Все выше, и выше, и выше: аэростаты, детекторы рентгеновского излучения
Каждому физику, чтобы добиться реальных результатов (если он, конечно, не теоретик, которому нужен только лист бумаги или экран компьютера), необходимо достать деньги на оборудование, платить аспирантам и лаборантам, а иногда и довольно далеко путешествовать. Для получения финансовой поддержки своих исследований ученые подают заявки на гранты, которые распределяются на конкурентной основе. Я знаю, что это звучит не слишком воодушевляюще, но, поверьте, без этого в нашей науке ничего не бывает. Ничего.
Вы можете иметь прекрасную идею научного эксперимента или наблюдений, но если вы не знаете, как превратить ее в выигрышное предложение, то вы не сдвинетесь с места. Мы, ученые, всегда конкурировали с лучшими из лучших, так как это поистине беспощадный бизнес. И он таким и остается – для любого ученого, в любой области деятельности. Всякий раз, когда вы видите успешного ученого-экспериментатора в любой области науки – биологии, химии, физики, информатики, экономики или астрономии, – знайте: перед вами человек не выдающихся интеллектуальных способностей, а выдающегося умения обойти конкурентов, занимающийся этим постоянно, а не раз и не два. Как правило, такой талант не делает людей милыми в общении конформистами. Вот почему моя жена Сьюзен, десять лет проработавшая в Массачусетском технологическом институте, любит говорить: «В МТИ работают только люди с большим эго».
Итак, предположим, нам удалось получить финансирование – кстати, у нас это действительно получалось: меня всегда щедро поддерживали Национальный научный фонд и НАСА. Поднять почти на 50-километровую высоту аэростат с установленным на нем рентгеновским телескопом весом около тонны (вместе с парашютом), который вам нужно получить назад целым и невредимым, – чрезвычайно сложно. Вам необходима постоянно тихая погода на старте, потому что аэростат – штука настолько деликатная, что сильный порыв ветра может уничтожить всю миссию. Вам понадобится определенная инфраструктура – пусковые площадки, пусковые устройства и тому подобное, – чтобы аэростат поднялся выше атмосферного слоя Земли. Вам нужно оборудование, позволяющее отслеживать перемещения аэростата. Поскольку я хотел вести наблюдение в общем направлении центра Млечного Пути, который мы называем галактическим центром, где расположены многие рентгеновские источники, мне обязательно следовало делать это в Южном полушарии. Я выбрал для запуска австралийские города Милдьюру и Эллис-Спрингс. В результате я много времени проводил вдали от дома и семьи, обычно по несколько месяцев без перерыва, а ведь к тому моменту у меня было четверо детей.
Как я уже говорил, запуск аэростата – дело весьма дорогостоящее. Сами аэростаты огромные. Самый большой из них (в то время самый большой в мире и, вполне может быть, по-прежнему самой большой из всех когда-либо запущенных) имел объем около полутора миллионов кубометров; когда он летал на высоте 44 километра в полностью надутом состоянии, его диаметр превышал 70 метров. Аэростаты изготавливались из очень легкого полиэтилена, тоньше папиросной бумаги. Если такой шар прикасался во время запуска к земле, он рвался. Эти гигантские и очень красивые воздушные шары весили более 300 килограммов. Мы обычно имели дублирующие шары стоимостью 100 тысяч долларов каждый – и это, заметьте, было сорок лет назад, когда такие деньги были действительно большими.
Изготавливались аэростаты на огромных заводах. Клинья, секции шара, внешне похожие на дольки мандарина, производились отдельно, а затем соединялись с помощью термосклеивания. Склейку производитель доверял исключительно женщинам, потому что, по его словам, мужчины для такой работы не годятся: они слишком нетерпеливы и делают чересчур много ошибок. Кроме того, нам нужно было доставить в Австралию гелий для надувания аэростатов, а он обходился почти в 80 тысяч долларов на аэростат. Короче говоря, по нынешним ценам мы платили более 700 тысяч долларов за один воздушный шар и гелий для него – и это не учитывая затрат на аэростат-дублер и нашу транспортировку, жилье и питание. А ведь мы, как ни странно, пытались раскрыть тайны дальнего космоса, забираясь в самый центр австралийской пустыни, и к тому же всецело зависели от погодных условий. Я еще не рассказал вам о Джеке, что непременно сделаю позже.
