Книга: Наша математическая вселенная. В поисках фундаментальной природы реальности
Назад: Часть II. Все мельче и мельче
Дальше: Глава 8. Мультиверс III уровня

Глава 7. Космическое «лего»

Все, что мы называем реальным, состоит из вещей, которые не могут рассматриваться как реальные.
Нильс Бор
«Нет, это какая-то ерунда! Здесь где-то ошибка», – я один в комнате подруги в стокгольмском общежитии готовлюсь к первому экзамену по квантовой механике. В учебнике говорится: малые объекты, вроде атомов, могут находиться в нескольких местах одновременно, а крупные объекты, вроде людей, – не могут. «Как бы не так! – говорю я себе. – Люди состоят из атомов, и если те могут быть в нескольких местах сразу, то и мы, конечно, тоже!» Там также сказано, что всякий раз, когда некто наблюдает, где находится атом, тот случайным образом прыгает в одно из тех мест, где он ранее пребывал. Но я не нашел ни одного уравнения, описывающего, что именно полагается считать наблюдением. «Может ли робот считаться наблюдателем? А отдельный атом?» В книге говорилось лишь, что любая квантовая система изменяется детерминистическим образом согласно уравнению Шредингера. Но разве это логически совместимо с подобными случайными прыжками?
Я набрался смелости и постучался в дверь нашего крупнейшего эксперта, профессора физики из Нобелевского комитета. Двадцать минут спустя я вышел из кабинета в полном недоумении, убежденный, что я умудрился вообще ничего не понять. Так началось мое долгое и до сих пор не подошедшее к концу путешествие к квантовым параллельным вселенным. Лишь пару лет спустя, перебравшись для работы над диссертацией в Беркли, я понял, что это было вовсе не мое непонимание. Выяснилось, что многие знаменитые физики горячо спорят о проблемах квантовой механики, и я получил немало удовольствия от сочинения собственных статей на эту тему.
Но прежде чем рассказывать о своем понимании того, как все это увязывается (гл. 8), я хочу вернуться в прошлое, чтобы дать возможность в полной мере прочувствовать безумство квантовой механики и то беспокойство, которое она вызывает.

Атомное «лего»

Когда в прошлый раз я спросил Александра, своего сына, какой подарок он желает получить ко дню рождения, он ответил: «Удиви меня! Подойдет все, что угодно, если это будет „Лего“». Я тоже люблю «Лего», и, мне кажется, наша Вселенная – тоже: все в ней состоит из одинаковых «строительных блоков» (рис. 7.1). По-моему, замечательно, что один набор космического конструктора (80 стабильных атомов периодической таблицы) может служить для создания вообще всего на свете – от камней до кроликов, от звезд до стереосистем, – и вся разница сводится к тому, сколько нужно деталей каждого типа и как они расположены.

 

Рис. 7.1. Карандашный грифель сделан из графита, который состоит из слоев атомов углерода (здесь дано изображение, полученное сканирующим туннельным микроскопом), которые состоят из протонов, нейтронов и электронов. Протоны и нейтроны состоят из кварков, которые могут, в свою очередь, оказаться колеблющимися струнами. Сменный грифель, который я покупаю для работы, содержит около 2 × 1021 атомов, так что вы могли бы разрезать его пополам 71 раз.

 

Идея конструктора «Лего» – использование неделимых строительных блоков – имеет, конечно, долгую историю, причем самим термином «атом» мы обязаны древним грекам: это слово означает «неделимый». Платон в диалоге «Тимей» доказывал, что четыре основных элемента, признаваемых в то время (земля, вода, воздух и огонь), состоят из атомов четырех типов. Атомы представляют собой крошечные невидимые математические объекты – соответственно кубы, икосаэдры, октаэдры и тетраэдры, – четыре из пяти правильных многогранников, называемых в честь древнегреческого философа платоновыми телами (рис. 7.2). Платон писал, что острые углы тетраэдра обуславливают боль, причиняемую огнем, округлая форма икосаэдра обеспечивает текучесть воды, а уникальной способностью кубов к плотной укладке объясняется твердость Земли. Хотя эта очаровательная теория в итоге была опровергнута наблюдением, некоторые ее аспекты устояли, и среди них предположение о том, что каждый химический элемент состоит из определенного типа атомов, а свойства вещества определяются свойствами его атомов. Более того, в гл. 10 я объясню, что самые фундаментальные «строительные блоки» нашей Вселенной – математические (в ином смысле, нежели предполагал Платон: Вселенная не состоит из математических объектов, а сама является частью единственного математического объекта).

 

Рис. 7.2. Платоновы тела: тетраэдр, куб, октаэдр, додекаэдр и икосаэдр. Лишь додекаэдр не вошел в платоновскую атомистическую теорию.

 

Для становления современной атомной теории понадобилось два тысячелетия, а знаменитый австрийский физик Эрнст Мах еще в начале XX века отказывался верить в реальность атомов. Его, безусловно, впечатлили бы наши возможности получения изображений отдельных атомов (рис. 7.1) и даже манипулирования ими.

Ядерное «лего»

