Эти числа можно найти простым перебором. Систематический метод состоит в том, чтобы обозначить среднее число n и записать, что (n – 1)³ + n³ + (n + 1)³ = 3n³ + 6n = m² для некоторого числа m. Таким образом, m² = 3n (n² + 2). Множители 3, n, n² + 2 не имеют общих делителей, кроме, может быть, чисел 2 и 3. Поэтому любой простой делитель больше 3 должен присутствовать как в n, так и в n² + 2 в четной степени (возможно, нулевой). Первые два числа, удовлетворяющие этому условию, – это 4 и 24, причем 24 является решением, а 4 не является.