширяются и наступает сверхвосстановление (суперкомпенсация).
Процессы восстановления различных функций в организме могут быть разделены на три отдельных периода.
К первому (рабочему) периоду относят те восстановительные реакции, которые осуществляются уже в процессе самой мышечной работы (восстановление АТФ, креатинфосфата, переход гликогена в глюкозу и ресинтез глюкозы из продуктов ее распада – глюконеогенез). Рабочее восстановление поддерживает нормальное функциональное состояние организма и допустимые параметры основных гомеостатических констант в процессе выполнения мышечной нагрузки.
Рабочее восстановление имеет различный генез в зависимости от напряженности мышечной работы. При выполнении умеренной нагрузки поступление кислорода к работающим мышцам и органам покрывает кислородный запрос организма, и ресинтез АТФ осуществляется аэробным путем. Восстановление в этих случаях протекает при оптимальном уровне окислительно-восстановительных процессов. Такие условия наблюдаются при малоинтенсивных тренировочных нагрузках, а также на отдельных участках бега на длинные дистанции, который характеризуется истинным устойчивым состоянием. Однако при ускорении, а также в состоянии «мертвой точки» аэробный ресинтез дополняется анаэробным обменом.
Смешанный характер ресинтеза АТФ и креатинфосфата по ходу работы свойственен упражнениям, лежащим в зоне большой мощности. При выполнении работы максимальной и субмаксимальной мощности возникает резкое несоответствие между возможностями рабочего восстановления и скоростью ресинтеза фосфагенов. Это одна из причин быстрого развития утомления при этих видах нагрузок.
Второй (ранний) период восстановления наблюдается непосредственно после окончания работы легкой и средней тяжести в течение нескольких десятков минут и характеризуется восстановлением ряда уже названных показателей, а также нормализацией кислородной задолженности, гликогена, некоторых физиологических, биохимических и психофизиологических констант.
Раннее восстановление лимитируется главным образом временем погашения кислородного долга. Погашение алактатной части кислородного долга происходит довольно быстро, в течение нескольких минут, и связано с ресинтезом АТФ и креатин-фосфата. Погашение лактатной части кислородного долга обусловлено скоростью окисления молочной кислоты, уровень которой при длительной и тяжелой работе увеличивается в 20–25 раз по сравнению с исходным, а ликвидация этой части долга происходит в течение 1,5–2 часов.
Третий (поздний) период восстановления отмечается после длительной напряженной работы (бег на марафонские дистанции, многокилометровые лыжные и велосипедные гонки) и затягивается на несколько часов и даже суток. В это время нормализуется большинство физиологических и биохимических показателей организма, удаляются продукты обмена веществ, восстанавливаются водно-солевой баланс, гормоны и ферменты. Эти процессы ускоряются правильным режимом тренировок и отдыха, рациональным питанием, применением комплекса медико-биологических, педагогических и психологических реабилитационных средств.

