Книга: Математика для гиков
Назад: 1.11. Математика скрывается за запутанными наушниками
Дальше: 1.13. Развеиваем мифы: капли дождя и слезинки имеют разную форму

1.12. Почему велосипедные шестерни разных размеров

Математические понятия: геометрия, передаточное отношение

В прошлом велосипеды выглядели чудаковато. В XIX веке у велосипедов были огромные передние колеса и крохотные задние колеса. Педали прикреплялись непосредственно к переднему колесу, которое могло достигать почти 5 футов (более 150 см) в диаметре, а человек должен был запрыгивать на сиденье как на лошадь. Такие велосипеды вскоре вышли из моды, отчасти из-за того, что если велосипед наезжал на кочку, то человек мог запросто перелететь через руль. Позднее производители начали делать велосипеды, используя шестерни и цепи, такое нововведение не только позволило человеку сидеть по центру велосипеда и улучшило тем самым баланс, но также позволило менять передачи в зависимости от местности. Вам необязательно менять передачи, когда вы едете по ровной поверхности, но когда вы поднимаетесь на холм, смена передачи может показать разницу между непринужденной ездой на велосипеде или толканием его в гору. Но как на самом деле работает смена передач? Каким образом они помогают ехать в гору или с горы эффективнее?
Ответ зависит от передаточного отношения. Когда вы подсоединяете шестерню большего размера к шестерне меньшего размера, то если вы проворачиваете одну, то и вторая тоже будет вращаться, но с другой скоростью. Давайте представим, что передняя шестерня в три раза больше, чем задняя. За один оборот передней шестерни задняя будет выполнять три оборота. Подумайте об этом с точки зрения окружности колеса. (Если вы помните уроки математики в школе, длина окружности равна числу Пи, умноженному на диаметр окружности.) Если диаметр передней шестерни равен 3 дюймам, то длина ее окружности равна 3π, то есть примерно 9,42 дюйма. Поэтому если вы поставите точку на крае шестерни, а потом провернете ее один раз, то путь этой точки в пространстве – если перевести его на бумагу – будет равен 9,42 дюйма.
Теперь давайте представим, что задняя шестерня равна 1 дюйму в диаметре. Тогда длина ее окружности составит 3,14 дюйма, и с каждым поворотом путь этой точки будет равен 3,14 дюйма. Но при каждом обороте передней шестерни – 9,42 дюйма – задняя шестерня должна сделать три оборота. (Согласно разнице в диаметре, кстати, передаточное отношение для этих шестерней будет составлять 3:1.)
Следовательно, вы можете сделать так, чтобы задняя шестерня вращалась три раза за одно вращение педалей (хотя вам и придется нажимать в три раза сильнее), что идеально для спуска с горы.
Шестерни в игрушках
Шестерни не только полезны, но с ними еще и весело играть. Во многих игрушках на рынке сейчас содержатся шестерни, включая Gears! Gears! Gears, Gear & Rotor Fun и наборы BlueLotus Rotatable Building Gears Sets. Некоторые такие игрушки продуманы до мелочей: на сайте Brickowl.com можно найти 57 разных видов шестерней для наборов Lego, включая шестерни с 40 зубцами, шестерни с 24 зубцами и внутренним сцеплением и скошенные шестерни с 20 зубцами.
Назад: 1.11. Математика скрывается за запутанными наушниками
Дальше: 1.13. Развеиваем мифы: капли дождя и слезинки имеют разную форму

Иван
Воу-Воу ребя, вы же пропустили "2" после единицы: 0, 1, 1, " ", 3, 5, 8, 13, 21, 34, 55, 89, 144, 233, 377, 610, 987, 1597, 2584. Не надо так)