Глава 2
Биотехнология природного земледелия
Очерк-исследование
Учиться надо у тех, кто УМЕЕТ.
Один из тех, кто не просто понимает «кухню» почвенного плодородия, но и умело создает его на практике – Александр Иванович Кузнецов, житель села Алтайского. Глава ПХ плодопитомник «КАИМ», новатор, испытатель сортов и мастер природной агротехники, вдумчивый микробиолог и агроэколог. Много лет выращивает плодовые, ягодники и саженцы по своей уникальной агротехнике. Ведет свою селекцию, в том числе и подвойных форм, на зимостойкость и устойчивость. Изобрел свой модульный вариант закрытого грунта – пленка легко и быстро укрывает большую площадь. Возможно, только Кузнецов всерьез пытается применять микоризообразующие грибы в любительском садоводстве.
Растения в «КАИМе» развиваются мощно, быстрее обычных, ничем не болеют и рано вступают в плодоношение. Почва не пашется, удобрения и химия не применяются. Плодородие создает исключительно богатый комплекс почвенных обитателей, активно разлагая толстую мульчу. Потому и биотехнология: в основе агротехники – «почвенное пищеварение» с помощью сапрофитов. Но не обычное «экстенсивное», как в природе. Живые процессы гумусообразования Кузнецов многократно усилил и довел до максимума. Его природное земледелие из «экстенсивного» превращается в сверхинтенсивное.
Много лет наблюдая за растениями, Александр Иванович на практике отследил и «кожей прочувствовал», как жизнь микробов, грибов и почвенной фауны дает растениям все необходимое: и усиленное питание, и иммунитет, и защиту, и даже «сотовую» связь друг с другом. Сейчас в «КАИМе» рождается продуктивная биоагротехника для приусадебных участков, экопоселений и малых хозяйств. Кузнецов уверен: даже на десяти сотках можно создать производство, способное обеспечить безбедную жизнь семьи.
Систему «почва – растение» Кузнецов видит исключительно глубоко и цельно. Его взгляд на многое раскрывает глаза. Большой цикл его статей, по сути, – его развернутая концепция и агротехника природного землеДЕЛИЯ, опубликован на его странице http://my.mail.ru/community/sad-i-mikoriza/. Непродвинутым пользователям вроде меня: страничка требует стандартной регистрации.
Мне захотелось обобщить его материалы и рассказать по-своему. Это эссе – результат нашей долгой переписки. Однако нельзя объять необъятное: интереснейшая глава о «тонких материях», воде и информации, а также достижения Александра Ивановича в селекции, в агротехнике плодовых и ягодников, конструкция модульных теплиц и многие ценные наработки остались в его статьях, а также в полной версии эссе (www.kurdyumov.ru, раздел умных агротехнологий). Здесь же – главы, посвященные природной агротехнике и реальным процессам питания растений.
Александр Иванович и Галина Николаевна Кузнецовы приглашают всех земледельцев-природников к общению и обмену опытом. А жителям Алтая и Сибири предлагают продажу своей продукции на месте. По почте саженцы не рассылаются!
Природа: очевидное невидимое
Хаджа рассудил: орехам логичнее расти на маленьких кустах, а тыквам – на больших деревьях. Тут орех врезал ему по макушке.
– О, Аллах, прости дерзнувшего глупца! Нет предела твоей мудрости и предусмотрительности!
Воистину, среди всех возможностей нет ничего выше того, что уже создано тобою! – прозрел Хаджа.
Факт Природы: на этой планете есть всего одна система земледелия, способная вечно воспроизводить устойчивые растительные сообщества: природная, или углеродно-круговоротная. Факт земледелия: или мы грамотно копируем природную систему, воссоздавая процветание биоценоза, – или теряем почвы, пищу, здоровье и среду для жизни.
Наука разложила «культурные» почвы на молекулы, но так и не увидела главное: роль органики опада. И не могла увидеть: в культурных почвах этой органики – мизер. Выпаханная почва – по сути, уже не почва. С таким же успехом можно пытаться понять биохимию, исследуя труп.
На самом деле почва – это буквально: растение-минерало-микробо-грибо-черве-несекомо-растения, бесконечно и циклично использующие друг друга. Абсолютно неразделимая живая реальность: непрерывное общение, обмен информацией, постоянный обмен генами и веществами. Все здесь влияет на других; фактически все состоят друг из друга. И только раздробленный ум ученого делит это на части. И мы, начитанные огородники, увлеченно спорим о типе почвы, о минералах, потом о корнях, об органических удобрениях, о червях, о микробах – и никак не можем увидеть почву и ее обитателей целиком!
Давайте попробуем. Глянем с высоты самого высокого дерева, прожив несколько лет за полчаса. Проследим от начала до конца путь упавшего листа – все, что из него родилось и чем закончилось.
