Глава 6
Фиктивные силы
– Есть хочешь? – спросила мама, пока отец, ухватив мой чемодан, потащил его в дом.
Мы пошли следом. Кэссиди тоже побежала рядом, радостно колотя меня хвостом по ногам.
– Должно быть, проголодалась, пока летела, – говорила мама. – Поверить не могу, что ты отправилась в путь, не предупредив нас.
Судя по выражению лица, она действительно была недовольна.
– В нашей семье, – сказала она суровым голосом, глядя на меня сверху вниз, – не принято летать через океан, никому ничего не сказав.
– Извини, – попросила я. – Это было внезапное решение.
– Настолько внезапное, что даже позвонить было некогда?
– Мне хотелось удивить папу. У меня случилось прозрение.
– О прозрении тоже можно рассказать по телефону.
– По-моему, – сказал я, обиженно надувая губы, – это совсем не то.
Мы прошли на кухню, и я села за стол. Отец сел рядом. Кэссиди разлеглась на полу у моих ног.
– Так ты хочешь есть?
– Я только что из Англии, – сказала я. – Так что я умираю с голоду!
– А что за прозрение? – спросил отец.
– Я могу приготовить курицу, – сказала мама, заглядывая в холодильник. – А еще есть та острая лапша, которая тебе нравится. Посмотрим… Есть фруктовый салат. Есть арахисовое масло…
Кэссиди навострила уши, а я содрогнулась от одной только мысли.
– Нет, только не арахисовое масло, никакого арахисового масла!
– Так в чем прозрение? – повторил отец.
– Могу сделать салат с фетой и грецкими орехами.
– Было бы неплохо.
– А чем заправить? У меня есть уксус с малиновым сиропом.
– Ради бога, не томи: что еще за прозрение?
– Ладно, – сказала я, поворачиваясь к отцу. – Ты готов меня слушать?
Он весь обратился в слух.
– Что-либо реально, только если оно инвариантно, – сказала я.
Он уставился в пространство, шепотом повторяя за мной:
– Что-либо реально, только если инвариантно…
– Подумай сам. Инвариантно – то, что в любой системе отсчета одно и то же. Это нечто такое в мире, относительно чего у всех наблюдателей единое мнение. Мы так интуитивно определяем понятие «объективный». Так мы проверяем что-то на реальность. Если можно найти хотя бы одну систему отсчета, в которой оно исчезает, тогда это не инвариант, оно зависит от наблюдателя. Оно не реально.
Он на мгновение задумался.
– Итак, если нечто инвариантно, то оно реально. А если оно зависит от наблюдателя, тогда это что? Иллюзия?
– Нет. Я не говорю, что это галлюцинация или что это субъективно. Но оно в конечном счете не реально.
– Как радуга.
– Точно! Это физическое явление, оно не субъективно, но и не реально. Верно? Подожди. А откуда берется радуга?
– Радуга возникает, когда лучи солнечного света преломляются в капельках воды в воздухе.
– Правильно. Так нам нужно солнце и капельки воды, поэтому радуга объективна, но она зависит от вашей системы отсчета. Если вы перейдете на другое место, вы можете ее больше и не увидеть. Это вполне солидное физическое явление, а вовсе не обман зрения. Не существует физической разноцветной радуги как предмета, висящего в небе, который можно пощупать. Вы не можете ее ухватить. Она как мираж. Она не реальна.
– Она как цвет галактики, – подхватил отец. – Цвет галактики – вовсе не ее собственное свойство, он зависит от того, как галактика движется относительно наблюдателя. Из-за их относительного движения частота световой волны изменяется, а от частоты зависит, какого цвета мы ее видим. Если цвет галактики смещен в красную сторону спектра, то мы знаем, что она удаляется от нас. Если в голубую, – она движется к нам. Это эффект Доплера. Он зависит от наблюдателя.
Я кивнула.
– Если мы хотим отыскать конечную реальность, мы должны устранить все свойства Вселенной, зависящие от выбора системы отсчета, пока не останутся только те, которые действительно инвариантны.
Мама поставила на стол салатник с тарелками и вилками.
Кэссиди заскулила. Я посмотрела вниз. Она посмотрела на меня, высунула язык и подала лапу.
– Ты уверена? – спросила я ее. – Салат?
Я подбросила листик салата в воздух; ее челюсти схлопнулись, листик исчез.
Мама наградила меня неодобрительным взглядом.
Вечером я достала из чемодана несколько книг и статей и направилась в сторону нашей физической библиотеки. В коридоре мама сидела на полу рядом с собакой и шептала: «Да, я люблю тебя. Да».
– Все еще ненавидишь собак? – спросила я.
– Да, – проворковала она, и Кэссиди лизнула ее в нос.
