2.12. Объяснение парадокса Монти Холла
Математическое понятие: теория вероятности
Некоторые примеры математического мышления, такие, как парадокс дней рождения (см. главу 3.20), являются странными и нелогичными, но другие являются настолько ненормальными, что даже профессиональные математики с трудом верят в их подлинность. Одним из таких примеров является парадокс Монти Холла, названный в честь ведущего телешоу Let’s make a deal. Решение этой проблемы настолько удивительное, что даже после тщательного объяснения большинство людей будут чувствовать, что оно не может быть верным. В какой-то степени это математический эквивалент квантовой механики (область физики, которая изучает мельчайшие компоненты веществ): странный, в него трудно поверить, но он является верным.
В передаче ведущий предлагает игроку три двери. За одной из них находится новая машина; за двумя оставшимися – коза (или что-либо другое, не такое классное, как машина). Ведущий просит игрока выбрать дверь, за которой, по его мнению, находится машина. Потом, не открывая эту дверь, ведущий открывает другую дверь, показывая козу. Теперь игрок может изменить свой изначальный выбор. Вопрос состоит в том, стоит ли игроку придерживаться первоначального выбора или выбрать другую дверь.
Ответ: игрок всегда должен выбирать другую дверь. В начале игры вероятность выбора двери с машиной равна 1 к 3, но выбор другой двери на этом этапе удваивает шансы до 2 к 3. Как это возможно? Большинство людей считает, что изменение решения не имеет значения: после того, как ведущий открывает дверь, показывая одну из двух коз, шансы на выигрыш теперь составляют 1 к 2, так как одна дверь теперь прячет машину, а другая – вторую козу.
Но это убеждение не является правильным. Вы поймете почему, если возьмете лист бумаги и напишете все возможные варианты. Суть в том, что ведущий всегда открывает дверь, за которой находится коза. (Он никогда не откроет дверь, за которой прячется машина, иначе он испортит всю игру!) Теперь без опоры на нашу интуицию давайте выясним возможные перестановки:
• Вариант 1: Игрок выбирает дверь с козой № 1. Ведущий открывает дверь с козой № 2. Первоначальный выбор приведет к козе № 1, изменение решения приведет к машине.
• Вариант 2: Игрок выбирает дверь с козой № 2. Ведущий открывает дверь с козой № 1. Первоначальный выбор приведет к козе, изменение решения приведет к машине.
• Вариант 3: Игрок выбирает дверь с машиной. Ведущий открывает дверь с козой № 1 или козой № 2. Первоначальный выбор приведет к машине, изменение решения приведет к козе.
Итак, из этих трех вариантов можно сделать вывод, что в 2 из 3 случаев изменение решения ведет к машине. Результат абсолютно нелогичный, но абсолютно верный. Такова сила математики.
Парадокс коробки Бертрана
Похожей проблемой является коробка Бертрана, названная в честь Джозефа Бертрана, который написал о ней в книге, вышедшей в 1889 году. Представьте три коробки: одна с двумя золотыми монетами; одна с двумя серебряными монетами; и одна с одной золотой и одной серебряной монетами. Теперь выберите одну любую коробку и любую монету. Если она золотая, то какова вероятность того, что вторая монета тоже будет золотой? Вы можете подумать, что шансы составляют 1 к 2, но на самом деле 2 к 3.