Начало начал жизни – зеленые листья. Тут, начавшись с глюкозы, готовится пища для всех обитателей Земли. Годовой «урожай» биосферы – около 240 миллиардов тонн сухой растительной биомассы! Такова растительная жизнь: она кормит. А животная жизнь, разложив органику обратно на воду и углекислый газ, высвобождает энергию солнца и пользуется ею для всеобщего радостного шебуршания. И мы с вами – больше всех прочих.
Формула фотосинтеза проста: углекислый газ + вода + энергия солнца = глюкоза. Самый простой сахар – и питание, и сырье для синтеза самых разных веществ. Клетчатка для каркаса, жиры для энергии, разные белки – ферменты, гормоны и питательные запасы, антибиотики, витамины и прочие биоактивные вещества (БАВ) – все вышло из глюкозы. Конечно, с помощью массы других атомов и молекул. Их растения выуживают из почвы – корнями.
Но как именно? Это – главный вопрос агрономии. И представьте, он все еще открыт!
Читая учебники, мы просвещенно верим: все просто, как в гидропонной теплице. Мол, в растворе есть всякие соли, всосал, как насос, – и вся премудрость. Это было бы здорово! Увы, практика удобрений вовсе не так однозначна. Во-первых, одни элементы тут же вымываются, а другие прочно связываются и уже нерастворимы. Во-вторых, растворенные соли конфликтуют и конкурируют – одни блокируют усвоение других. В третьих, и главное: отнюдь не солями едиными живо растение! Из плодородной почвы оно получает кучу органических веществ: углеводы, аминокислоты, органические соли и разные БАВ, вплоть до гормонов. Где и как все это взять?
В природе этих проблем нет. Все растения сами производят сырье для своего питания – органику. Но «в сыром виде» усваивать ее не могут. А вот в «варенном» – еще как! Варят, то есть переваривают органику почвенные обитатели. Окончательно готовят ее, сервируют и подают грибы и микробы. А растения не просто едят, но и заказывают, платят и управляют этим сервисом. Это – основной, динамический способ питания растений. По сути, каждый корешок в естественной почве – единый живой «корне-микробо-гриб». Этому симбиозу столько же миллионов лет, сколько самой флоре. И пока симбиоз активен, продуктивность растений оптимальна и бесконечна.
Кладовщики. Кислый и сладкий гумус
Как покормишь, так и поешь.
Закон природы
Не только мы отмечаем праздник Урожая. Осенью вся накопленная органика – листья, стебли, часть веток – падает на землю, а в почве отмирает столько же старых корней. Налетай, кто может – энергию дают!!! И начинается пир сапрофитов – потребителей мертвой органики.
ПЛОДОРОДИЕ. Способ питания сапрофитов – сама суть плодородия. Все сапрофиты всасывают питательные органические растворы. Животные, в том числе и мы с вами – поверхностью кишечников, а микробы и грибы – всей поверхностью клеток и грибниц. Но чтобы всосать, надо сперва приготовить «усвояемый суп». Для этого существуют ферменты.
Ферменты – самые сильные в природе катализаторы и ускорители биохимических реакций. Под их руководством распадаются полимеры, рвутся разные молекулы – или наоборот, соединяются. Пищу расщепляют пищеварительные ферменты. Их сотни, у всех свои. Микробы с грибами выделяют их прямо наружу, буквально напитывают ими все вокруг себя. Растворилось – прошу к столу, супчик готов! Почвенная живность не отстает: выдает с пометом и ферменты, и новых микробов. Представьте себе этот живой «бульон из желудочного сока»: в каждом грамме почвы под мульчей – миллиарды едоков, и все, кто может, переваривают все, что доступно!
Вот тут, во время пира, растения и получают свою законную долю – массу питательных и биоактивных веществ. И получают изрядно! Специально для этого созданы поверхностные, питающие корни – половина, а у деревьев, злаков и прочих мочковато-корневых – три четверти корневой системы. Эти корни распластаны под мульчей, простираясь далеко за пределы крон. Их задача – быстро всосать пищеварительный микробный «бульон», ухватив каждую росинку, любой дождик. В это же время глубинные, или водяные корни достают из подпочвы воду и толику минералов – их растворила и сохранила в гумусе опять-таки поедаемая органическая мульча.
Итого: плодородие – это активное почвенное пищеварение, поедание и переваривание. Почва ест – растения питаются и процветают. Кончилась еда – плодородие исчезает. И корни вынуждены довольствоваться «запасными консервами», в которых почти нечего есть – гумусом. Выживание и какую-то урожайность он обеспечит. Но ведь нам нужна высочайшая продуктивность!