В библиотеке отец сидел, развалившись в своем кожаном кресле, и листал книгу. Я устроилась поудобнее на кушетке.
– Посмотри эту статью, – сказала я. Она была написана Максом Борном, одним из основоположников квантовой механики, опубликована в Philosophical Quarterly в 1953 году и озаглавлена «Физическая реальность». Я прочитала вслух первые строки:
– «За последние сто лет понятие реальности в физическом мире стало довольно проблематичным».
Мой отец рассмеялся:
– Вот как?
Я продолжала читать вслух, отец внимательно слушал:
«Вырежьте из куска картона фигуру, – писал Борн, – скажем круг, и наблюдайте тени, которые он отбрасывает от удаленной лампы на плоскую стену. Тени от круга в общем случае окажутся эллипсами; вращая вашу картонную фигуру, вы можете получить любое значение длины оси эллиптических теней между близкими к нулю и максимумом. Это точная аналогия с поведением длины в теории относительности: в различных состояниях движения она может иметь любое значение между нулем и максимумом… Очевидно, что одновременного рассмотрения теней на многих различных плоскостях достаточно для того, чтобы доказать тот факт, что первоначальная картонная фигура является кругом, и однозначно определить ее радиус. Этот радиус есть то, что математики называют инвариантом преобразований, вызываемых параллельными проекциями».
– На том же принципе основана томография, – нахмурился отец.
Мама, очарованная Кэссиди.
Фото: У. Гефтер.
Я продолжала читать:
«Проекция (тень в нашем примере) определяется относительно системы отсчета (стен, на которые может отбрасываться тень). В общем случае существует много эквивалентных систем отсчета. <…> Инварианты суть величины, которые имеют одно и то же значение для любой системы отсчета и потому независимы от преобразований».
– То есть не зависят от наблюдателя.
– Точно. И вот зацепка, – сказала я, продолжая. – «И вот главный прогресс в структуре понятий в физике состоит в открытии того, что определенная величина, которая рассматривалась как свойство предмета, в действительности есть только свойство проекции».
– Это очень интересный момент, – сказал мой отец. – Прогресс в физике связан с осознанием того, что нечто, считавшееся когда-то инвариантным, на самом деле зависит от системы наблюдения. Как тень.
– Угу. Борн продолжает: «Я убежден, что идея инвариантов является ключом к рациональному понятию реальности». Затем он рассказывает о квантовой механике, аргументируя, что измерение – это проекции на какую-либо систему отсчета, с которой связана измерительная аппаратура. И он заканчивает словами: «Таким образом, инварианты суть понятия, о которых естествознание говорит так же, как на обыкновенном языке говорят о „вещах“… Что здесь приближает к реальности, так это всегда своего рода инвариантный характер структуры, независимый от аспекта, от проекций».
– Реальное – это то, что инвариантно.
Я кивнула:
– Реальное – это то, что инвариантно. Звучит слишком очевидно, но это невероятно глубокое умозаключение, как оно ни банально.
– Я начинаю понимать, – сказал отец, перелистывая страницы сборника научных трудов Эйнштейна. – В целом эта же идея лежит в основе теории относительности. Вот послушай. Эйнштейн размышлял об электричестве и магнетизме. При перемещении магнита возникает электрическое поле, и при перемещении электрона возникает магнитное поле. Но как можно различить, что на самом деле движется? Движение относительно – вы покоитесь относительно электрона или относительно магнита? Он писал: «Мысль, что это две принципиально различные ситуации, была невыносима для меня. Я был убежден, что разница между ними не могла быть существенной, а возникала только из-за разницы в системе координат. В системе [движущегося] магнита не было никакого электрического поля. В системе эфира электрическое поле, конечно, присутствует. Таким образом, существование электрического поля было относительно, в зависимости от состояния движения используемой системы координат, и только электрические и магнитные поля вместе можно было бы отнести к разновидности объективной реальности, которая не зависит от состояния движения наблюдателя или системы координат. Это явление магнитоэлектрической индукции помогло мне сформулировать (специальный) принцип относительности».
Пока мой отец зачитывал мне слова Эйнштейна, я поняла, что главное, за что физики должны были благодарить Эйнштейна, – это доказательство фундаментальной связи между инвариантностью и реальностью.
Поскольку движение относительно, а законы электромагнетизма требуют, чтобы свет распространялся со скоростью 186 000 миль в секунду, пространство и время сами должны изменяться при переходе от одной системы отсчета к другой. То есть пространство и время зависят от системы отсчета наблюдателя. Они не реальны.