Огромный успех атомной гипотезы привел к вопросу, не ошибочно ли атом назван атомом, неделимым: если все макроскопические объекты состоят из «кубиков», которые мы называем атомами, те, возможно, тоже делятся на еще меньшие «кубики», которые могут переупорядочиваться?
Мне кажется невероятно элегантным то, что атомы сложены всего из трех типов меньших «кубиков» – их даже меньше, чем в платоновской теории. Мы кратко говорили о них в гл. 3, а на рис. 7.1 видно, как «кубики» этих трех типов (протоны, нейтроны и электроны) компонуются наподобие миниатюрной планетной системы, где электроны обращаются вокруг компактного сгустка протонов и нейтронов – атомного ядра. В то время как Земля удерживается на орбите вокруг Солнца силой гравитации, электроны удерживаются в атомах электрическим взаимодействием, которое притягивает их к протонам (электроны имеют отрицательный заряд, протоны заряжены положительно, а противоположные заряды притягиваются). Поскольку электроны также чувствуют притяжение протонов других атомов, они помогают атомам соединяться друг с другом в более крупные структуры, называемые молекулами. Если атомные ядра и электроны перетасовываются без изменения их числа и типа, мы называем это химической реакцией, независимо от того, происходит ли это быстро, как лесной пожар (при котором в основном атомы углерода и водорода, входящие в состав древесины и листьев, соединяются с кислородом воздуха, образуя молекулы углекислого газа и воды), или медленно, как рост дерева (который в основном представляет собой обратную реакцию, протекающую под воздействием энергии солнечного света).
Столетиями алхимики пытались превратить атомы одного типа в другие: как правило, дешевые, например свинец, в более дорогие, такие как золото. Почему эти попытки терпели неудачу? Типы и названия атомов связаны с числом входящих в них протонов (1 = водород, 79 = золото и т. д.), так что алхимики просто не смогли поиграть в «лего» с протонами, перемещая их из одного атома в другой. Почему им это не удалось? Мы теперь знаем, что неудача постигла алхимиков не потому, что они брались за невозможное, а в основном потому, что у них было недостаточно энергии! Поскольку электрические силы заставляют одинаковые заряды отталкиваться, протоны в ядрах разлетелись бы, если бы их не удерживала вместе еще более могучая сила. Она вполне обоснованно получила название сильного ядерного взаимодействия и работает как своего рода застежка-липучка, удерживающая вместе и протоны, и нейтроны, если они сойдутся достаточно близко. Лишь чудовищное усилие способно преодолеть это взаимодействие: если столкновение двух молекул водорода (каждая из двух атомов) на скорости 50 км/с разрушит их так, что атомы разделятся, то два ядра гелия (каждое из двух протонов и двух нейтронов) понадобится столкнуть с головокружительной скоростью 36 тыс. км/с, чтобы иметь шанс разделить нейтроны и протоны. Указанная скорость составляет около 12 % скорости света (за десятую долю секунды можно добраться от Нью-Йорка до Сан-Франциско).
В природе такие зубодробительные столкновения происходят при очень высоких температурах – миллионах градусов. Когда Вселенная была молода, в ней не было иных атомов, кроме водорода (одиночных протонов), но, поскольку она была чрезвычайно горячей, протоны и нейтроны слипались, а более тяжелые атомы разбивались на части. В процессе расширения и охлаждения Вселенной был период длительностью несколько минут, когда столкновения еще были достаточно сильны, чтобы преодолевать электрическое отталкивание между протонами, но их силы уже не хватало на то, чтобы разъединять «липучки» сильного взаимодействия, которые соединяли протоны и нейтроны в ядра гелия. То был период гамовского первичного нуклеосинтеза (гл. 3). В ядре Солнца температура близка к магическому диапазону, в котором атомы водорода могут сливаться, образуя атомы гелия.
Законы экономики говорят нам, что атомы дороги, когда они редки, а законы физики говорят, что они редки, когда для их синтеза требуются необычайно высокие температуры. Распространенные атомы, вроде углерода, азота и кислорода (на них вкупе с водородом приходится до 96 % веса человеческого тела), очень дешевы. Обычные звезды, например Солнце, выбрасывают их во время смертельной агонии, после чего из них формируются новые планетные системы в ходе своего рода космической переработки отходов. Золото, напротив, образуется, когда жизнь звезды оканчивается взрывом сверхновой, событием редким и столь мощным, что на доли секунды ее энерговыделение становится таким же, как у всех звезд в наблюдаемой Вселенной вместе. Неудивительно, что получение золота оказалось алхимикам не по плечу.

«Лего» элементарных частиц

Если вещи вокруг нас сложены из атомов, а атомы из еще меньших частиц (нейтронов, протонов и электронов), то не состоят ли эти последние, в свою очередь, из еще меньших деталей? История научила нас, как отвечать на такие вопросы экспериментально: столкните мельчайшие из известных «строительных блоков» по-настоящему сильно и проверьте, распадутся ли они. Эта процедура производилась на всех крупных коллайдерах, и все-таки не похоже, что электроны состоят из меньших частиц, хотя в ЦЕРНе их сталкивали на скорости, составляющей 99,999999999 % скорости света. С другой стороны, столкновения протонов показали, что и они, и нейтроны состоят из меньших частиц, называемых верхними и нижними кварками. Два верхних и один нижний кварк составляют протон (рис. 7.1), а два нижних и один верхний дают нейтрон. Более того, в этих столкновениях было получено множество прежде неизвестных частиц (рис. 7.3).
Все эти новые частицы с экзотическими названиями – пионы, каоны, сигма- и омега-гипероны, мюоны, таоны, W- и Z-бозоны – нестабильны и за доли секунды распадаются на более знакомые объекты. Тщательная детективная работа позволила выяснить, что все они, за исключением последних четырех, состоят из кварков – не только из верхнего и нижнего, но еще из четырех новых нестабильных типов, называемых странными, очарованными, прелестными и истинными. Оказалось, что W– и Z-бозоны отвечают за передачу слабого взаимодействия, обусловливающего радиоактивность, и являются братьями фотона, частицы света, которая переносит электромагнитное взаимодействие. Дополнительные члены семейства бозонов называются глюонами. Они как клей, связывающий кварки в более крупные частицы. А недавно обнаруженный бозон Хиггса наделяет другие частицы массой. Кроме того, открыты стабильные призрачные частицы – электронные нейтрино, мюонные нейтрино и тау-нейтрино. Они почти не взаимодействуют с иными частицами: если нейтрино врезается в Землю, то обычно пролетает ее насквозь, не меняя свою траекторию, и улетает в космос. Наконец, почти все эти частицы имеют «злых близнецов» – античастицы. При столкновении пара «близнецов» может аннигилировать друг друга с выбросом чистой энергии. В табл. 7.2 представлен список основных частиц и связанных с ними концепций, обсуждаемых в книге.

 

Рис. 7.3. Стандартная модель физики элементарных частиц.