8.2. Физиологические механизмы восстановительных процессов

Как и любой процесс, происходящий в организме, восстановление регулируется двумя основными механизмами – нервным (за счет условных и безусловных рефлексов) и гуморальным. Одни авторы (Смирнов К.М., 1970) указывали на ведущую роль нервной регуляции при восстановлении, другие (Виру А.А., 1988; Волков В.М., 1990) сообщали о доминирующем влиянии гуморальной. По мнению последних, именно накопление продуктов обмена веществ и гормональные изменения в процессе физических нагрузок определяют скорость, интенсивность и продолжительность восстановительных процессов.
Можно полагать, что в данном случае дело обстоит несколько иначе. Прежде всего следует иметь в виду, что в целостном организме, особенно во время ответственной и напряженной работы и после ее окончания, отделять один механизм от другого нельзя. В любом периоде восстановления (рабочем, раннем, позднем) регуляция этого процесса осуществляется при участии как нервного, так и гуморального механизмов. Вместе с тем очевидно, что на разных этапах деятельности человека их роль неодинакова.
Нервный механизм регуляции, как более быстрый, прежде всего направляет и осуществляет восстановление в период самой деятельности и в раннем периоде восстановления. С помощью нервного механизма преимущественно регулируется нормализация внутренней среды организма, главным образом через сердечно-сосудистую и дыхательную системы (доставка кислорода, питательных веществ, удаление продуктов обмена).
Более медленный гуморальный механизм регуляции обеспечивает прежде всего восстановление водно-солевого обмена, запасов глюкозы и гликогена, а также ферментов и гормонов. Однако еще раз подчеркиваем, что в процессе трудовой и спортивной деятельности человека регуляция органов, систем и их функций в целом осуществляется только совместным, нервно-гуморальным путем.
Во время работы и после ее окончания нервно-гуморальный механизм регулирует, с одной стороны, процессы освобождения и мобилизации энергии, что принято считать эрготропным направлением регуляции, а с другой – процессы, усиливающие анаболизм, т. е. трофотропное направление регуляции (Королев Л.А., 1977).
Многочисленные наблюдения за ходом восстановления различных функций организма спортсменов выявили некоторые особенности в регуляции этих реакций. При изучении функций гемодинамики в периоде раннего восстановления после спортивных нагрузок отчетливо прослеживались своеобразные соотношения адренэргических и холинэргических влияний на регуляцию сердечно-сосудистой системы. Так, относительно быстрое восстановление частоты сердечных сокращений, ударного объема крови и времени систолы указывает на преимущественно адренэргичеекие влияния. Более медленно регулировались и нормализовывались артериальное кровяное давление, время диастолы, тонус мышечных артерий и периферическое сопротивление кровотоку. Такие особенности на данном этапе восстановления обеспечивают своеобразную экономизацию метаболических процессов, выражающуюся в общем снижении потребления кислорода и аккумуляции лактата (холинэргическое влияние).
Наблюдаемая заметная вариативность восстановления зависит также от индивидуальных особенностей спортсменов, уровня их тренированности и характера мышечной работы. Для наиболее быстрого и полного восстановления, свойственного тренированным людям, характерна ускоренная перестройка регуляции в трофотропном направлении. Ускорение этого перехода обусловлено снижением тонуса симпатического отдела и повышением тонуса парасимпатического отдела вегетативной иннервации в процессе систематических тренировок.
В ходе специальных исследований установлено, что в фазе раннего восстановления около 50 % составляют эрготропные реакции, на долю трофотропных реакций приходится примерно 20 %, 30 % принадлежат смешанному направлению регуляции. В фазе позднего восстановления более половины составляют трофотропные процессы, что, по-видимому, является метаболической базой для образования в организме «структурного следа» долговременной адаптации.
Как и всякие системы с обратной связью, восстановительные процессы вследствие функциональных и структурных перестроек приводят к супервосстановлению. Это явление составляет одну из важнейших физиологических основ тренировки, которое, расширяя функциональные резервы организма, обеспечивает рост силы, быстроты и выносливости.

8.3. Физиологические закономерности восстановительных процессов

В настоящее время большинство исследователей (Луговцев В.П., 1988; Волков В.М., 1990; Солодков А.С., 1990; и др.) сводят основные физиологические закономерности восстановительных процессов к следующему: их неравномерности, гетерохронности, фазовому характеру восстановления работоспособности, избирательности восстановления и ее тренируемости.
1. Неравномерность восстановительных процессов впервые была установлена А. Хиллом (1926) при анализе ликвидации кислородной задолженности организма. Автор показал, что сразу после окончания работы восстановление идет быстро, а затем скорость его снижается и наблюдается фаза медленного восстановления. В последующем было показано, что наличие двух фаз восстановления отмечается, как правило, после тяжелой физической работы. После умеренных нагрузок погашение кислородного долга носит однофазный характер, т. е. наблюдается только фаза быстрого восстановления.
Факт неравномерного восстановления в дальнейшем был отмечен в динамике показателей сердечно-сосудистой системы, органов дыхания, нервно-мышечного аппарата, картины периферической крови и обмена веществ. Тщательный анализ этих данных привел к заключению о том, что физиологические константы организма восстанавливаются на различных этапах последействия с разной скоростью. Этот факт составляет принципиальную особенность после рабочих функциональных сдвигов, которую следует учитывать при регламентации режимов труда и отдыха и при выборе тактики применения различных средств рекреации.
2. В основе гетерохронности восстановления лежит принцип саморегуляции, свидетельствующий в данном случае о том, что неодновременное протекание различных восстановительных процессов обеспечивает наиболее оптимальную деятельность целостного организма. В частности, многолетний опыт наблюдений за спортсменами показывает, что сразу после окончания физических нагрузок восстанавливаются алактатная фаза кислородного долга и фосфагены. Через несколько минут отмечается нормализация пульса, артериального давления, ударного и минутного объемов крови, скорости кровотока, то есть тех показателей, которые обеспечивают восстановление лактатной фазы кислородного долга. Спустя несколько часов после нагрузок восстанавливаются показатели внешнего дыхания, глюкоза и гликоген. Обмен веществ, периферическая кровь, водно-солевой баланс, ферменты и гормоны восстанавливаются через несколько суток. Таким образом, в различные временные интервалы восстановительного периода функциональное состояние организма неоднозначно. Это следует принимать во внимание, планируя характер нагрузок и реабилитационные мероприятия.
3. Следующей особенностью после рабочих изменений является фазность восстановления, которая, в частности, выражается в изменении уровня работоспособности.
В динамике восстановления работоспособности различают три фазы:
• сразу после напряженной работы наблюдается тенденция к восстановлению до исходного уровня, что соответствует фазе пониженной работоспособности; повторные нагрузки в этот период вырабатывают выносливость;
в дальнейшем восстановление продолжает увеличиваться, наступает сверхвосстановление, соответствующее фазе повышенной работоспособности; повторные нагрузки в эту фазу повышают тренированность;
• восстановление до исходного уровня соответствует фазе исходной работоспособности; повторные нагрузки в это время мало эффективны и лишь поддерживают состояние тренированности (рис, 28).
4. Различный характер деятельности человека оказывает избирательное влияние на отдельные функции организма, на разные стороны энергетического обмена. Избирательность восстановительных процессов подчиняется этим же закономерностям. Понимание избирательного характера тренировочных и соревновательных нагрузок, а также избирательного характера восстановления позволяет целенаправленно и эффективно управлять двигательным аппаратом, вегетативными функциями и энергетическим обменом.
Избирательность восстановительных процессов после тренировочных и соревновательных нагрузок определяется и характером энергообеспечения. После работы преимущественно аэробной направленности восстановительные процессы показателей внешнего дыхания, фазовой структуры сердечного цикла, функциональной устойчивости к гипоксии происходят медленнее, чем после нагрузок анаэробного характера. Такая особенность прослеживается как после отдельных тренировочных занятий, так и после недельных микроциклов.