Впрочем, по сравнению с телескопами аэростаты были еще дешевы. Чтобы построить телескоп, чрезвычайно сложный аппарат весом около тонны, требовалось почти два года и миллион долларов – 4 миллиона в нынешних деньгах. У нас никогда не хватало средств на два телескопа одновременно. И если мы теряли телескоп – а такое с нашей группой случалось дважды, – нам приходилось откладывать наблюдения в лучшем случае на два года. И мы не могли начать строить новый телескоп, не получив финансирования. Так что потеря оборудования была настоящей катастрофой. И не только для меня лично, отнюдь нет. У моих аспирантов тоже возникали большие проблемы. Они активно занимались созданием телескопов, ведь их диссертации базировались на результатах наших наблюдений, а значит, и на этих аппаратах. Можно сказать, их ученые степени двигались вверх и вверх вместе с нашими аэростатами.
Как я уже говорил, мы очень зависели от погоды. В стратосфере гуляют сильные ветры, примерно полгода дующие с востока на запад со скоростью до 160 километров в час, и еще полгода с запада на восток. Два раза в год эти ветры меняют направление на обратное – мы называем это разворотами, – и тогда их скорость на высоте 44 километра резко снижается, что позволяло нам проводить наблюдения в течение многих часов. Таким образом, мы должны были находиться в месте, где могли измерить скорость ветров и начать запуск именно на этапе разворота. Мы через день исследовали атмосферу с помощью метеозондов, которые отслеживались посредством радара. В большинстве случаев они лопались, поднявшись вверх километров на сорок. Но предсказывать поведение атмосферы – вовсе не то же самое, что катать по желобу металлические шарики во время лабораторной демонстрации. Атмосфера несравненно более сложна и непредсказуема, а ведь буквально все, что мы делали, в огромной мере зависело от правильности прогнозов.
Впрочем, это еще не все. На высоте 10–20 километров находится слой атмосферы, называемый тропопаузой; там очень холодно – минус 50 °C, – от этого наши аэростаты становились очень ломкими. Там также были сильные потоки ветра, которые мощно ударяли в шар, отчего он запросто мог лопнуть. И вообще очень многое в нашем деле могло пойти не так, как ожидалось. Однажды мой аэростат сдуло в море – и конец телескопу. Девять месяцев спустя обломки очень дорогого экспериментального оборудования были найдены на пляже в Новой Зеландии. Чудом, с помощью компании Kodak, мы смогли извлечь данные, записанные прибором на пленку.
Мы готовились к запускам снова, и снова, и снова, и все же, как я всегда говорил, как ни старайся, без доли везения не обойтись. Иногда везения требовалось много. Мы должны были доставить оборудование на станцию, расположенную, как правило, очень далеко. Затем мы проверяли телескоп, калибровали приборы и убеждались, что все нормально работает. Далее нам надо было прикрепить телескоп к парашюту, который затем крепился к аэростату. Проведение всех тестов на пусковой площадке и подготовка аэростата к полету порой занимали около трех недель, а за это время вполне могли измениться погодные условия. И нам не оставалось ничего другого, как сидеть и ждать, поддерживая оборудование в рабочем состоянии. Хорошо еще, что Элис-Спрингс – фантастический город в пустыне в самом сердце Австралии. В нем и впрямь создавалось впечатление, что ты находишься в середине пустоты. Однако небо было очень ясным, а ранние утра, когда мы пытались произвести запуск, невероятно зрелищными: ночное небо прямо на наших глазах приобретало предрассветный синий оттенок, а когда вставало Солнце, небо и пустыня окрашивались в яркие розовые и оранжевые цвета.
После того как мы были готовы начинать, нам следовало дождаться ветра скоростью около 5 километров в час, стабильно дующего в нужном направлении в течение как минимум трех-четырех часов – именно столько времени требуется на то, чтобы оторвать аэростат от земли (на одно только надувание уходило два часа). Поэтому мы в основном производили запуск на рассвете, когда ветер был наиболее слаб. Но нередко случалось, что наш прогноз оказывался неверным, и нам опять приходилось ждать, ждать и ждать подходящей погоды.
Однажды, как раз посередине запуска в Милдьюре – мы даже еще не начали надувать шар, – вопреки прогнозу метеорологов, поднялся сильный ветер. Аэростат порвался, но, слава богу, телескоп уцелел! Вся наша подготовка, а с ней и 200 тысяч долларов, улетучились в считаные секунды. И нам ничего не оставалось, как ждать лучшей погоды и проверять запасной аэростат с нуля. Так что всякое бывало.
Неудачи порой просто преследовали нас. Во время моей последней экспедиции в Элис-Спрингс мы потеряли два аэростата прямо при запуске, потому что команда допустила несколько очень серьезных ошибок. Та экспедиция вообще оказалась провальной, но, по крайней мере, телескоп уцелел. Он так и не оторвался от земли. А во время моей последней экспедиции (в 1980 году) в Палестину, в Техасе, восемь часов полета прошли вполне успешно, но когда мы с помощью радиокоманды прекратили полет, то лишились телескопа, потому что не открылся парашют.
