Книга: Математика для гиков
Назад: 3.22. Байесовская статистика
Дальше: 3.24. Деление бактерий

3.23. Бейсбол и уровень подачи питчера

Математическое понятие: статистика

Пожалуй, ни один вид спорта не содержит в себе столько математики, сколько бейсбол. Статистика пронизывает все аспекты игры, начиная от удара до подачи, и ни один серьезный любитель бейсбола не может не иметь хотя бы элементарных знаний о числах. Но как люди считают эти числа?
Давайте посчитаем уровень подачи питчера. Этот статистический показатель применяется только к питчерам, чтобы определить, насколько хороши их подачи. Изначально в игре не было подающих, выходящих на замену основному питчеру; подающий, который начал игру, должен был ее и закончить. Так что если кто-то хотел посмотреть, насколько эффективен был подающий, он мог просто посмотреть, сколько игр питчер выиграл. Но когда стали появляться дополнительные подающие, исход игры стал зависеть не от одного питчера, поэтому общее число побед и поражений не точно может показать мастерство конкретного питчера.
Подсчет уровня подачи питчера может эту проблему решить: он сосредоточен на иннингах, а не на всей игре. Чтобы посчитать уровень подачи питчера, вам нужно сложить количество ранов и поделить это число на количество иннингов, в которых подавал питчер. (Очки, заработанные на пробежке, – это те, что сделаны по вине питчера, а не по вине других игроков.) Потом вы умножаете это число на 9, количество иннингов в игре. Например, если питчер пропустил 30 ранов за 90 иннингов, то его уровень подачи равен 3.00.
На протяжении истории бейсбола показатель хорошего уровня подачи менялся, но чем он ниже, тем лучше питчер. В начале 1900-х у хорошего питчера был уровень ниже 2. В наши дни уровень ниже 4 считается респектабельным.
Клейтон Кершоу
В сезонах МЛБ 2011–2014 у Клейтона Кершоу был самый низкий показатель среди всех действующих питчеров, в 2014-м он составлял рекордные для него 1.77. Для сравнения, самый низкий показатель за всю историю бейсбола был у Тима Кифа, который составлял 0.86 в сезоне 1880 года.

 

Назад: 3.22. Байесовская статистика
Дальше: 3.24. Деление бактерий

Иван
Воу-Воу ребя, вы же пропустили "2" после единицы: 0, 1, 1, " ", 3, 5, 8, 13, 21, 34, 55, 89, 144, 233, 377, 610, 987, 1597, 2584. Не надо так)