Отметая все, что зависело от систем отсчета наблюдателя, Эйнштейн обнаружил, что реальным является единый четырехмерный пространственно-временной континуум. Разные наблюдатели могут по-разному разрезать его, называя одни проекции «пространством», а другие «временем», но это просто разные точки зрения на один и тот же инвариант. Если протяженность вашей мировой линии, скажем, десять единиц, то я могла бы отнести пять из них на счет пространства и другие пять – на счет времени. Но в другой системе отсчета мой отец мог бы назвать семь из них единицами пространства и только три – единицами времени, иными словами, два единицы, которые он видит как пространство, я вижу как время. Световые волны видят все десять единиц единицами пространства, ничего не оставляя на счет времени. Вот почему вы не можете двигаться быстрее, чем свет. Вы не можете выделить на счет времени меньше нуля. Если вы это сделали, то у вас оказалось бы отрицательное число, означающее, что вы научились путешествовать назад во времени.
Дело же все в том, что как ни разрезай пространство-время, оно так и останется пространством-временем. Это инвариант.
Вот почему Герман Минковский сказал: «…Отныне пространство само по себе и время само по себе обречены исчезнуть, превратиться в тень, и только их своеобразный союз сохранит независимую реальность». Пространство и время были как тени на стене; пространство-время было подобно картонной фигуре.
Эйнштейн полагал, что второе было важнее, чем первое: для него не так было важно то, что было относительным, как то, что было инвариантным, поскольку он знал, что то, что инвариантно, то и реально. В связи с этим он выражал сожаление, что назвал свою теорию теорией относительности, вместо того чтобы назвать ее Invariantentheorie: теория инвариантов.
Интересно, что мы никогда не увидим пространства-времени. Как узники в платоновской пещере, мы вынуждены познавать мир через его тени, а Вселенную – разрезанной на части трехмерного пространства и одномерного времени. Но, обнаруживая в уравнениях Эйнштейна инвариант, получивший название интервала и сохраняющийся неизменным при преобразованиях Лоренца, мы можем за обманчивой видимостью разглядеть истинную реальность. Пространство-время – это симметрия, но в нашем восприятии Вселенной эта симметрия нарушена. Мы живем среди ее осколков.
Зависимость от системы отсчета наблюдателя только возросла, когда Эйнштейн проапгрейдил специальную теорию относительности до общей. Рассказывают, что озарение – Эйнштейн назвал его своей «самой счастливой идеей» – пришло, когда он увидел, как рабочий упал с крыши здания, расположенного напротив его патентного офиса. Это звучит, как если бы Эйнштейн был последним подонком. Но это, наверное, не так. В любом случае, ему пришло в голову, что человек, падающий с крыши, находился в свободном падении и испытывал состояние невесомости, как если бы гравитация для него внезапно исчезла. Это была его самая счастливая мысль, поскольку в ней содержалось невероятное прозрение: если гравитация может исчезнуть в одной из систем отсчета, то она не может быть фундаментальным свойством реальности. Она должна была быть иллюзией восприятия.
В восприятии злополучного кровельщика он находился в обычной инерциальной системе отсчета, и в ней отсутствует сила тяжести. И чувства его не обманывали: со своей точки зрения, он действительно находился в невесомости, и если бы он успел сделать некоторые простые научные опыты по пути вниз, их результаты подтвердили бы это. Если бы, например, он вынул свои ключи из кармана и уронил их, они бы не упали к его ногам, как бы это случилось в присутствии силы тяжести, а просто повисли бы рядом с ним, падая с такой же скоростью. Единственное, что в этом случае было необычным, это массивная планета, которая с неожиданным ускорением приближалась к нему.
Инерциальной системе отсчета соответствует прямая линия в пространстве-времени. Но падение человека в восприятии стоящих на земле зрителей, которые показывают на него пальцем и смеются, происходит с ускорением. Для них он ускоряется и его мировая линия описывается кривой линией. Так что это? Прямая или кривая линия?
Эйнштейн знал, что и то и другое верно, поскольку прямая и кривая линии – это лишь разные описания одного и того же движения одного и того же человека. Но как могут быть оба варианта ответов верными одновременно? Как может кривая быть прямой? Чтобы превратить кривую линию в прямую, вы должны согнуть бумагу. Переход от системы отсчета кровельщика к системе отсчета зевак требует диффеоморфного преобразования. Он требует изгиба пространства-времени. Он требует гравитации.
Принцип общей ковариантности Эйнштейна требовал, чтобы для всех наблюдателей выполнялись одни и те же законы физики. Гравитация превращает кривые линии в прямые. «Мы можем воспроизвести гравитационное поле, просто изменив систему координат, – писал Эйнштейн. – Требование общей ковариантности… отнимает у пространства и времени последний остаток физической реальности».