Сегодня запуски аэростатов по-прежнему сопряжены с риском. Во время одной попытки запуска, предпринятой НАСА в том же Элис-Спрингсе в апреле 2010 года, что-то пошло не так, и шар лопнул при попытке взлететь, уничтожив оборудование стоимостью в миллионы долларов и чуть не покалечив людей, наблюдавших за процессом. Вы можете увидеть это по адресу: .
За много лет исследований я запустил около двадцати аэростатов. Только пять из них дали сбой во время запуска или не поднялись до нужной высоты (должно быть, помешала утечка гелия). Это считается довольно хорошим показателем успеха – 75 процентов.
За несколько месяцев до приезда на пусковую площадку мы обычно тестировали экспериментальное оборудование в городе Уилмингтон, штат Массачусетс. Мы помещали телескоп в вакуумную камеру и понижали давление воздуха до уровня, который будет на высоте, то есть почти до трех тысячных от одной атмосферы. Затем мы охлаждали телескоп до – 50 °C и включали оборудование – все детекторы рентгеновского излучения – и на протяжении двадцати четырех часов подряд каждые двадцать минут по десять секунд отслеживали рентгеновские лучи из радиоактивного источника. Некоторые телескопы наших конкурентов – да-да, мы действительно относились к другим командам, занимавшимся такими же исследованиями, как к конкурентам, – иногда давали сбой из-за разрядки аккумуляторов при низких температурах, а то и вовсе не работали. Но с нами такого никогда не случалось, потому что мы очень тщательно тестировали оборудование. Если на этапе тестирования выяснялось, что аккумуляторы плохо держат заряд, мы разбирались, как при необходимости исправить ситуацию и сохранить энергию.
Была еще проблема коронного разряда – искрения высоковольтных проводов. Некоторое наше оборудование работало на очень высоком напряжении, а сильно разреженный воздух, давление в котором очень низкое, – идеальная среда для искрения проводов. Помните о жужжании, издаваемом высоковольтными линиями передач, о нем я упоминал в главе 7? Это и есть коронный разряд. Каждый физик-экспериментатор, имеющий дело с высоким напряжением, знает о вероятности коронного разряда. Я показываю примеры этих искр на своих лекциях. Там коронный разряд – зрелище красивое и веселое, но на огромной высоте в разреженном воздухе это настоящая катастрофа.
Для непрофессионалов объясняю: оборудование начинает работать с перебоями, и вы получаете так много электронных помех, что не можете выделить рентгеновские фотоны. Насколько серьезна эта проблема? Да она грандиозная! Вы вообще не получаете полезных данных в течение полета. Обычно она решается покрытием всех используемых в оборудовании высоковольтных проводов силиконовой изоляцией. Правда, некоторые исследователи делали это и все равно получали коронный разряд. Но наше тщательное тестирование и подготовка дали результаты. У нас ни разу не было коронных разрядов. Это лишь один из десятков сложных инженерных вопросов, связанных со строительством телескопов, – вот почему их изготовление столь дорого обходится.
Как же мы обнаруживали рентгеновское излучение, когда нам, несмотря на все трудности, все же удавалось вывести телескоп в верхние слои атмосферы? Ответ на этот вопрос не так уж прост, поэтому вам придется послушать мои объяснения. Начнем с того, что мы использовали специальный вид детектора (кристаллы йодида натрия), а не пропорциональные счетчики (заполненные газом), которые устанавливаются на ракетах, то есть приборы, способные обнаружить рентгеновские лучи с энергиями выше 15 кэВ. Когда рентгеновский фотон проникает в один из таких кристаллов, он может выбить электрон с его орбиты и передать ему свою энергию рентгеновского излучения (это называется фотоэлектрическим поглощением). Этот электрон, в свою очередь, создает в кристалле след из ионов, после чего останавливается. Когда ионы нейтрализуются, они высвобождают энергию – в основном в форме видимого света. Так получается вспышка света – в нее преобразуется энергия рентгеновского фотона. Чем выше энергия рентгеновских лучей, тем сильнее мигает световой индикатор. Мы использовали для обнаружения вспышек света и преобразования их в электрические импульсы фотоэлектронный умножитель (ФЭУ): чем ярче вспышка света, тем выше напряжение импульса.
Затем мы усиливали эти импульсы и отправляли их в дискриминатор, который измеряет напряжение электрических импульсов и сортирует их по величине, указывающей на энергетические уровни рентгеновского излучения. В те далекие дни мы регистрировали рентгеновское излучение только на пяти различных энергетических уровнях.