ГРИБЫ И БАКТЕРИИ. 80–95 % всей природной органики разлагают грибы. Это самые древние, многочисленные и удивительные существа планеты. До сих пор мы изучили, дай бог, 5 % их видового разнообразия! Самый мощный ферментный аппарат – у них. Самые приспособляемые и изменчивые, самые устойчивые к холоду и жаре – они. Питаться могут чем угодно, живут везде, где есть хоть какая-то влага. Там, где освоился гриб, микробам достанутся только «объедки». Разные грибы пронизывают почву и древесину, создают симбиозы и паразитируют, развивают многотонные грибницы… Но как раз те, что нужны растениям, живут только в естественной среде – плугов и удобрений не выносят.
Бактерии проигрывают в мощности, зато берут числом и уменьем. У них больше разных способов питания: окисляют и органику, и минералы, могут и фотосинтезировать. Больше разных сред обитания: многие живут без воздуха. Чуть не половина сапрофитных бактерий получает корм и от растений, напрямую сотрудничая с корнями.
По ходу пира наши опавшие листья трансформируются в пространстве и времени.
Прежде всего едоки сменяют друг друга по мере съедания и «переваренности» корма. На свежачок опада сразу накидываются любители растворимых сладких «компотов» – компания дрожжей, бактерий-азотофиксаторов и низших грибов. За ними следуют едоки крахмала, пектина, белков – более сильные грибы, бактерии и актиномицеты. Съев удобоваримое, они уходят, оставив «за столом» более медлительных, но более мощных разлагателей грубой клетчатки и лигнина. В основном это сенные палочки, грибная «плесень» типа триходермы, да разные шляпочные грибы типа опят. Они работают на границе подстилки с плотной почвой. Тут уже одна труха, прожилки, но и они будут съедены и просеяны еще ниже.
В это же время в почве поедаются миллионы отмерших корней. У них двойная роль: и пища, и структура. Именно их каналы – первые квартиры и дороги для почвенной фауны, быстрые пути для новых корней, дрены для воды и «трахеи» для газов. Эта сеть, вкупе с ходами червей – та самая истинная, функциональная, многолетняя почвенная структура, которую невозможно создать с помощью машин.
Разлагая органику, сапрофиты не просто сменяют друг дружку, но и располагаются послойно: чем глубже слой, тем труднее переваривать его остатки. Едоки строго распределили зоны кормежки, и каждый знает свою часть работы. А корни знают структуру едоков. Вот откуда столько неувязок, когда органику закапывают или запахивают. И так мало пользы, когда ее компостируют в кучах.
КИСЛЫЙ ГУМУС. В самом нижнем слое подстилки – самые несъедобные «объедки». Да и кислорода тут меньше. Грубые остатки органики, сама грибница, продукты микробов, их ферменты – все «выпадает в осадок», уплотняется, полимеризуется и темнеет. Это – первичный гумус микробно-грибного происхождения, или «кислый гумус», «мор». Он связывается с минералами, создавая тот самый «обменный», или «поглощающий почвенный комплекс» (ППК), что описан в агрохимии, как основа плодородия.
Реальный гумус – огромное вольное разнообразие полимеров. Гуминовые кислоты, фульвокислоты, гуматы, фульваты – их выделяют весьма условно. Для практики это совершенно не важно. Важнее вот что: количество и качество гумуса зависит не от состава микробов, а от климата, исходного «корма» и минеральной части почвы. Гумус накапливается только в умеренном и холодном климате: здесь сапрофиты и растения не успевают усвоить всю органику – зимой спят. В сухих степях ее оседает больше всего: там еще и в засуху органика почти не усваивается. В дождливых лесах Нечерноземья гумуса меньше: изрядная его часть вымывается водой.
В почве гумус живет тысячелетиями – если, конечно, почву не перелопачивать. Разлагать его прочные соединения могут только «специалисты» с особо мощными ферментами – грибы (шампиньоны, зонтики, навозники, говорушки, дождевики и пр.) и некоторые бактерии. Но энергии тут уже почти нет, есть почти нечего, и охотников крайне мало.
Фактически, гумус – не источник пищи, а ее осадок, «отстойник». Не причина, а следствие, свидетель плодородия. Гумусный слой – признак того, что здесь долго разлагалась органика растений. Он показывает, насколько нестабильно почвенное пищеварение. Для почвы это – общий буфер, склад-накопитель и среда обмена минералов и некоторых БАВ. Растения получают из гумусной кладовой очень мало. Гумус – такая же «пища» для них, как для нас, пардон… осадки канализации.
Настоящая пища для корней – продукты переваривания органики, поставляемые «кухней» сапрофитов. Наглядное доказательство – влажные тропические леса. Здесь грибы и микробы активнее на порядок, органика разлагается круглый год, и гумус просто не накапливается – не успевает. Самая буйная на планете растительность – результат бесконечного пира сапрофитов, а вовсе не гумусных запасов!