Ньютон верил в реальность абсолютного пространства, потому что без этого ускорение ничего не значит – ускорение относительно чего? Но Эйнштейн в общей теории относительности показал, что то, что выглядит как система отсчета, двигающаяся с ускорением, с другой точки зрения может выглядеть как инерциальная система отсчета, в которой действует сила тяжести. Нет онтологической разницы между ускоренной и инерциальной системами отсчета, что, в свою очередь, означало, что не существует абсолютного пространства. То есть вам не нужно, чтобы пространство было реальным.
Это также объясняло другой любопытный факт, который, вероятно, могла бы с пеной у рта оспаривать девушка из моей группы по философии науки: предположим, два шарика падают одновременно с Пизанской башни, например шар для боулинга и мячик для пинг-понга. Предполагая, что их падение происходит в безвоздушном пространстве, можно ожидать, что они ударятся о землю точно в одно и то же время. Вы бы могли подумать, что более тяжелый их них будет падать быстрее, но это не так. Потому что, если бы более тяжелые предметы падали быстрее, чем более легкие, то вы были бы в состоянии отличить, в какой системе вы находитесь: в ускоренной системе или инерциальной системе отсчета с гравитацией.
Каким образом? Допустим, вы находитесь в кабине лифта без окон и чувствуете, что ваш вес прижимает вас к полу. Вы могли бы задаться вопросом, ускоряется ли лифт по направлению вверх, заставляя пол давить вам на ноги, или лифт находится в состоянии покоя на планете с сильным гравитационным полем. Чтобы ответить на этот вопрос, вы могли бы одновременно уронить что-то очень тяжелое и очень легкое. Если тяжелое упадет на пол первым, мы будем знать, что находимся в сильном гравитационном поле. Если тяжелое и легкое достигнут пола одновременно, мы будем знать, что лифт двигается с ускорением вверх, поскольку поднимающийся пол коснется обоих свободно парящих в пространстве предметов одновременно.
Только потому, что тела разного веса падают с одинаковой скоростью, работает принцип эквивалентности Эйнштейна: вы никогда не можете отличить ускорение от гравитации. Если бы вы могли это сделать, то «пространство» бы что-то значило. Оно было бы реальным. Но это не так.
– Специальная теория относительности доказывает, что пространство и время не реальны – они зависят от наблюдателя, – сказала я отцу. – А общая теория относительности доказывает, что сила тяжести не реальна, так как она исчезает в определенных системах отсчета. Но здесь мы подходим к самой безумной мысли – дело не ограничивается Эйнштейном. Это относится ко всем силам. Ни одно из так называемых «фундаментальных» взаимодействий не реально!
Кроме гравитации есть еще три фундаментальных взаимодействия. Электромагнетизм – наиболее знакомый из них, поскольку мы постоянно встречаемся с ним в повседневной жизни. Еще два проявляются на субатомных масштабах и поэтому нам менее известны. Сильное ядерное взаимодействие связывает кварки в протоны и нейтроны, которые, в свою очередь, составляют ядро любого атома. Слабое ядерное взаимодействие превращает протоны в нейтроны, и наоборот, изменяя аромат содержащихся в них кварков, отвечает за радиоактивный распад – это из-за него Солнце светит.
Несмотря на все разговоры о гравитации как о «выбывшей из игры» в квантовую механику, все остальные взаимодействия, по существу, играют ничуть не лучше, в особенности если принять во внимание, насколько по-разному они проявляются в разных системах отсчета.
Когда речь заходит о силах в квантовой механике, приходится забыть и о пространстве, и о времени и говорить только о квантовых волновых функциях. А у волновой функции, как и у всякой волны, есть фаза, и в этом все дело.
– Допустим, имеется какая-то материальная частица, например электрон, – сказала я. – Она описывается волновой функцией, а у волновой функции есть фаза. Но фаза – это не какая-то физическая вещь. Она просто показывает, к какой стадии колебательного цикла привело волновое движение некое участвущее в нем материально тело в данной точке пространства: приближается ли колеблющаяся величина к своему максимальному значению или, напротив, находится на спаде и уже скоро достигнет минимума – в отношении какого-то из измерительных приборов. Кого-то из наблюдателей. Если ты смотришь на проходящие мимо тебя волны и делаешь шаг влево, то фаза волны по отношению к тебе меняется. Поэтому очевидно, что фаза не может быть внутренним свойством волны, ее значение зависит от системы отсчета наблюдателя. Конечно, значение имеет только разница фаз – именно она, например, определяет вид интерференционной картины в опыте с двойной щелью. Фаза сама по себе не имеет определенного смысла.
– Фаза определяет систему отсчета, – сказал отец.