 

До сих пор нет признаков того, чтобы какая-либо частица из всех этих бозонов, кварков, лептонов (общее название для электрона, мюона, таона и соответствующих нейтрино) или их античастиц состояла из меньших или более фундаментальных частиц. Однако с учетом кварков как «строительных блоков» в иерархии нашего «лего» (рис. 7.1) получается три полных уровня. И не надо быть Шерлоком Холмсом, чтобы задаться вопросом, нет ли еще уровней, которые мы не можем открыть просто потому, что наши ускорители частиц не дают достаточной энергии. В самом деле, теория струн (гл. 6) предполагает, что так и есть. Если бы мы могли сталкивать частицы с гораздо (возможно, в 10 трлн раз) большей энергией, чем сегодня, то открыли бы, что все состоит из крошечных колеблющихся струн и что и что различные типы колебаний одинаковых фундаментальных струн могут соответствовать различным типам частиц (подобно тому, как колебания гитарной струны соответствуют разным нотам). Конкурирующая теория, известная как петлевая теория гравитации, предполагает, что все состоит не из струн, а из спиновой сети квантованных петель возбужденных гравитационных полей. Это труднопроизносимо, и если вы не вполне понимаете, что это значит, не беспокойтесь: и среди самых активных разработчиков теории струн и петлевой квантовой гравитации найдутся те, кто не скрывают, что не до конца понимают собственные теории… Так из чего же все состоит? Основываясь на современных экспериментальных данных, ответим: мы этого еще не знаем, но есть серьезные основания предполагать, что все, с чем мы были знакомы – включая саму ткань пространства-времени, – в конечном счете состоит из более фундаментальных «строительных блоков».

Математическое «лего»

Несмотря на то, что мы пока не знаем окончательного ответа на вопрос, из чего все состоит, мы получили очень интригующий намек. Лично мне кажется безумием, что, сталкивая два протона на Большом адронном коллайдере в ЦЕРНе, мы можем получить Z-бозон, который весит в 97 раз больше протона. Я привык думать, что масса сохраняется. Ну не очевидно ли, что столкнув два «Феррари», вы не получите круизный лайнер – ведь он весит больше, чем два автомобиля? Однако если вам кажется, что образование подобных новых частиц – это мошенничество наподобие финансовой пирамиды, то вспомните, что, как учил нас Эйнштейн, энергия E может превращаться в массу m по формуле E = mc2, где c – скорость света. Так что если при столкновении частиц у вас в распоряжении есть огромный запас энергии движения, то доли этой энергии действительно позволено пойти на образование новых частиц. Иными словами, полная энергия сохраняется, но столкновение частиц «переупаковывает» эту доступную энергию по-новому, что может приводить к превращению ее доли в новые частицы, которых в исходный момент не существовало. То же самое происходит с импульсом: полная его величина сохраняется, но он перераспределяется в ходе столкновения так же, как в бильярде, когда биток, отправляя прежде неподвижный шар в лузу, замедляется. Одним из самых важных открытий в физике были новые величины, которые, подобно энергии и импульсу, кажутся всегда сохраняющимися (знакомый пример – электрический заряд), но есть и иного рода сохраняющиеся величины – изоспин и цвет. Есть также величины, которые сохраняются при многих важных обстоятельствах, в частности лептонное число (количество лептонов минус количество антилептонов) и барионное число (разность числа кварков и антикварков, разделенная на три, так что нейтроны и протоны считаются за + 1). В табл. 7.1 приведены квантовые числа – значения этих величин для разных частиц. Обратите внимание: большинство значений выражено целыми числами или простыми дробями. Значения трех масс как следует не измерены.

 

 

Я помню шутку времен холодной войны: на Западе все, что не запрещено, то разрешено, а на Востоке все, что не разрешено, то запрещено. Физика частиц, по-видимому, предпочитает первую формулу, и любая реакция, которая не запрещена (из-за нарушения одного из законов сохранения), похоже, в природе действительно происходит. Это значит, что о фундаментальном «лего» физики частиц можно думать не как о собственно частицах, а как о сохраняющихся величинах. Тогда физика частиц – это просто перераспределение новым способом энергии, импульса, заряда и других сохраняющихся величин. В табл. 7.1 приводится «рецепт приготовления» верхнего кварка: смешать 2/3 единицы заряда, 1/2 единицы спина, 1/2 единицы изоспина, 1/3 единицы барионного числа и дополнить энергией до нескольких МэВ.
Так из чего состоят квантовые числа вроде энергии и заряда? Ни из чего – это просто числа! У кота тоже есть энергия и заряд, но у него, помимо этих чисел, есть много других свойств, например кличка, запах и характер, так что нельзя сказать, будто кот – чисто математический объект, полностью описываемый двумя числами. А вот наши друзья из мира элементарных частиц полностью описываются своими квантовыми числами и, по-видимому, помимо этих чисел свойств не имеют. В этом смысле мы завершили полный круг и возвратились к Платону: наимельчайшие «кубики», из которых состоит все остальное, кажутся чисто математическими, не имеющими никаких свойств, кроме математических. Мы вернемся к этой идее в гл. 10 и увидим, что это лишь вершина математического айсберга.
На техническом уровне некоторые специалисты по физике элементарных частиц любят на вопрос, что такое частица, бойко отвечать: «Элемент неприводимого представления группы симметрий лагранжиана». Это чисто математическое понятие лишь немного более общее, чем представление о числовом множестве. И, конечно, теория струн или ее конкурент могут углубить наше понимание того, что в действительности представляют собой частицы, но все эти ведущие теории просто заменяют одни математические сущности иными. Так, если квантовые числа из табл. 7.1 окажутся соответствующими типами колебаний суперструн, не стоит думать о струнах как о крошечных объектах с внутренними свойствами, будто это колтуны в рыжевато-коричневой кошачьей шерсти. Следует смотреть на них как на чисто математические конструкции, которые физики называют «струнами» лишь для того, чтобы подчеркнуть их одномерную природу и провести аналогию с чем-либо знакомым и в меньшей степени математическим.

 

Табл. 7.2. Основные физические термины, необходимые для понимания микромира.

 

Подводя итог, скажем, что природа сродни конструктору с иерархическим устройством. Если мой сын играет со своим «лего», полученным ко дню рождения, то все, что он может перестраивать, – фабричные «кубики». Если бы он играл в атомное «лего» – поджигал, погружал в кислоту или иным способом перестраивал их атомы, – он занимался бы химией. Если бы он играл с нуклонным «лего», перегруппируя нейтроны и протоны в другие типы атомов, это была бы ядерная физика. Если бы он сталкивал детали друг с другом на околосветовой скорости, реорганизуя энергию, импульс, заряд и т. д. составляющих их нейтронов, протонов и электронов в новые частицы, он бы занимался физикой элементарных частиц. Детали «лего» самого глубокого уровня, по-видимому, являются чисто математическими объектами.

