1.1. Красота капусты Романеско
Математическое понятие: самоподобие
Вы когда-нибудь рассматривали фрукты и овощи в местном супермаркете? Некоторые из них выглядят просто жутко: например, желтый цитрон пальчатый выглядит как осьминог из произведения Г. Ф. Лавкрафта. Другие же странным образом прекрасны. Сладкий картофель обладает замечательной неоднородной формой, похожей на бесформенные глыбы земли; в луке есть такие же кольца, которые можно найти в стволах деревьев; а если разрезать яблоко поперек, можно увидеть, что семена расположены в форме звезды. Это каким-то чудным образом доставляет удовольствие. Даже декоративная капуста – которая продается в садовых магазинах – имеет особую геометрическую привлекательность.
Но ничто не может сравниться по красоте в овощном отделе с капустой романеско. На самом деле, от нее трудно отвести взгляд. Романеско – это один из сортов Brassica oleracea, или просто капусты, она имеет форму сосновой шишки, но на ее поверхности находится изобилие других шишек меньшего размера, а на поверхности этих меньших шишек находятся еще шишки и так далее. Каждая шишка меньшего размера выглядит как и исходная, самая большая шишка, так что если вы решите срезать с изначальной шишки маленькую шишку и сфотографируете ее, а потом положите это изображение рядом с фотографией целого соцветия, то вы просто не сможете определить, где какая шишка.
Математики скажут, что форма капусты романеско самоподобна. Если вы увеличите изображение капусты и внимательно присмотритесь к деталям, то увидите то же самое, что бы вы увидели, не увеличивая это изображение. При самоподобии объект выглядит одинаково, несмотря на его масштаб. Это также отличительная черта фракталов, которые изучал математик Бенуа Мандельброт, благодаря которому они получили широкую известность. Его книга «Фрактальная геометрия природы» (1982) помогла представить этот вид объектов миру. (Эта книга, по сути, стала переработкой его книги «Фракталы: форма, случайность и размерность» 1977 года.) Мандельброт выявил множество форм в природе, которые имели самоподобную структуру: изрезанная береговая линия, облака и изысканный узор жилок в листьях. Кажется, что природа любит самоподобные формы; чем больше вы будете их искать, тем больше вы их найдете.
Бенуа Мандельброт также изучал то, что сейчас называется множеством Мандельброта, это множество комплексных чисел в последовательности, которая не уходит в бесконечность. Когда вы изображаете множество Мандельброта на графике, оно приобретает округлую выпуклую форму, которая интересна математикам отчасти оттого, что чем больше вы увеличиваете какую-то часть, тем больше деталей вы видите. На самом деле, когда вы увеличиваете изображение, вы вновь и вновь начинаете видеть исходную форму множества Мандельброта.