– Точно! Представь себе, что волновая функция электрона заполняет собой все пространство. Конечно, ее амплитуда, вероятно, достигает максимума только в какой-то ограниченной области, но, формально говоря, она простирается бесконечно. В силу принципа неопределенности она нигде не может в точности равняться нулю. Ты следишь за этим электроном и вдруг делаешь два шага влево. Волновая функция меняет фазу. Но фаза не меняется сразу во всем пространстве, потому что это действие ограничивается только твоим световым конусом. Изменение фазы всей волновой функции сразу во всей Вселенной потребует сверхсветовой скорости. Если бы это было возможно, то оно было бы эквивалентно чему-то вроде преобразования Лоренца. Но это невозможно. В твоих силах изменить волновую функцию только в ограниченной части пространства. Так что теперь у тебя имеются две части волновой функции: у одной фаза сдвинута, а у второй – нет. Они не соответствуют друг другу, как кривая и прямая линии. Поэтому нужно ввести силу, которая компенсирует это несоответствие. Тебе нужно найти преобразование, позволяющее плавно совместить эти две части – диффеоморфное преобразование.
– То есть необходим эквивалент гравитации.
– Точно. И в случае электронов эквивалентом гравитации выступает электромагнетизм.
Электромагнетизм проявляется как калибровочная сила. Калибровка – это просто другое слово, означающее фазу. Это – точка зрения, система отсчета. Аналогично принципу общей ковариантности Эйнштейна, принцип калибровочной инвариантности требует, чтобы при любой калибровке силы были одинаковыми; не существует выделенной системы отсчета, которая была бы более истинна, чем остальные. Но локальное изменение калибровки – смещение системы отсчета – приводит к фазовому несоответствию частей волновой функции. Для того чтобы скомпенсировать этот фазовый сдвиг и сохранить все системы отсчета равноправными, вам необходима калибровочная сила.
Во многих книгах и статьях, которые я прочла, утверждалось, что силы воздействуют на частицы путем изменения фазы их волновой функции, но на самом деле все происходит наоборот: переход к другой системе отсчета создает сдвиг по фазе, который вызывает силу. Иными словами, не совпадающие между собой системы отсчета и являются силой. В случае электрона сила, возникшая из несоответствия фаз, – это электромагнетизм, а элементарное возбуждение электромагнитного поля – это фотон.
Электромагнитная сила гарантирует, что мы не перепутаем два разных описания одного электрона с двумя разными электронами, как и гравитация гарантирует, что мы не перепутаем два разных представления пространства-времени одной и той же Вселенной с двумя разными вселенными. Сильные и слабые ядерные взаимодействия – также калибровочно инвариантны. Они возникают исключительно для того, чтобы скомпенсировать сдвиг фаз волновой функции кварков, возникающий при переходе из одной системы отсчета в другую. И сходство калибровочных преобразований с диффеоморфизмом общей теории относительности не случайно: гравитация – это тоже калибровочная сила.
Я узнала о ядерных взаимодействиях давно, еще когда писала свою статью о кварк-глюонной плазме, но тогда я не оценила всей глубины теории калибровочных полей, пока меня не осенила мысль о связи между инвариантностью и реальностью. Дело в том, что калибровочные силы не являются инвариантными. Как и в случае с падающим кровельщиком, вы можете найти такую систему отсчета, в которой они исчезают. Более того, в одной-единственной системе отсчета они даже не существуют. Они появляются только тогда, когда вы сравниваете одну систему отсчета с другой. Они зависят от наблюдателя. Они не реальны.
– Они фиктивны, – взволнованно сказал отец.
– Правильно! Они не настоящие.
– Да нет, они именно фиктивные, – сказал он, наклоняясь вперед в своем кресле.
– Это что такое?
– Представь себе: ты стоишь на светофоре. Включается зеленый свет, и ты давишь на газ. Машина начинает двигаться, и ты чувствуешь силу, которая вдавливает тебя в кресло. Физики называют такие силы инерционными или фиктивными, – как центробежную силу, которая прижимает тебя к двери на крутом вираже. Эти силы не настоящие – они возникают в результате ускорения системы отсчета, о котором ты, может, и не знаешь. Но вернемся к светофору, к тому моменту, когда ты нажимаешь на газ. Давай посмотрим на это с точки зрения парня, стоящего на тротуаре: он находится в инерциальной системе отсчета, верно? Он видит, как автомобиль рванул вперед, а ты навалилась на спинку своего автомобильного кресла. Но, с его точки зрения, тут все просто объясняется: автомобиль разгоняется и вместе с собой разгоняет и тебя. Он совершенно не понимает, что тебя кто-то будто бы вдавливает в автомобильное кресло. Вместо этого спинка кресла давит на твою спину сзади. Но, находясь внутри автомобиля, ты не можешь установить, разгоняется ли автомобиль в самом деле.
– Ну, я все же вижу в окно, что он двигается все быстрее и быстрее, – возразила я.