Фотонное «лего»

Но не только «грубая материя» состоит из «строительных блоков», подобных деталям «Лего». Свет также состоит из частиц, фотонов, что было показано Эйнштейном в 1905 году.
Четырьмя десятилетиями ранее Джеймс Клерк Максвелл открыл, что свет – это электромагнитные волны, разновидность электрического возмущения. Если вы научитесь точно измерять напряжение между двумя точками в световом луче, то обнаружите, что оно колеблется во времени. Частота f этих колебаний (сколько раз они повторяются за секунду) определяет цвет света, а сила колебаний (максимальные значения в вольтах) – интенсивность света. «Омнископ» из гл. 4 измеряет такое напряжение. Мы, люди, даем электромагнитным волнам названия в зависимости от их частоты (в порядке увеличения частоты мы называем их радиоволнами; микроволнами; инфракрасным излучением; красным, оранжевым, желтым, зеленым, голубым, синим и фиолетовым светом; ультрафиолетовым, рентгеновским и гамма-излучением), но все они представляют собой формы света и состоят из фотонов. Чем больше фотонов испускает объект каждую секунду, тем ярче он кажется.
Эйнштейн понял, что количество энергии E в фотоне определяется его частотой f по формуле E = hf, где h – постоянная Планка. Постоянная h очень мала, поэтому типичный фотон содержит очень мало энергии. Если я одну секунду лежу на пляже, меня согревают около секстиллиона (1021) фотонов. Вот почему это воспринимается как непрерывный поток света. Однако если у моих друзей есть солнечные очки, поглощающие 90 % света, я смогу надеть 21 пару сразу и только один из всех исходных фотонов будет доходить до меня каждую секунду. Это можно подтвердить с помощью высокочувствительного детектора.
Эйнштейн удостоился Нобелевской премии за то, что он использовал эту идею для объяснения фотоэлектрического эффекта: как выяснилось, способность света выбивать электроны из металла зависит лишь от частоты (энергии фотонов), но не от интенсивности (числа фотонов). Низкочастотные фотоны не обладают достаточной энергией для выполнения этой задачи. Фотоэлектрический эффект связан с процессами, используемыми в современных солнечных батареях и светочувствительных матрицах цифровых камер.
Макс Планк получил в 1918 году Нобелевскую премию за демонстрацию того, что идея фотона позволила разрешить другую знаменитую загадку: почему расчеты теплового излучения горячего тела прежде не давали правильного результата. Радуга (рис. 2.5) демонстрирует спектр солнечного света, то есть количество содержащегося в нем света разных частот. Физики знали, что температура T тела является некоей мерой того, насколько быстро движутся его частицы, и что обычная энергия E движения частиц описывается формулой E = kT, где k – число, называемое постоянной Больцмана. Когда частицы на Солнце сталкиваются, энергия их движения в количестве примерно kT превращается в энергию света. К сожалению, точное предсказание вида радуги наталкивалось на так называемую ультрафиолетовую катастрофу: интенсивность излучения бесконечно возрастала на правом краю рис. 2.5 (в направлении высоких частот), как будто при взгляде на любое теплое тело вы должны были ослепнуть от его гамма-излучения. Вас спасает то, что свет состоит из частиц: Солнце может испускать световую энергию только по одному фотону за раз, а характерная энергия kT, доступная для образования фотонов, не дотягивает до энергии hf, необходимой для испускания даже одного гамма-кванта.

Выше закона?

Если все состоит из частиц, каким физическим законам они подчиняются? Если мы знаем, что делают в данный момент все частицы во Вселенной, то по каким уравнениям можно рассчитать, как они будут себя вести в будущем? Если такие уравнения существуют, то мы можем надеяться, что они позволят – по крайней мере, в принципе – предсказывать будущее исходя из знания настоящего: от траектории только что поданного бейсбольного мяча до победителей Олимпийских игр 2048 года – только выясните, что будут делать все эти частицы, и получите ответ.
Хорошая новость состоит в том, что, похоже, действительно существует почти то самое уравнение, которое нам нужно. Это уравнение Шредингера (рис. 7.4). Однако оно не предсказывает точно, как поведут себя частицы. Даже почти сто лет спустя после того, как Эрвин Шредингер его записал, физики продолжают спорить об его смысле.
Все согласны с тем, что микроскопические частицы не подчиняются классическим законам физики, которые мы изучаем в школе. Поскольку атом напоминает планетную систему (рис. 7.1), естественно предположить, что электроны обращаются вокруг ядра по законам Ньютона, как и планеты вокруг Солнца. В самом деле, если выполнить расчеты, идея сначала выглядит многообещающей. Игрушку йо-йо можно раскрутить над головой за шнурок. Если он оборвется, йо-йо начнет двигаться по прямой с постоянной скоростью, так что сила, с которой вы ее тянете, требуется для отклонения ее от прямолинейного движения и вывода на круговое. В Солнечной системе эту силу обеспечивает тяготение Солнца, а в атоме – сила электрического притяжения со стороны атомного ядра. Если сделать расчет для орбиты размером с атом водорода, получится, что электрон вращается практически с той же скоростью, которая измерена в лаборатории – настоящий теоретический триумф! Однако для большей точности в расчеты надо включить еще один эффект: электрон, который испытывает ускорение (изменение скорости или направления движения), будет излучать энергию – в вашем мобильном телефоне колебания электронов внутри антенны используются, чтобы испускать радиоволны. Поскольку энергия сохраняется, излучаемая энергия должна откуда-то браться. В телефоне она поступает из аккумулятора, а в атоме водорода – из движения электрона. Она заставляет его опускаться все ближе к атомному ядру, подобно тому, как сопротивление воздуха в верхних слоях атмосферы заставляет спутники на низких околоземных орбитах терять энергию движения и, в конце концов, падать. Это означает, что электрон крутится не по орбите, а по смертельной спирали (рис. 7.5): примерно после 100 тыс. оборотов он врежется в протон, то есть произойдет коллапс атома водорода, долгая и счастливая жизнь которого длится около 0,02 нс.

 

Рис. 7.4. Эрвин Шредингер умер, но его уравнение живет. С 1996 г., когда я сделал этот снимок, шрифт надписи загадочно изменился. Может, и вправду квантовые причуды никогда не заканчиваются?