Итак, роль сапрофитов проста: расщеплять и поедать то, что дали растения. Мульча – «откормочный цех» почвы, а в целом – система возврата. Микробов и грибов тут плодится тьма тьмущая. В лесу их больше, чем червей: до 400 г на кв. метре, а в степи еще вдвое больше! Выделяя свои продукты и углекислый газ органики, сменяя друг друга и сами становясь пищей, они постепенно отдают растениям все, что от них получили. И лишь крохотные остатки этой органики переходят в состояние стабильного гумуса.
Кстати, давайте уточним кое-что о сапрофитах.
КУДА ДЕВАЕТСЯ МЕРТВЫЙ МИКРОБ? Судьбу «откормленных» микробов агрономы разумеют по-разному. Например, Ю. И. Слащинин пишет, что они массово гибнут, а их трупы – «перегной» – достаются растениям. Другие пишут, что микробы массово поедают друг друга. Кто же прав?.. На самом деле в природе нет ни массовой гибели микробов, ни массового взаимопожирания.
Не могут микробы просто взять и умереть. В природной почве такое немыслимо. Здесь, при любом ухудшении условий, микробы уходят в анабиоз: превращаются в споры, собираются в микроколонии, окукливаются в цисты. В таком виде им нипочем десятилетия засухи или бескормицы.
Съев весь корм, колония сначала растворяет своих же (аутолиз), и на их продуктах откармливает элитную зондеркоманду – продолжателей рода. Те наелись – и опять же в цисты, в споры. Кстати, именно так многие микробы-симбионты помогают корням: отработав, частично аутолизируются – ешьте наш азот! А мы снова в «спорах» переждем. Так и ждут разные микробы нового «приказа»: стоит появиться корму, ффух! – и вот вам новая колония, как огонь полыхнул.
Конечно, микробы-антагонисты часто травят друг дружку ядами, но это скорее предупредительный контакт: корм отбить, территорию охранить. Массовая гибель тут – большая редкость. В основном микробы одного типа питания сотрудничают, создавая дружественные ассоциации. Есть в микромире и направленный паразитизм: одни могут поедать других, чтобы впитать их сахара или белки. Однако и этого в почве совсем немного: сапрофиты умеют отлично защищаться, а сами друг друга не едят.
В общем, «труп микроба» в почве – раритет. Ну конечно, если вывернуть пласт, многих бактерий убьет ультрафиолет. Или шарахнуть почву ядом типа нитрафена – тут уж сдохнет все, что попалось под руку с опрыскивателем. Но и тут, как только жизнь оклемается, «трупы» будут кем-то съедены. В почве никакая органика не лежит дольше минуты – все тут же съедается! И микробные клетки – в первую очередь.
Растения, как уже упомянуто, «есть микробов» не могут: у них ферментов для этого нет. Есть, правда, хищные растения – те и насекомых переваривают, и даже лягушек. Но в наших садах они не водятся.
Видимо, больше всего живых микробов поедает почвенная фауна – вместе с кормом. В компостной куче или под мульчей почти весь объем органики могут переработать черви, и большинство микробов пройдет через их кишечник. Часть, конечно, усвоится. Именно микробы – главный азотный, то есть белковый корм червей, основа почвенного белкового обмена. Однако большинство выйдет наружу мало что живыми – еще и в компании новых сотоварищей.
В общем, в почве все время пульсирует, целенаправленно множится и тухнет постоянное сообщество микробов, их спор и цист. Нам важно, что численность активных кадров и активность их ферментов зависит от корма, влаги и тепла на данный момент. Это и есть главные условия пищеварения. Они же – условия возврата азота и углерода. Эти же условия определяют, в биологическом смысле, скорость общей гумификации. Иными словами – активность динамического плодородия.
ПОЧВЕННАЯ ЖИВНОСТЬ. Итак, с микрофлорой ясно. Довершим картину: есть еще почвенные животные, и они – не последние гости на пиру. Их вклад в распад органики в лесу – 10–15 %, в степи – до 25 %, а в органических грядках еще больше.
Главные животные почвы – черви. Все подробности о них – в главе о червях. Затем насекомые, моллюски, многоножки, мокрицы и всякая мелочь – клещи, ногохвостки, коловратки и прочая мизерность, вплоть до инфузорий. Работают они так же последовательно и живут так же послойно. Их кишечники – свернутая внутрь наружная среда: здесь также работают микробы-сапрофиты, но во многом свои. Свои у них и ферменты, и свой конечный продукт.
Представьте: миллиарды подвижных тварей постоянно запихивают и пропускают через себя свою «внешнюю среду» – почву с органикой, обогащая ее микробами, ферментами и БАВ, а заодно перемешивая, растаскивая и распределяя по своим норам. Вот она – живая архитектура плодородия! Без этой «механики» почва не смогла бы ни дышать, ни накапливать подземную росу, ни поддерживать и питать юные корни.