– Но равным образом то, что ты видишь, может объясняться и тем, что все вокруг убегает от тебя все быстрее и быстрее, а ты сама остаешься на месте. А если зашторить все окна, то ты вообще можешь думать, будто не движешься совсем: ведь по отношению к тебе ничто из находящегося внутри автомобиля, включая сиденья, не движется. У тебя было бы полное право предположить, что ты находишься в состоянии покоя, и тебе показалось бы очень странным, с чего это вдруг тебя что-то внезапно вжало в кресло. Единственный способ объяснить это – предположить, что на тебя действует какая-то сила.
– Но это не настоящая сила…
– Правильно, это фиктивная сила, так как ее не существует с точки зрения инерциального парня на тротуаре. Для него нет силы, есть только ускорение автомобиля. Физики называют такие силы фиктивными, поскольку можно найти систему отсчета, в которой они отсутствуют. Но в действительности из того, что ты говоришь, следует, что все силы, даже те, о которых мы думали, что они реальные, фиктивны в не меньшей мере.
– Да, точно! Гравитация, электромагнетизм, ядерные силы… они все фиктивные. Они зависят от калибровки, а это просто другой способ сказать, что они зависят от наблюдателя. Они не инвариантны. Но ты сказал, что фиктивная сила возникает потому, что «на самом деле» испытываешь ускорение, хотя, возможно, и не знаешь этого. Но разве не в том суть теории относительности, что мы не можем утверждать, что «на самом деле» ускоряемся? Есть ли сила в инерциальной системе отсчета, или нет силы в системе отсчета, движущейся с ускорением, обе ситуации должны быть эквивалентны. Мы не можем отдать предпочтение парню на тротуаре как единственной «реальной» системе отсчета – все наблюдатели должны быть равноправны.
– Это абсолютно верно, – отец кивнул. – Концепция фиктивных сил происходит из ньютоновской физики, где инерциальный парень на тротуаре считается покоящимся в абсолютном пространстве, относительно которого ускоряется автомобиль. Эйнштейн сделал обе эти системы отсчета (парня и водителя автомобиля) эквивалентными.
– Сделав пространство и время зависимыми от наблюдателя!
Мы обсуждали этот вопрос несколько часов, пока не сказалась разница во времени и мои глаза не начали сами собой закрываться.
– Пойдем спать, девочка! – сказала я Кэссиди и направилась в мою старую спальню. Она сначала последовала за мной, но потом развернулась, побрела обратно по коридору и улеглась на пороге спальни родителей.
– Вот, значит, как? – сказала я ей и укоризненно покачала головой. – Предательница.
Лежа в ту ночь в постели, в комнате, к счастью достаточно большой, чтобы подчиняться законам классической физики, я думала об окончательной реальности. Эйнштейн как-то сказал: «Физика – это попытка концептуально постичь реальность, которая, как считается, существует независимо от наблюдателя. В этом смысле говорят о физической реальности». «Реальный» для Эйнштейна означало «независимый от наблюдателя», и единственным способом выяснить, что не зависит от наблюдателя, было сравнение всех возможных точек зрения в надежде найти те редкие ключевые свойства, которые не меняются при смене точек зрения. То, что реально, – это то, что инвариантно.
Эти философские истины каждый уже знает или, по крайней мере, инстинктивно чувствует. Если мы видим что-то настолько странное, что не верим своим глазам, и мы хотим убедиться, что мы не сошли с ума или не перебрали с алкоголем в баре, то что мы делаем? Мы обращаемся к парню, который сидит рядом с нами, и спрашиваем: «Вы это тоже видите?» Если он говорит «нет», тогда мы знаем: это никакой не инвариант и, наверное, настало время побеспокоиться о своем состоянии.
Будучи новоявленным структурным реалистом, я понимала, что должна быть осторожной, чтобы не спутать наши рассказы о физике с ее базовой математической структурой, чтобы не принять разные описания за разные материальные объекты. И теперь, имея инвариантность в качестве моего единственного критерия окончательной реальности, я поняла, что описания могут различаться при переходе от одной системы отсчета к другой. Только структура обладает возможностью оставаться инвариантной.
Ледиман был прав, повернув идею структурного реализма в онтологическое русло: структура, полностью освобожденная от бремени нашего индивидуального восприятия, была единственным жизнеспособным кандидатом на реальность. Потому что существует бесконечно много способов взглянуть на одно и то же, описать одну и ту же структуру. Это было очевидно уже из общей теории относительности. Вы могли бы прочертить изогнутую мировую линию в плоском пространстве-времени или прямую мировую линию в искривленном пространстве-времени. Вы могли бы описать космос с помощью неевклидовой геометрии, или вы могли бы придерживаться евклидовой геометрии пространства и ввести некоторые дополнительные силы. Вы могли бы обозначить и переобозначить точки пространства-времени бесконечным количеством самых разнообразных способов. И все это не привело бы к каким-либо изменениям. Базовая структура всегда остается одной и той же. Наши творческие возможности для описания реальности, наверное, безграничны. Фокус в том, чтобы узнать, что является только описанием, а что базовой структурой.