 

Это плохо. Очень плохо. Здесь речь не о небольшом, скажем на 1 %, расхождении теории с экспериментом, а о предсказании того, что все атомы водорода (а также все прочие атомы) в нашей Вселенной коллапсируют за миллиардную долю того времени, которое вы тратите на то, чтобы прочесть последнее слово в этом предложении. С учетом того, что в действительности большинство атомов водорода существует около 14 млрд лет, они уже прожили на 28 порядков величины дольше, чем предсказывает классическая физика. Данный расчет был худшим количественным предсказанием в физике, пока сомнительный рекорд не был превзойден расхождением на 123 порядка величины между предсказанной и измеренной плотностью темной энергии (гл. 3).
Физики, считавшие, что элементарные частицы подчиняются законам классической физики, сталкивались и с иными проблемами. Например, количество энергии, требуемой для нагревания очень холодных предметов, оказалось меньше, чем предсказывалось. Проблемы можно перечислять и дальше, но послание Природы и так ясно: микроскопические частицы нарушают законы классической физики.
Что же, микрочастицы ставят себя выше закона? Нет, они подчиняются другому закону – шредингеровскому.

Кванты и радуга

Чтобы объяснить, как устроены атомы, датский физик Нильс Бор предложил в 1913 году весьма радикальную идею. Возможно, не только материя и свет квантуются (то есть существуют в виде дискретных фрагментов, подобных деталям «Лего»). Это может относиться и к свойствам движения. Что если движение не непрерывно, а скачкообразно, как в компьютерной игре «Пэкмен» или в фильмах с Чарли Чаплином, где частота кадров была слишком низкой? На рис. 7.5 показана модель атома Бора: круговые орбиты разрешены, лишь если их окружности имеют определенные, магические длины. Существует наименьшая орбита, помеченная n = 1, а далее есть орбиты большего размера (n = 2 и т. д.), радиусы которых в n2 раз больше радиуса минимальной орбиты.

 

Рис. 7.5. Эволюция наших представлений об атоме водорода. Классическая (планетарная) модель Эрнеста Резерфорда, к сожалению, была неустойчивой: в ней электрон по спирали падал на находящийся в центре протон (я изображаю, как бы это выглядело, если бы электрическое взаимодействие было в 20 раз сильнее; иначе спираль имела бы около 100 тыс. витков, что невозможно нарисовать). Модель Бора удерживает электрон на дискретных орбитах, пронумерованных n = 1, 2, 3, …, между которыми он перепрыгивает, когда испускает или поглощает фотоны. Эта модель не работает для всех атомов, кроме атома водорода. В модели Шредингера один электрон находится одновременно во многих местах электронного облака, форма которого задается математической функцией Ψ.

 

Первый, самый очевидный успех состоял в том, что боровский атом не коллапсировал, как классический (рис. 7.5, слева). Когда электрон находится на самой внутренней орбите, просто не существует меньшей орбиты, куда он мог бы перескочить. Однако модель Бора объясняла далеко не только это. Высокие орбиты обладают большей энергией, чем низкие, а полная энергия сохраняется. Поэтому, когда электрон, будто «Пэкмен», соскакивает на более низкую орбиту, избыток энергии должен быть испущен атомом в виде фотона (рис. 7.5), а чтобы занять более высокую орбиту, электрон должен быть способен заплатить энергетическую «цену», поглотив фотон с нужной энергией. Поскольку существует только дискретный набор орбитальных энергий, атом может испускать и поглощать фотоны лишь с «магическими» энергиями. Иными словами, атом может испускать и поглощать свет только на определенных частотах. Это разрешает давнюю проблему. В спектре солнечного света (рис. 2.5) обнаружены темные линии на определенных частотах (то есть некоторые цвета отсутствуют), а при изучении горячих светящихся газов в лаборатории наблюдалось, что каждый тип атомов имеет уникальный спектральный «отпечаток» в виде частот света, которые он может испускать и поглощать. Боровская модель атома не просто объяснила существование этих спектральных линий, но и позволила точно вычислить их частоты для водорода.
Это был отличный результат, и Бор получил за него Нобелевскую премию (как и большинство остальных ученых, упомянутых в этой главе). Плохой новостью стало то, что боровская модель не работала для атомов, отличных от водорода, за исключением случая, когда с них сорваны все электроны, кроме одного.

Образование волн

Несмотря на первые успехи, физики по-прежнему не знали, что делать с этими странными, на первый взгляд произвольными квантовыми правилами. Что они в действительности означают? Почему угловой момент квантуется? Есть ли этому более глубокое объяснение? Одно из них предложил Луи де Бройль: электроны (а на самом деле все частицы) обладают волновыми свойствами, подобно фотонам. Во флейте стоячие звуковые волны могут колебаться только на некоторых определенных частотах. Может быть, чем-либо аналогичным определяются и частоты, с которыми электроны обращаются в атомах?

 

Рис. 7.6. Волны в емкости с водой (слева) и на Солнце (справа).

 

Рис. 7.7. Если стрелять частицами (скажем, электронами или фотонами из лазерного ружья) по барьеру с двумя вертикальными щелями, то, согласно предсказанию классической физики, частицы будут попадать в детектор вдоль двух вертикальные полос позади щелей. Квантовая механика предсказывает, что каждая частица будет вести себя как волна, проходя через обе щели в квантовой суперпозиции, интерферируя при этом сама с собой и образуя интерференционную картину (рис. 7.6). Этот знаменитый эксперимент демонстрирует, что квантовая механика корректна: частицы регистрируются у целого ряда вертикальных полос.