Жуя прелые листики, черви пожирают и размножают в себе массу микробов: это их белковый корм. Кстати, древнейший симбиоз! Так же поступают и жвачные животные: кормят сеном-соломой своих «пищеварительных» микробов – а потом и усваивают их почти половину. Чистый белок! Вот почему тибетские яки, живущие на одной сухой траве, совершенно не страдают хилостью и дистрофией. По оценкам самой долгоживущей нации – японцев – человеку нужно в сутки не более 20 г пищевого белка в сухой массе, то есть три-четыре куриных яйца. Остальное он так же получает из собственного кишечника. Конечно, если питается, как надо, и не убивает свою флору всякими пестицидами типа консервантов.
Наевшись, почвенная живность радостно ползает, лазает и роет километры всяких ходов. И все выполняют одну главную задачу: 3/4 съеденного выдают в виде помета, старательно обогащенного микробами. То есть поддерживают белковый обмен почвы. Особенно преуспели в этом черви. Фактически они рассеивают микробов и по-своему гумифицируют органику. Помогают им и мокрицы, и разные личинки. После них образуется «сладкий гумус» – «мулль». Он намного питательнее и биологически активнее, чем мор. Тут еще много энергии и питания для микробов и грибов – а значит, и для корней. Поэтому его и называют «биогумусом».
Итого. Плодородие – сам процесс гумусообразования.
Полноценное питание растений – это пищеварение почвы в буквальном смысле этого слова. Продукты прикорневых микробов, помет почвенных животных и пищеварительные растворы сапрофитов, разные БАВ, фиксированный азот и мобилизованные минералы – единый питательный «коктейль» со стола сапрофитов. И даже углекислый газ, насыщающий все это, – их «газообразный кал».
Люди пытаются воссоздать этот «коктейль», усложняя удобрения до смесей биогумусной вытяжки и микробов с комплексами минералов. И тщетно. Ведь растениям важна не просто сама пища, но и возможность усвоить ее: здоровье корней, стабильная влага, угольная кислота, активная структура и физика почвы. Эти условия создают только пирующие сапрофиты.
А гумус – их общие «экскременты» в конечной стадии распада и минерализации. Гумусный слой, по сути, огромная многолетняя общая «какашка» червей, грибов и микробов. Запасной, резервный, буферный – но не плодородный слой. Плодородие родится не в гумусе. Наоборот, гумус родится в плодородии!
И родившись, он стал незаменимым для жизни. Сейчас на планету сыплются «какашки человечества» – около десяти миллионов видов токсичных веществ. Мы давно уже должны были бы отравиться, задохнуться в собственных отходах. Но к счастью, есть гумусный слой. Именно он связывает и удерживает соли тяжелых металлов, радионуклиды, нефтяные производные, пестициды и прочие яды. Гумус – биологический фильтр земной суши. Не уничтожать, не расходовать – создавать его надо!
«ГНОЙ». Странно, но факт: большинство ученых, да что там – даже сами земледельцы-органисты до сих пор путаются с органической частью почвы. Гумус, компост, перегной и даже навоз для них – как бы одно и то же: «органика». Их отношение: «органика хороша любая, и нечего тут усложнять». Это верно лишь в том смысле, что хоть какая-то органика лучше, чем никакой. Однако в естественном плодородии органика органике – рознь. Внесем ясность.
Гумус – конечный продукт ферментативного распада органики, естественный предел ее минерализации.
Компост (в переводе – «смесь, смешанный») – продукт естественного, ферментативного, микробно-черве-грибного процесса гумификации. При правильном компостировании получается аэробный продукт – органика разлагается в присутствии воздуха. Углерод органики биологически окисляется. Отсюда химический и микробный состав дерна и подстилки, комфортность для корней, и главное – санитарная чистота, отсутствие патогенной микрофлоры. Кислород – главное условие нормального почвенного пищеварения.
Навозы и пометы – совсем иное дело. Нигде в природе вы не найдете больших навозных куч! Перегной, то есть навоз, перегнивший в куче – в основном продукт анаэробного процесса: гниения или брожения. В анаэробной среде совершенно иной состав микробов. Сначала куча «загорается» – разогревается до 60–70 ºС: работают термофильные бактерии, которым, как и многим плесеням, жар не страшен. Мы радуемся: куча обеззараживается! Да, многие патогены гибнут, но далеко не все – большинство спор остается. Зато аэробные сапрофиты вымирают массово. Гибнут и кишечные бактерии – защитники организма от патогенов. Остаются плесени и гнилостные бактерии – поедатели белков навоза. При этом выделяются токсичные и зловонные продукты бескислородного полураспада органики: сероводород, метан, индол, скатол и пр.
Конечно, потом, когда куча уже перестает, пардон, «пахнуть», она начинает постепенно дышать, и в нее прорастают сапрофитные грибы – с поверхности начинается аэробный процесс. Но гнилостные микробы никуда не делись. А среди них тьма всяких бацилл и кокков – возбудителей раневых инфекций, гангрен и прочих бед. Буквально – создателей «ГНОЯ». И возбудители грибных болезней – плесени и гнили – тоже сохранились, потому что не было сапрофитов с их антибиотиками.