Чтобы получить запись обнаружений излучения после полета аэростата, мы регистрировали их в полете с указанием уровня энергии и времени обнаружения. Мы подсоединяли дискриминатор так, чтобы он направлял эти упорядоченные импульсы на светодиоды, которые создавали картинку огней, мигающих на пяти разных энергетических уровнях. И фотографировали эти мигающие огни непрерывно работающей камерой.
Если свет был, он оставлял на пленке след. В целом пленка наблюдения выглядела как ряд штрихов и линий, полосок и черточек. Вернувшись в МТИ, мы «читали» ее с помощью специального устройства, разработанного Джорджем Кларком. Этот прибор преобразовывал линии и черточки в перфоленту – бумажную ленту с отверстиями. Затем мы расшифровывали эти перфоленты с помощью светочувствительных диодов и записывали полученные данные на магнитную ленту. Мы даже написали специальную компьютерную программу на языке Fortran (я понимаю, как доисторически это сейчас звучит) и использовали ее для считывания информации с магнитной ленты в память компьютера, который – наконец-то! – выдавал данные о рентгеновском излучении в пяти различных энергетических каналах.
Я знаю, что все это, скорее всего, покажется вам на редкость заумным. Но только подумайте, какая перед нами стояла задача! Мы пытались измерить скорость счета (количество рентгеновских лучей в секунду) и уровни энергии рентгеновских фотонов, а также определить местонахождение источника, испускающего эти фотоны, которые на протяжении тысяч лет со скоростью света распространялись по всей галактике, разрежаясь с каждым участком пройденного расстояния. И в отличие от стабильного оптического телескопа, система управления которым способна удерживать его наведенным на одно и то же место в течение многих часов и возвращать на это место ночь за ночью, мы могли воспользоваться только конкретно определенным периодом времени (чаще всего не более одного раза в год) – всегда в те считаные часы, когда хрупкий аэростат возносил тяжеленный телескоп на много километров над поверхностью земли.
После успешного запуска аэростата я, как правило, следовал за ним в небольшом самолете, держа шар в поле зрения (в дневное время – не ночью) на высоте 1,5–3 километра. Можете себе представить, на что были похожи эти многочасовые полеты. Я человек немаленького роста. В этих крохотных четырехместных самолетах летать было страшно неудобно, особенно если находишься в воздухе восемь, десять, а то и двенадцать часов подряд. В довершение всего все время, пока шар был в воздухе, я ужасно нервничал: вдруг что-то пойдет не так. Расслабиться удавалось только после того, как в руках оказывались нужные данные.
Аэростат был настолько огромным, что даже на высоте почти 45 километров при ярком солнечном свете его, как правило, было отлично видно. После запуска мы могли следить за ним довольно долго с помощью радара – до тех пор, пока это не становилось невозможным из-за линии изгиба Земли. Поэтому мы оснастили шар радиопередатчиком и по ночам переходили на слежение исключительно с помощью радиомаяка. Мы постоянно оповещали население о проводящихся исследованиях, размещая статьи о запуске в местных газетах, но наши воздушные шары могли дрейфовать на сотни километров, и мы получали сотни сообщений о НЛО. Это было забавно, но вполне объяснимо. А что еще должны были думать люди, заметив в небе нечто неопределенного размера? Для них это действительно был неопознанный летающий объект.
Стоит отметить, что, несмотря на все наши прогнозы погоды и тщательное планирование, даже на этапе разворота ветры, дующие на высоте 45 километров, оказывались крайне ненадежными. Однажды в Австралии мы ожидали, что аэростат полетит из Элис-Спрингс на север, а он вместо этого направился прямиком на юг. Мы наблюдали за ним до захода солнца и всю ночь с помощью радиосвязи. К утру шар слишком приблизился к Мельбурну, а нам не разрешалось входить в воздушное пространство между Сиднеем и Мельбурном. Конечно, никто не собирался его сбивать, но мы обязаны были что-то предпринять. Когда своенравный аэростат почти достиг запрещенной зоны воздушного пространства, нам, хоть и с огромной неохотой, пришлось отдать радиокоманду об отделении экспериментального оборудования от шара. Отделение телескопа повреждало аэростат: он не выдерживал мощной ударной волны вследствие резкого катапультирования тяжелого оборудования. Телескоп начинал падать, парашют раскрывался (кроме того случая в 1980 году), и аппаратура в медленном полете благополучно возвращалась на землю. Огромные куски воздушного шара тоже падали вниз, как правило, в радиусе пяти километров. Рано или поздно это случалось с каждым запущенным аэростатом, и это всегда было очень грустно (хотя неизбежно и необходимо), потому что нам приходилось прерывать миссию, останавливая поступление данных. А нам, понятно, хотелось, чтобы телескоп находился на высоте как можно дольше. В те дни мы остро нуждались в полученной с его помощью информации – она была нашей самой желанной целью.