 

Две волны способны без помех проходить друг сквозь друга, как круги на поверхности воды (рис. 7.6, слева). В любой момент их воздействия просто складываются. В некоторых местах видно, что гребни двух волн складываются в еще более высокий гребень (конструктивная интерференция), в других местах гребень одной волны подавляется впадиной другой, оставляя воду совершенно невозмущенной (деструктивная интерференция). На поверхности Солнца (рис. 7.6, справа) наблюдаются звуковые волны в горячем газе (плазме). Если такая волна обойдет вокруг Солнца (справа), она погасит сама себя в результате деструктивной интерференции, если только не совершит за время обхода целое число колебаний, чтобы, вернувшись, совпасть с самой собой. Это значит, что, как и флейта, Солнце колеблется только на некоторых определенных частотах.
В своей диссертации 1924 года де Бройль применил это рассуждение к волнам, распространяющимся не по Солнцу, а по атому водорода, и получил точно те же частоты и энергии, которые предсказывала модель Бора. А двухщелевой эксперимент (рис. 7.7) более явно продемонстрировал, что частицы ведут себя как волны.
Волновая картина делает нагляднее и объяснение того, почему атомы не коллапсируют, как предсказывает классическая физика: если попытаться заключить волну в очень малое пространство, она немедленно начнет распространяться в стороны. Например, если дождевая капля падает на поверхность воды в тазу, она сначала возмущает воду лишь в очень небольшой области, с которой она соприкоснулась, но возмущение начинает быстро распространяться во все стороны в виде кольцевых волн (рис. 7.6). В этом суть принципа неопределенности Гейзенберга. Вернер Гейзенберг показал: если зажать некий объект в малую область пространства, он приобретет огромный случайный импульс, который заставит его двигаться и чувствовать себя менее стесненным. Иными словами, объект не может одновременно иметь точное положение и точную скорость! Это означает, что если атом водорода попробует коллапсировать (рис. 7.5, слева), притянув электрон к протону, то растущая «зажатость» придаст электрону достаточный импульс, а с ним и скорость, чтобы вновь улететь на высокую орбиту.
Диссертация де Бройля вызвала большое волнение, и в ноябре 1925 года Эрвин Шредингер провел по ней семинар в Цюрихе. После его доклада Питер Дебай задал ключевой вопрос: «Вы говорите о волнах, но где же волновое уравнение?» Шредингер взялся его вывести и подобрал (рис. 7.4) отмычку к большей части современной физики. Эквивалентная формулировка, использующая таблицы чисел, называемые матрицами, была примерно в то же время предложена Максом Борном, Паскуалем Йорданом и Вернером Гейзенбергом. На этом новом математическом фундаменте квантовая теория испытала взрывной рост. Всего за несколько лет удалось успешно объяснить целый ряд прежде непонятных результатов измерений, включая спектры сложных атомов и различные числовые параметры, описывающие свойства химических реакций. Наконец, квантовая физика дала нам лазер, транзистор, интегральные схемы, компьютеры и смартфоны. Развитием успеха квантовой механики стала расширяющая ее квантовая теория поля, которая лежит в основе передовых современных исследований, таких как поиск частиц темной материи.
Что служит признаком хорошей науки? Есть несколько определений науки, которые мне нравятся, и одно из них – это сжатие данных, объяснение многого посредством немногого. От хорошей науки вы получаете больше, чем в нее закладываете. Я применил обычную программу-архиватор к текстовому файлу, содержащему черновик этой главы, и он сжался втрое за счет использования закономерностей и шаблонов, которые встречаются в моем тексте. Сравним это с квантовой механикой. Я только что загрузил со страницы http://physics.nist.gov/PhysRefData/ASD/lines_form.html список более чем из 20 тыс. спектральных линий, для которых в лабораториях по всему миру тщательно измерены частоты. С учетом закономерностей и повторяющихся структур, содержащихся в этих данных, уравнение Шредингера позволяет сжать их всего до трех чисел: постоянной тонкой структуры α ≈ 1/137,036, которая задает силу электромагнетизма; числа 1836,15, которое указывает, во сколько раз протон тяжелее электрона, и орбитальной частоты водорода. Это эквивалентно такому сжатию данных, при котором моя книга сократится до одного предложения!
Эрвин Шредингер – один из моих физиков-супергероев. Когда я был постдоком в Институте физики общества им. Макса Планка в Мюнхене, копировальная машина в тамошней библиотеке разогревалась так долго, что я коротал время, снимая с полок и просматривая классические книги. Однажды я взял журнал «Анналы физики» за 1926 год и поразился: почти все, изучавшееся мной на лекциях по квантовой теории в аспирантуре, было описано в четырех статьях Шредингера! Он был не только блестящим физиком, но и свободным мыслителем: он отвергал авторитеты, размышлял и делал то, что считал правильным. Получив профессорскую должность в Институте Общества им. Макса Планка в Берлине, одну из самых престижных в мире, Шредингер подал в отставку в знак протеста против преследования нацистами своих коллег-евреев. Затем он отклонил предложение поработать в Принстоне, поскольку там не одобряли его взгляды на брак (он жил с двумя женщинами и имел ребенка от той, на которой не был женат). Предприняв в 1996 году, во время отпуска в Австрии, паломничество к могиле Шредингера, я обнаружил, что свободомыслие не в почете и в родном городке ученого. Как видно на сделанной мной фотографии (рис. 7.4), крошечный Альпбах похоронил своего самого знаменитого гражданина в предельно скромной могиле на самом краю кладбища.

Квантовые причуды

Но что это за волны, которые описываются уравнением Шредингера? Главная загадка квантовой механики по сей день сохраняет свою глубину и дискуссионность.
Когда физики что-то описывают математически, обычно описание должно включать две вещи:
1. Состояние в заданное время.
2. Уравнение, описывающее, как это состояние будет изменяться во времени.
Например, для описания орбиты Меркурия Ньютон определял его состояние шестью числами: три задают положение его центра (скажем, его x-, y– и z-координаты), а еще три – компоненты скорости по этим направлениям. В качестве уравнений движения он применил закон (известен теперь как закон Ньютона), гласящий: ускорение определяется гравитационным притяжением Солнца, которое зависит от расстояния до Солнца по закону обратных квадратов.
Нильс Бор в своей планетарной модели атома (рис. 7.5, в центре) изменил вторую часть описания, введя квантовые скачки между особыми орбитами, но сохранил первую часть. Шредингер пошел еще дальше, изменив и первую часть: он отбросил саму мысль, что частица обладает четко определенными положением и скоростью. Вместо этого Шредингер описал состояние частицы совершенно новой математической бестией, называемой волновой функцией (Ψ), которая характеризует степень присутствия частицы в разных местах. На рис. 7.5 (справа) показан квадрат волновой функции |Ψ|2 для электрона в атоме водорода на орбите с n = 3, и там видно, что вместо пребывания в одном конкретном месте он выглядит находящимся в равной мере со всех сторон от протона (предпочитая при этом одни радиальные расстояния иным). Интенсивность электронного облака (рис. 7.5, справа) в разных участках характеризует степень, в которой электрон там присутствует. Если вы возьметесь экспериментально отслеживать электрон, окажется, что квадрат волновой функции дает вероятность того, что вы обнаружите его в разных местах, так что некоторые физики предпочитают думать о волновой функции как об описании облака вероятности или волны вероятности. Например, вы никогда не найдете частицу там, где волновая функция равна нулю. Если вы хотите расшевелить вечеринку, выдав себя за квантового физика, то вот вам еще одно словечко, – суперпозиция: о частице, которая находится одновременно здесь и там, говорят, что она находится в суперпозиции положений здесь и там, а ее волновая функция описывает все, что нужно знать об этой суперпозиции.