В природе такое бывает лишь редко и недолго – в трупах, в ямах с водой, в болоте. Но для почвообразования гниение не характерно. И «переГНОЯ» там нет и быть не может. Почва пахнет почвой. Будь там «гной», мы постоянно затыкали бы носы!
Конечно, слово есть слово. Обычно «перегноем» называют уже полностью выветренный навоз, отлежавший минимум года два. Видимо, главное тут не «гной», а «пере», в смысле «уже давно, с избытком перегнил». Но и такой перегной, по сути, мало полезен: вся «кухня», вся энергия и работа органики уже пропали даром! Есть один способ природного внесения навоза: в виде мульчи, тонким слоем на почву, как это делают все животные.
Наконец, общее слово органика – это, в строгом смысле, все органическое: и мертвое, и живое. Все, в чем есть неокисленный углерод. В земледелии «органикой» называют неживую часть органического вещества. Для агрохимика «органика» – все, что сгорело в муфельной печке. Тут опять все запутано! Ученые говорят «органика», а сравнивают разные содержания гумуса, совершенно не обращая внимания на растительные остатки. И на таких вот опытах построена наука о почве!
…Итак, накопители и кладовщики – сапрофиты – обогащают почву всевозможным питанием. Для кого все это? В конечном итоге – для растений. Круговорот замкнулся.
Чтобы произвести питательные вещества и гумус, нужны сапрофиты и черви. А чтобы досыта накормить растения, необходимы симбионты-снабженцы.
Проснувшись по весне, корни начнут изо всех сил «высасывать» растворенную мульчу, добывать воду и пищу для ростового взрыва. И вот тут их возьмут на попечение симбионты: прикорневые микробы и микоризные грибы. Это уже не накопители – наоборот, это добытчики, транспортеры, курьеры и доставка на дом. Их задача – отдать накопленные запасы обратно растениям.
О них и поговорим.
Снабженцы: ризосфера и микориза
Как поешь, так и покормишь!
Закон природы
Факты, наблюдаемые уже лет сто, показывают: полноценное питание растений в природе опосредовано. Его обеспечивают две группы «снабженцев». Первая – прикорневые, или ризосферные микробы. Вторая – грибы, образующие микоризу.
Активно стремясь выжить, растения реагируют, «думают» не столько кроной, сколько корнями. Точнее, их юными растущими кончиками и корневыми волосками. Именно волоски – активная зона обмена. Обмена, а не только всасывания! Корни постоянно выделяют разные БАВ, сахара и даже аминокислоты. В почву уходит до 40 % всех продуктов фотосинтеза. Для чего? Так растения целенаправленно привлекают и разводят нужных микробов и грибы. Корешки растут буквально в чулке из симбиотических колоний.
Вдумаемся: природа не расходует зря ни одной молекулы, а тут – почти половина всей энергии! Разумеется, ее тратят недаром. В обмен растения имеют полное и всестороннее почвенное обслуживание, от питания и ферментов до гормонов и антибиотиков. Отдавая то, что имеют, растения получают то, чего сами взять не могут. Напомню: в обмен на грамм азота азотофиксаторам скармливается до 20 г глюкозы. Так же, по бартеру, «вымениваются» защитные вещества, стимуляторы, минералы, а у грибов и вода. Это истинный симбиоз – тут все заботятся друг о друге. Без него у растений не было бы шансов выжить.
Корневой сервис – микробы и грибы
Зри в корень! Если микроскоп хорош, увидишь массу интересного!
Микробы ризосферы изучены весьма детально. Это разные сапрофиты – любители сахаров и прочей легкодоступной пищи. Кто-то фиксирует азот воздуха, кто-то переводит его в простые соли, кто-то растворяет фосфор и калий, кто-то поставляет микроэлементы, кто-то ферментативно разлагает прочные гуминовые соединения. И все, как зеницу ока, берегут своих кормильцев – растения – от нападения патогенов, выделяя целые комплексы фитонцидов и антибиотиков. Например, сапрофитный гриб триходерма производит до 60, псевдомонада – до 40, а сенная палочка – около 80 «лекарств»! В природе растения почти не страдают от корневых гнилей – в отличие от «интенсивных» полей.
И вот самое важное: ассоциация ризосферных микробов тонко управляется самим растением. Выделяя то или это, растение буквально заказывает, что ему сейчас нужно. Например, нужен азот – выделяет углеводы и сигнальные вещества для азотофиксаторов. Те съели всю свою порцию, дали пайку азота – и сошли со сцены: ужались, растворились, окуклились в цисты. Теперь нужен фосфор, и растение чем-то кормит фосфомобилизаторов. Псевдомонадам – защитникам от гнилей – нужен азот, и выделяются аминокислоты. И так весь сезон: корни растут, и вокруг них все время «дышит» состав и «качается» численность обслуги.