К счастью, я открыла для себя простое правило: все, что служит для сохранения калибровочной симметрии, – это просто описание. Однако просто описания могут вызвать к жизни такое физическое явление, которое покажется очень даже реальным, а то и драматическим. Простой переход от одной системы отсчета к другой может превратить пространство во время, заставить гравитацию исчезнуть или сгенерировать электромагнитное поле. Может вызвать ядерную реакцию. Может заставить Солнце светиться.
В дополнение к четырем принципиально фиктивным взаимодействиям есть еще кое-что, без чего калибровочную симметрию не сохранить: хиггсовское поле.
Все частицы обладают свойством, называемым спином, – разновидностью внутреннего вращения, которое отвечает за то, как частицы представлены в разных системах отсчета. Мне нравится иллюстрировать это свойство на примере с пляжным мячиком. Когда мячик пролетает мимо меня, я вижу рисунок то на одной стороне его поверхности, то на другой, так, словно он вращается, хотя в его собственной системе отсчета никакого вращения нет вообще. Конечно, вопрос о том «действительно» ли мяч вращается, не имеет смысла, потому что движение относительно. Наблюдатель, обходящий на 360 градусов вокруг находящегося в покое объекта, и наблюдатель, который стоит на месте, а объект поворачивается на 360 градусов – два эквивалентных описания одного и того же.
Про частицы, обладающие ненулевым спином, в зависимости от его проекции на направление движения говорят, что они имеют правую или левую спиральность, словно бы частица была закручена в направлении движения или в противоположном направлении. Но спиральность относительна: если у вас есть частица с правой спиральностью, вы всегда сможете бежать быстрее нее, и, обернувшись, вы увидите, что знак спиральности частицы сменился на противоположный. Спиральность зависит от системы отсчета, в которой она измеряется.
Это проблема. Спиральность зависит от системы отсчета наблюдателя – это означает, что она не реальна. Не существует истинного различия между частицами с левой и правой спиральностями. И все же эксперименты в конце пятидесятых годов показали, что слабые ядерные взаимодействия, в которых участвуют кварки и электроны, действуют по-разному на лево– и правоспиральные частицы, бросая тем самым дерзкий вызов главному принципу теории Эйнштейна и его современному воплощению в виде калибровочной симметрии. Отразите пространство-время в зеркале, поменяйте местами лево и право, и вы увидите другой мир. Как если бы левое и правое имело какое-то значение. Как если бы они были инвариантами. Почему при слабых взаимодействиях спиральность проявляет себя как инвариантное свойство материи, когда оно в действительности зависит от наблюдателя?
Существует только одна возможность: если частицы движутся со скоростью света, то никто и никогда не может их обогнать; иными словами, во всех системах отсчета левоспиральные частицы останутся левоспиральными, а правоспиральные частицы – правоспиральными. Даже несмотря на то что спиральность принципиально зависит от системы отсчета наблюдателя, левоспиральность и правоспиральность в данном случае будут всегда проявляться как инвариантное свойство материи.
Казалось бы, это достаточно простое решение проблемы: просто все кварки и электроны должны перемещаться со скоростью света. Но основная загвоздка состоит в том, что кварки и электроны обладают массой. Вы не можете одновременно обладать массой и перемещаться со скоростью света – даже крошечный вес заставит вас замедлить скорость. Если частицы движутся медленнее, чем свет, то получается, что мы не можем объяснить, почему слабое взаимодействие предпочитает левоспиральные частицы, не нарушая при этом калибровочную симметрию.
Картина меняется, если у вас есть хиггсовское поле. Физики предположили существование скалярного поля, всюду заполняющего пространство-время таким образом, что при взаимодействии с ним знак спиральности у частиц меняется на противоположный. Так, слабое взаимодействие только думает, что оно действует исключительно на левоспиральные частицы, а хиггсовское поле в фоновом режиме меняет правое с левым, из-за чего в слабом взаимодействии участвуют и правоспиральные, и левоспиральные в равной степени. Теперь вы можете отразить пространство-время в зеркале, и мир от этого не изменится. Благодаря хиггсовскому полю такие частицы, как кварки и электроны, могут иметь массу, не нарушая калибровочной симметрии.