 

Рис. 7.8. Волновая функция Ψ на грани коллапса.

 

Квантовые волны разительно отличаются от классических волн на рис. 7.6: классическая волна, на которой можно заниматься серфингом, состоит из воды, а сущностью, которая принимает волнистую форму, является поверхность воды. А вот сущность, которая является волнистой или облачной в атоме водорода – это не вода или какая-то иная субстанция (ведь там есть лишь один электрон). То, что является волнистым в его волновой функции – это степень, с которой он присутствует в разных местах.

Коллапс консенсуса

Итак, можно сказать, что Шредингер изменил классическое описание мира в двух аспектах:
1. Состояние описывается не положениями и скоростями частиц, а волновой функцией.
2. Изменение этого состояния во времени описывается не законами Ньютона и Эйнштейна, а уравнением Шредингера.
Всеми признано, что эти открытия Шредингера входят в число главных достижений XX века: ведь они произвели революцию и в физике, и в химии. Но они также заставляют недоумевать: если предметы могут находиться в нескольких местах сразу, то почему мы никогда этого не наблюдаем (во всяком случае, на трезвую голову)? Эта загадка известна как проблема измерения (в физике измерение и наблюдение – синонимы).
После долгих дискуссий Бор и Гейзенберг нашли поразительно радикальное средство, копенгагенскую интерпретацию, которую сегодня отстаивает большинство учебников квантовой механики. Ее ключевым элементом является добавление ко второму из упомянутых выше пунктов увертки, гласящей: изменения управляются уравнением Шредингера лишь часть времени, зависящую от того, осуществляется ли наблюдение. А именно, если нечто не наблюдается, его волновая функция меняется согласно уравнению Шредингера. А если производится наблюдение объекта, его волновая функция коллапсирует таким образом, что объект обнаруживается лишь в одном месте. Процесс коллапса скачкообразный и принципиально случайный, а вероятность того, что вы обнаружите частицу в любом конкретном месте, определяется квадратом волновой функции. Таким образом, коллапс волновой функции удобно избавляет от шизофренических суперпозиций и объясняет знакомый нам классический мир, где вещи наблюдаются лишь в одном месте в каждый момент времени. В табл. 7.3 приводятся ключевые квантовые идеи, которые мы успели обсудить, и указываются их взаимосвязи.

 

Табл. 7.3. Ключевые концепции квантовой механики (гильбертово пространство и последние три понятия мы введем в следующей главе).

 

В копенгагенской интерпретации есть и другие элементы, но с приведенной частью согласно большинство физиков. Постепенно я стал замечать, что коллеги, признающие наилучшей копенгагенскую интерпретацию квантовой механики, обычно не соглашаются друг с другом относительно некоторых других ее элементов, отчего правильнее говорить о копенгагенских интерпретациях. Один из пионеров релятивизма Роджер Пенроуз язвил: «Существует больше разных отношений к квантовой механике, чем квантовых физиков. Это не является противоречием, поскольку некоторые квантовые физики придерживаются различных взглядов одновременно». На самом деле даже Бор и Гейзенберг расходились во взглядах на природу реальности. Однако все физики соглашаются: копенгагенская интерпретация великолепно подходит для повседневной работы в лаборатории.
Не все, однако, были в восторге. Если коллапс волновой функции действительно происходит, то, значит, фундаментальная случайность учтена законами природы. Эйнштейн был глубоко огорчен этой интерпретацией и выразил свое предпочтение детерминистической Вселенной в часто цитируемом высказывании: «Я не могу поверить, что Бог играет в кости». В конце концов, сама суть физики состоит в предсказании будущего исходя из настоящего, а это становится невозможным не только практически, но и принципиально. Даже если вы бесконечно мудры и знаете волновую функцию всей Вселенной, вы не сможете вычислить, какой станет волновая функция в будущем: как только кто-либо в нашей Вселенной выполнит наблюдение, волновая функция случайным образом изменится.
Еще один пугающий аспект коллапса состоит в том, что наблюдение приобрело статус центральной концепции. Когда Бор воскликнул: «Нет реальности без наблюдения!» – казалось, он вновь поместил человека в центр мироздания. После Коперника, Дарвина и других, постепенно выпускавших воздух из раздутого человеческого самомнения, копенгагенская интерпретация порождает впечатление, что мы в некотором смысле созидаем реальность, просто глядя вокруг.
Наконец, некоторых физиков раздражало отсутствие математической строгости. Традиционные физические процессы описываются математическими уравнениями, а в копенгагенской интерпретации нет уравнения, определяющего, что представляет собой наблюдение, то есть когда именно коллапсирует волновая функция. Действительно ли для этого требуется наблюдатель-человек, или для коллапса волновой функции достаточно сознания в некоем более широком смысле? Эйнштейн сказал: «Существует ли Луна потому, что на нее смотрит мышь?» Может ли робот вызвать коллапс волновой функции? А что можно сказать о веб-камере?