Иначе говоря, ризосфера – не просто поставщик, но и дозатор. Те фантастические датчики, с помощью которых ученые выращивают в фитотронах невероятно продуктивные растения – вот они. Если есть все условия для микробов, растение использует их по максимуму. Многие, первыми из коих были изучены бобовые, поселяют симбионтов прямо в своих корнях. Прорастающее семечко «ловит» симбионтов в почве, быстро прикармливает, поселяет и начинает «доить». Иначе всходы развиваются крайне медленно и хило.
Теперь проясним общую картину. Считается, что главная работа ризосферы – поставка азота в обмен на сахара. И многие идеализируют азотофиксацию, считая ее чуть ли не единственным источником азота. На деле ее возможности ограничены: плата азотофиксаторам очень не дешева! Посему в природе используется более простое и малозатратное азотное питание: прямое всасывание органических растворов. Высокий белковый обмен почвы может давать на порядок больше, чем все азотофиксаторы. Чем больше в почве грибов и бактерий, тем активней белковый обмен и тем проще получать азотистые вещества. В том числе и органические, типа аминов и аминокислот. Как же их не заметили? Да просто: их азот агрохимическим анализом не определяется.
Но одна ризосфера вряд ли помогла бы растительному царству завоевать все уголки планеты. Крохотным бактериям и микрогрибкам, хоть их и триллионы, не доступен большой окружающий объем. Сравните с ними шляпочный гриб: центнеры его грибницы могут пронизывать сотни кубометров почвы. И представьте, вся эта живая масса напрямую подключена к корням растений!
В добывании почвенных растворов и воды грибам, видимо, нет равных. Всасывающая поверхность грибниц в сотни раз больше, чем у корней. Некоторые грибницы расползаются на сотни метров и весят по нескольку тонн! И если растения могут усваивать только «юный», подвижный гумус, то сапрофитные грибы с их ферментным аппаратом – почти все: и фосфориты, и прочные гуматы, и клетчатку с лигнином, а уж органику мульчи «глотают, не жуя».
Растения и грибы нашли друг друга еще на заре живого мира, и с тех пор вместе. По разным данным, до 95 % всех наземных растений могут создавать микоризу с дружественными грибами. Их совместная эволюция закреплена генетически: у растений давно найдены «микоризные» гены, а у грибов «растительные». Фактически правильнее говорить о микоризе, как о самостоятельной, особой форме питания растений.
Для природных почв микориза – не исключение, а основное правило. А вот в пахотных почвах эти грибы жить не могут: не выдерживают разрушительного землепользования. Немногие опыты показывают: микориза может значительно увеличивать урожайность. Судя по всему, культурные растения здорово без нее страдают! Но вот парадокс: этих исследований – единицы. Дельную информацию о микоризе найти очень сложно: о ней знают лишь немногие ученые да самые продвинутые лесоводы. А для полей, садов и огородов микориза – тэрра инкогнита, белое пятно в агронауке.
В отличие от микробного симбиоза микориза – очень плотный контакт, почти срастание. Грибница может оплетать корни, присасываясь, а может врастать своими выростами прямо в клетки корневых тканей. Здесь тот же взаимовыгодный обмен: растения грибам – сахара, а грибы растениям – воду и свои растворы, как минеральные, так и органические. Причем, судя по всему, в огромных количествах: подключившись к грибу, многие растения даже перестают выращивать корневые волоски! Фактически, образуется единый организм: грибо-растение.
Показано: корни сами ищут подходящую грибницу, и особенно усердно, когда чего-то не хватает в питании. Факт: почти все растительные семейства – микоризники. Некоторые вообще без грибов жить не могут. Вспомните хотя бы вересковые, брусничные, облепиху, орхидеи, лещину – те без своего гриба даже не прорастают. Из грибов же симбиотируют далеко не все, а лишь те, кто привык питаться растительной глюкозой. Эти тоже сами ищут в почве своего партнера – стремительно растут в сторону учуянного сахара. Даже споры этих грибов не прорастают без корневых выделений своего партнера. Как именно сотрудничать, партнеры «догадываются» по сигнальным веществам.
Если ризосферные микробы – специализированные магазины, то микориза – гипермаркет. Видимо, обмен продуктами и питание она увеличивает многократно. И прежде всего – снабжение водой. Главная беда наших растений – дефицит влаги. В среднем на сухой килограмм урожая растения испаряют 500–900 литров воды. Почти вся она улетает через листья, обеспечивая упругость, прохладу и поступление питания. При любой нехватке воды растения тут же замирают, снижая испарение. Для них это способ выжить, а для нас – потеря урожая. Мы усердно поливаем огороды, но наши шланги и лейки – убогость: вода, вылитая на голую поверхность, почти вся испаряется, не дойдя до корней. Такой полив лишь охлаждает и засоляет почву.