 

Рис. 28. Значение восстановительных процессов в изменении работоспособности:
черные прямоугольники – период работы, горизонтальная линия – исходный уровень работоспособности;
I – поддерживание исходной работоспособности при длительных интервалах отдыха;
II – снижение работоспособности при недостаточном восстановлении;
III – повышение работоспособности при повторной работе в период суперкомпенсации

 

5. Развитие и совершенствование долговременной адаптации во время тренировок к физическим нагрузкам проявляется на разных этапах спортивной деятельности (врабатывание, устойчивая работоспособность), а также и в период восстановления. Восстановительные процессы, происходящие в различных органах и системах, подвержены тренируемости. Другими словами, в ходе развития адаптнрованности организма к нагрузкам восстановительные процессы улучшаются, повышается их эффективность. У нетренированных лиц восстановительный период удлинен, а фаза сверхвосстановления выражена слабо. У высококвалифицированных спортсменов отмечаются непродолжительный период восстановления и более значительные явления суперкомпенсации.
Таким образом, анализ физиологических закономерностей восстановительных процессов свидетельствует не только об определенном теоретическом интересе, но и существенном прикладном значении, Важная роль медико-биологических особенностей восстановления и их реализация в практике тренировочной деятельности будут способствовать достижению высоких спортивных результатов, правильному применению реабилитационных мероприятий и самое главное – сохранению здоровья спортсменов.