Без причуд никуда

Короче говоря, копенгагенская интерпретация предполагает, что малые объекты могут вести себя причудливо, а крупные – нет. То есть объекты столь малые, как атомы, обычно находятся в нескольких местах сразу, а крупные, вроде людей, – лишь в одном. Немного неудобно, конечно, но это вполне разумная точка зрения, пока странности остаются пленниками микромира и не могут каким-либо образом проникнуть в макромир, подобно тому, как заключенный в бутылку злой джинн не может вырасти и опустошить все вокруг. Но в самом ли деле они остаются в заключении?
Одной из вещей, взволновавших меня, сидевшего в комнате стокгольмского общежития, была вот какая: крупные предметы состоят из атомов, а поскольку атомы могут находиться в нескольких местах сразу, то и предметы на это способны. Но поскольку то, что они могут, не означает, что они должны, есть надежда, что не существует физических процессов, усиливающих микроскопические причуды до макроскопических чудес. Сам Шредингер, однако, пошатнул эту надежду своим дьявольским мысленным экспериментом: кот посажен в ящик с ампулой цианида, которая разобьется, если распадется один радиоактивный атом. Спустя некоторое время атом будет находиться в суперпозиции распавшегося и нераспавшегося состояний, а кот окажется в суперпозиции мертвого и живого. Иными словами, безобидная, казалось бы, микросуперпозиция, затрагивающая один-единственный атом, усиливается со временем до макросуперпозиции, в которой кот, содержащий октиллионы частиц, находится в двух состояниях сразу. Более того, подобное усиление причуд происходит постоянно, даже без всяких садистских приспособлений. Вы, возможно, слышали о теории хаоса, о том, что законы классической физики могут экспоненциально усиливать незначительные различия, так что пекинская бабочка, махнув крылом, вызывает бурю в Стокгольме. Еще более простой пример: поставленный вертикально карандаш, который в зависимости от микроскопического начального толчка выбирает направление, в котором он упадет. Где бы ни проявлялась хаотическая динамика, начальное положение одного атома может все переменить, так что если атом находится сразу в двух местах, вы в результате получите макроскопические предметы, находящиеся сразу в двух местах.
Такое усиление причуд, очевидно, случается всякий раз, когда мы производим квантовые измерения: если вы измеряете положение отдельного атома, который находится в двух местах сразу, и записываете результат на листе бумаги, то положение частицы будет определять движение вашей руки, а следовательно, карандаш окажется в двух местах сразу.
И последнее по порядку, но не по важности: усиление причудливости регулярно происходит даже внутри вашего мозга. Возбудится ли определенный нейрон в определенное время, зависит от того, превысит ли сумма его входных сигналов некоторый порог, и это может сделать нейронную сеть крайне нестабильной, наподобие погоды или поставленного вертикально карандаша. В самом начале этой книги описан именно такой случай: я ехал на велосипеде и решал, посмотреть ли вправо. Представьте, что мое спонтанное решение, которое позволило мне уцелеть, зависело от того, попадет ли всего один атом кальция в конкретное синаптическое соединение моей префронтальной коры, заставив конкретный нейрон выдать электрический сигнал, запускающий целый каскад действий других нейронов в мозге, под общим условным названием «Давай посмотрим!» И если бы этот атом кальция оказался в двух местах сразу, то через полсекунды мои глаза смотрели бы сразу в двух направлениях, а тело оказалось бы сразу в двух местах, одним из которых был бы морг. Это стало бы моей собственной версией эксперимента с котом Шредингера, где я исполнял бы роль кота.

Квантовое недоразумение

Итак, я в печали и замешательстве сидел в комнате подруги в общежитии. Приближался первый экзамен по квантовой теории, но чем больше я думал о копенгагенской интерпретации, подаваемой в учебнике в качестве очевидной и абсолютной истины, тем большее беспокойство меня охватывало. Квантовые причуды, очевидно, не могли ограничиваться микромиром. Кот Шредингера выбрался из ящика. Я имею в виду не причуды как таковые, а то, что беспокоило меня тогда: представьте, что вы лично выполняете эксперимент с котом. Если учебник прав, то волновая функция кота коллапсирует и он становится определенно мертвым или определенно живым в тот момент, когда вы лично на него посмотрите. Но что если я нахожусь вне лаборатории и рассматриваю волновую функцию, описывающую все частицы, которые составляют кота, вас и все остальное в лаборатории? Все эти частицы должны подчиняться уравнению Шредингера независимо от того, являются ли они частью живых существ или нет, так? А в этом случае, согласно учебнику, волновая функция кота коллапсирует только тогда, когда я сам войду в лабораторию, а не раньше, когда взгляд бросите вы. И в этом случае прежде, чем взгляну я, вы сами были бы в суперпозиции сожалеющего о смерти кота и радующегося тому, что он уцелел. Иными словами, копенгагенская интерпретация в лучшем случае неполна (она отказывается отвечать на вопрос, когда именно происходит коллапс волновой функции), а в худшем – противоречива, поскольку волновая функция всей нашей Вселенной никогда не коллапсирует с точки зрения кого-либо из параллельной вселенной, кто не может нас наблюдать.
В следующей главе мы рассмотрим, что в действительности говорит квантовая механика о природе реальности. Возможно, шведы генетически предрасположены очернять своих юго-западных соседей, но когда я думаю о копенгагенской интерпретации, я не могу выбросить из головы фразу из «Гамлета»: «Какая-то в державе датской гниль».

Резюме

• Все, включая свет и нас самих, кажется состоящим из частиц.
• Эти частицы являются чисто математическими объектами в том смысле, что имманентно им присущи лишь математические свойства – вроде чисел, называемых зарядом, спином и лептонным числом.
• Эти частицы не подчиняются законам классической физики.
• Состояние этих частиц (которые следовало бы называть «волницами») математически описывается не совокупностями из шести чисел (задающих положение и скорость), а волновой функцией, описывающей меру их нахождения в разных местах.
• За счет этого они обладают свойствами и традиционных частиц (могут быть либо здесь, либо там), и волн (могут быть в нескольких местах одновременно в состоянии суперпозиции).
• Частицы не могут находиться всего в одном месте (принцип неопределенности Гейзенберга), и это препятствует коллапсу атомов.
• Поведение частиц в будущем описывается не законами Ньютона, а уравнением Шредингера.
• Это уравнение показывает, что безобидные микроскопические суперпозиции могут усиливаться, превращаясь в безумные макроскопические суперпозиции вроде кота Шредингера, так что вы сами находитесь в двух местах одновременно.
• В учебниках утверждается, что волновая функция иногда «коллапсирует», нарушая уравнение Шредингера и привнося в природу фундаментальную случайность.
• Физики с жаром доказывают, что все это имеет смысл.
• Изложения квантовой механики в учебниках либо неполны, либо внутренне противоречивы.
Назад: Часть II. Все мельче и мельче
Дальше: Глава 8. Мультиверс III уровня