Номера такси
Сриниваса Рамануджан – индийский математик-самоучка с поразительным талантом к формулам, как правило очень странным формулам, обладавшим, однако, своеобразной необычной красотой. В 1914 г. математики Годфри Харолд Харди и Джон Эденсор Литтлвуд из Кембриджа привезли его в Англию. К 1919 г. у него уже были неизлечимо больные легкие, и в 1920 г. он умер в Индии. Харди писал:
«Помню, как я однажды поехал навестить его, когда он лежал больной в Путни. Я приехал в такси номер 1729 и заметил вскользь, что номер этот показался мне довольно скучным и что я надеюсь, что это не дурное предзнаменование. „Нет, – ответил он, – это очень интересный номер; это наименьшее число, которое можно выразить в виде суммы двух [положительных] кубов двумя разными способами“».
Наблюдение о том, что
1729 = 1³ + 12³ = 9³ + 10³,
впервые опубликовал Бернар Френикль де Бесси в 1657 г. Если разрешить отрицательные кубы, то наименьшим таким числом будет
91 = 6³ + (–5)³ = 4³ + 3³.
Специалисты по теории чисел обобщили эту концепцию, заявив, что n-й номер такси Ta (n) есть наименьшее число, которое можно выразить в виде суммы двух положительных кубов n и другими способами.
В 1979 г. Харди и Э. М. Райт доказали, что некоторые числа могут быть выражены в виде суммы произвольно большого числа положительных кубов, так что Ta (n) существует для любых n. Однако вплоть до настоящего времени известны лишь первые шесть таких чисел:
Ta (1) = 2 = 1³ + 13;
Ta (2) = 1729 = 1³ + 12³ = 9³ + 10³;
Ta (3) = 87539319 = 167³ + 436³ = 228³ + 423³ = 255³ + 414³;
Ta (4) = 6963472309248 = 2421³ + 19083³ = 54363 + 18948³ = 10200³ + 18072³ = 13322³ + 166308³;
Ta (5) = 48988659276962496 = 38787³ + 3657573 = 107839³ + 362753³ = 205292³ + 342952³ = 221424³ + 336588³ = 231518³ + 331954³;
Ta (6) = 24153319581254312065344 = 582162³ + 28906206³ = 3064173³ + 28894803³ = 8519281³ + 28657487³ = 16218068³ + 27093208³ = 17492496³ + 26590452³ = 18289922³ + 26224366³.
Ta (3) открыл Джон Лич в 1957 г. Ta (4) нашли Э. Розенстил, Дж. А. Дардис и К. Р. Розенстил в 1991 г. Ta (5) обнаружил Дж. А. Дардис в 1994 г. и подтвердил Дэвид Уилсон в 1999 г. В 2003 г. К. С. Калуд, Э. Калуд и М. Дж. Диннин установили, что приведенное выше число, вероятно, является Ta (6), а в 2008 г. Уве Холлербах опубликовал доказательство.