А вот микориза – настоящий насос. В природе она фактически исключает водный дефицит, усиливая подачу воды часто на порядок. И вода эта не простая – растворы минералов, витаминов и других важных БАВ.
Особо важна поставка калия (К) и фосфора (Р), без которых нет нормального развития и плодоношения. Их запасы в почве огромны, но калий быстро вымывается, а фосфор, наоборот, очень трудно растворить. Фактически частый дефицит Р и К – результат отсутствия микоризных грибов. Только они дают эти элементы строго по потребности, моментно и сбалансировано. Никакой агроном не в состоянии соблюсти такой режим.
Однако прямой дефицит Р и К – только часть проблемы. Это – простой «стройматериал». А есть еще и сами «строители»: гормоны развития. Закладкой плодовых органов руководят именно они. И тут открывается еще одна, возможно главная роль микоризы.
Оказывается, сам гриб может стимулировать свои растения, поставляя корням определенные гормоны. Например, гиббереллины, растительные гормоны роста. Их найдено уже под сотню! Но грибу не обязательно синтезировать их: грибницы могут их просто передавать, создавая «коммуникационные сети». Опыты с использованием «меченых атомов» показали: гриб подключается не к одному, а сразу ко многим растениям, связывая их в единую систему. И питательные вещества, и гормоны, и БАВ циркулируют через грибницу, поддерживая жизнь всей популяции. Фактически с помощью микоризы растения и кормят, и стимулируют друг друга. Сверхорганизм биоценоза – не метафора, а буквальность. Он имеет даже «кровеносную систему»! Не потому ли сеянцы вблизи «родителей» развиваются лучше?.. Не потому ли растительные сообщества так устойчивы?
Но и биохимия – еще не все. Очевидно, микориза – энергоинформационная система связи через корни. Известно: повреди одно растение – тут же реагируют и его соседи. Не микориза ли виновна в столь быстрой реакции? Молдавский академик С. Н. Маслоброд установил: живые клетки и части растений активно общаются с помощью мгновенных кодированных электромагнитных сигналов. Почему грибница должна быть исключением?
Нельзя забывать и об информационной памяти самой воды. Вода – система молекулярных кластеров, жидкий кристалл, буквально считывающий информацию со всего, с чем соприкасается. Вероятнее всего, симбионты общаются и через воду. Природная вода, проходя через грибницу, несет растению отчет о потребностях гриба. Раствор, поступающий от растения, несет грибу данные о нуждах растения.
Нам важно следствие этого общения: гриб интенсивно забирает «лишнюю» глюкозу, давая растению все для ее нового синтеза. Фактически микориза стимулирует усиление фотосинтеза.
Итак, микориза – это полноценные «еда и питье», передача гормонов и информации. А в целом – качественная связь растений, устойчивость и цельность биоценозов. Вот так, ни много, ни мало! А если учесть и прямой обмен генами, то ясно: с корнями сотрудничает цельная, неразрывная система «грибы-бактерии-фауна». И в ней бурлит такой интенсивный обмен и продуктами и информацией, который мы не в силах даже вообразить!
Страшно подумать: в копаных и паханых почвах все эти древние природные механизмы убиты. Полезным грибам тут не выжить, фауны крайне мало, а микрофлора наполовину патогенная. И вот это – «агрокультура»! Может, потому и живут наши растения, как одинокие путники в пустыне: страдают, болеют и плодоносят не каждый год? И клянут судьбу, попав в горшки, стерилизованные теплицы и «вспушенные» грядки, и морщатся, глотая удобрения и яды?.. То «прут в лопух» и почти не дают плодов, то покрываются плодами и чахнут?..
«Но они, тем не менее, плодоносят!» – возразите вы. Да. Но чаще всего – вынужденно, от страха, для скорейшего продления рода. Для промышленной агрономии это норма. Но не надо путать дефицит и нормальное питание! На самом деле растения могут быть нормально накормлены. И обслужены, и связаны между собой. Они могут и бурно расти, и хорошо плодоносить каждый год, без периодичности и утомления. Это возможно – если их обслуживают микоризные грибы и симбионты ризосферы, а помогают им черви. В этом и состоит суть природного землеДелия.
Итак, вырисовывается ясная картина растительного питания.
Основное питание – динамическое, за счет почвенного пищеварения. Дополнительное, запасное – гумусное. Как первое, так и второе в норме – симбиотическое, и лишь при невозможности симбиоза – автономное. Видимо, каждое растение находится в какой-точке от такой импровизированной диаграммы (рис. 2). Разумеется, границы между «типами питания» тут чисто умозрительные, да и условия каждый день меняются. Но зато видно, к чему надо стремиться!
Итак, с почвой разобрались. Вот теперь можно переходить непосредственно к устройству конкретного огорода.
Рис. 2