8.4. Физиологические мероприятия повышения эффективности восстановления

В настоящее время все мероприятия, направленные на ускорение восстановительных процессов, делят на педагогические, психологические, медицинские и физиологические. Первые три вида достаточно хорошо известны и отражены в литературе, по поводу же физиологических мероприятий ясности нет. Конечно, в какой-то мере они взаимосвязаны с медицинскими и другими мероприятиями, но имеют и свои особенности. Что же такое физиологические мероприятия по ускорению процессов восстановления? Их теоретическое обоснование построено на представлениях о физиологических закономерностях спортивной деятельности и функциональных резервах организма. Они включают в себя контроль за состоянием функций организма, динамикой работоспособности и утомления в период тренировки и соревнований, а также мобилизацию и использование функциональных резервов организма для ускорения восстановления. Интегральным критерием оценки эффективности восстановительных процессов является уровень общей и специальной работоспособности.
Все восстановительные физиологические мероприятия могут быть разделены на постоянные и периодические.
Мероприятия первой группы проводятся с целью профилактики неблагоприятных функциональных изменений, сохранения и повышения неспецифической резистентности и физиологических резервов организма, предупреждения развития раннего утомления и переутомления спортсменов. К таким мероприятиям относятся рациональный режим тренировок и отдыха, сбалансированное питание, дополнительная витаминизация, закаливание, общеукрепляющие физические упражнения, оптимизация эмоционального состояния. Эти мероприятия достаточно хорошо известны, реализуются в спортивной практике и не требуют дополнительного обоснования.
Мероприятия второй группы осуществляются по мере необходимости с целью мобилизации резервных возможностей организма для поддержания, экстренного восстановления и повышения работоспособности спортсменов. К мероприятиям этой группы относят различные воздействия на биологически активные точки, вдыхание чистого кислорода при нормальном и повышенном атмосферном давлении (гипербарическая оксигенация), гипоксическую тренировку, массаж, применение тепловых процедур, ультрафиолетовое облучение, а также использование биологических стимуляторов и адаптогенов, не относящихся к допингам, пищевых веществ повышенной биологической активности и некоторые другие.
Часть мероприятий этой группы апробирована и внедрена в практику спорта, в отношении других (особенно фармакологических средств) следует говорить пока с определенной осторожностью. Во-первых, отдельные вещества, не относившиеся ранее к допингам, начинают причислять к последним, а во-вторых, систематическое применение некоторых препаратов может приводить к истощению резервных возможностей организма, снижению его несцецифической устойчивости и возникновению ряда патологических состояний.
Из числа биологически активных веществ, рекомендуемых для ускорения восстановительных процессов и повышения работоспособности, наибольшее распространение получили растительные стимуляторы и адаптогены (женьшень, элеутерококк, левзея, китайский лимонник, заманиха и др.). Они характеризуются широким диапазоном действия, низкой токсичностью, возможностью использования их как в качестве тонизирующих и стимулирующих средств при выполнении ответственных работ, так и с целью ускорения адаптации, повышения общей неспецифической резистентности организма и улучшения восстановительных процессов.
В экстренных случаях можно рекомендовать препараты стимулирующего действия, которые быстро снимают усталость, ускоряют восстановление пластических и энергетических процессов и повышают работоспособность; положительное действие при этом появляется лишь на фоне выраженного утомления. К числу таких препаратов относят сиднокарб, биметил, пироцетам, олифен и актовит. Они восстанавливают функциональное состояние путем срочной мобилизации сохранившихся резервных возможностей организма. Следует иметь в виду, что длительное применение подобных веществ без дополнительного отдыха может приводить к возникновению нежелательных изменений в организме. Поэтому непременным условием достижения благоприятного эффекта является правильный выбор курса приема, а также индивидуализация дозировки в зависимости от функционального состояния организма и характера спортивной деятельности.
Контроль за восстановлением функций организма и работоспособности – довольно трудная задача, для решения которой требуются подготовленные специалисты, необходимое аппаратурное обеспечение и условия для проведения исследований. Однако существуют рекомендации по использованию более простых методических приемов. В частности, для оценки эффективности восстановления при занятиях оздоровительными физическими упражнениями Е.Г. Мильнер (1985) рекомендует использовать пульсометрию или ортостатическую пробу. Если при ежедневном подсчете частоты пульса утром после сна лежа его колебания не превышают 2–4 уд./мин, можно полагать, что нагрузка адекватна функциональным возможностям организма и восстановительные процессы протекают нормально. При выполнении ортостатической пробы в этих условиях (подсчет пульса лежа и после медленного вставания) принято считать, что разница пульсовых ударов менее 16 свидетельствует о хоропгем восстановлении, при разнице 16–18 ударов – восстановительные процессы удовлетворительные, и если частота сердечных сокращений повысилась на 18 уд./мин и более – это говорит о переутомлении и неполном восстановлении. Существуют и другие аналогичные рекомендации.
Совершенно очевидно, что некоторые из названных физиологических восстановительных мероприятий используются педагогами, психологами и спортивными врачами, что, во-первых, характеризует восстановление как комплексную проблему, а во-вторых, говорит о том, что физиологические закономерности функционирования организма должны учитываться и учитываются различными специалистами. В заключение отметим, что проблема восстановления в спорте состоит в дальнейшем изыскании и разработке наиболее эффективных реабилитационных средств и особенно в научном обосновании системы их применения.
Назад: Раздел I Общая спортивная физиология
Дальше: Раздел II Частная спортивная физиология

Антон
Перезвоните мне пожалуйста по номеру 8(963)344-98-23 Антон.
Edwardneist
Приветствую всех! Нашел в интернете один сайт с полезными материалами. Мне он понравился. Рекомендую ВСЯ ПРАВДА О ТАРГЕТИРОВАННОЙ РЕКЛАМЕ. ОБУЧЕНИЕ. ПРОДВИЖЕНИЕ В ИНСТАГРАМ. СТОМАТОЛОГИЯ РЕКЛАМА. @@-=