Если вы внимательно посмотрите на то, что делает бозон Хиггса, вы заметите, что со временем происходит что-то странное. Когда левоспиральный электрон взаимодействует с хиггсовским полем, он переходит в правоспиральный антипозитрон. А антипозитрон – это не что иное, как электрон в системе отсчета, в которой стрела времени развернута вспять.
Два наблюдателя всегда придут к единому мнению об очередности событий во времени, если они происходят в области, в которой световые конусы наблюдателей перекрываются. Они могут не прийти к единому мнению о том, в какой момент времени происходят события, но они всегда будут согласны по поводу очередности событий. Для перекрывающихся наблюдателей «до» и «после» инвариантны. Но для девушки, находящейся вне моего светового конуса, эти слова потеряют всякий смысл. Мое «до» может быть ее «после», ее причина может стать для меня следствием. Вы можете предположить, что нам не надо беспокоиться об этом, коль скоро мы никогда не сможем сверить свои записи об этих событиях. Но в квантовой механике это не совсем так. Согласно принципу неопределенности частица вне моего светового конуса все-таки с некоторой ненулевой вероятностью и в обход законов теории относительности находится также и внутри него. При этом может показаться, что частица перемещается быстрее света – иначе говоря, что она движется назад во времени.
Уилер первым понял, что античастицы – это просто обычные частицы, для которых стрела времени обращена вспять. Античастицы должны существовать хотя бы потому, что для некоторых наблюдателей частица может выглядеть так, словно она решила прокатиться на DeLorean. Частицы и античастицы – это не что-то принципиально различное. Это – две разные точки зрения.
Не случайно бозон Хиггса обладает именно такими свойствами, которые позволяют компенсировать различия, создаваемые при переходе из одной системы отсчета к другой, потому что бозон Хиггса (меня только что осенило!) не существует в окончательной реальности. Как гравитация, электромагнетизм и ядерные силы, бозон Хиггса фиктивен – мы вынуждены добавить его в наше описание реальности, чтобы обеспечить равные права для всех систем отсчета и не путать различия в представлении с различием сути.
Я поняла: это именно то, для чего нужна физика. Каждый раз, когда мы различием систем отсчета разбиваем мир на куски, физика предлагает способ, как собрать его обратно воедино. Измените направление каждой пространственной координатной оси на обратное, превращая Вселенную в ее зеркальное изображение, и физика изменится. Замените заряд частиц на противоположный, превратив все частицы в их античастицы, и физика изменится.
Обратите стрелу времени вспять, поменяв местами будущее и прошлое, и снова физика изменится. Но если произвести все эти три операции одновременно, физика остается той же. CPT-инвариантность, как называют свойство мира сохраняться при одновременном применении этих трех операций, – это прямое следствие Лоренц-инвариантности пространства-времени. Заряд, четность (знак спиральности) и время вместе сохраняют структурную эквивалентность систем отсчета и не позволяют спутать разнообразие представлений с разнообразием реальности.
СРТ-инвариантность выявила глубокую связь между структурой пространства-времени и строением материи. Всякий раз, когда я просила физиков дать определение частицы, они отвечали, что это «неприводимое представление группы Пуанкаре», что звучало получше, чем «маленький шарик». Но теперь я наконец поняла, что они имели в виду. Они имели в виду, что симметрия пространства-времени определяет все сущее в нем. Симметрия Пуанкаре – это симметрия плоского, свободного от гравитации пространства-времени специальной теории относительности, симметрия, которая обеспечивает эквивалентность инерциальных систем координат, повернутых друг относительно друга, или движущихся равномерно с разными скоростями, или смещенных друг относительно друга в пространстве. То, что мы называем «частицами», – это исходные инвариантные структуры, которые в плоском пространстве-времени никогда не исчезают при переходе из одной системы координат в другую.
Системы отсчета имеют огромное значение в физике. В теории относительности конечная величина скорости света и относительность пространства и времени означали, что у разных наблюдателей разные представления об одной и той же конечной реальности. В ньютоновской физике, где пространство было абсолютным и скорость света бесконечной, вам не надо было заботиться о различии наблюдателей, потому что они все видели одно и то же. В мире Эйнштейна вам нужны правила, чтобы сравнивать между собой различные системы отсчета, отфильтровывая артефакты ви́дения. Для чего вам понадобились диффеоморфные преобразования и преобразования Лоренца, для того же вам понадобились и калибровочные силы. В мире Эйнштейна необходимость смотреть на все с собственной точки зрения затеняет единство реальности. Физика возвращает утраченное единство. Должна возвращать. Потому что реальность не разбилась, она только такой кажется.
Внезапно мне стала ясна мораль истории с падающим карандашом. Парадигма спонтанного нарушения симметрии. Я перечитывала снова и снова: карандаш балансирует на острие, затем под действием легчайшего дуновения ветра падает, принимая одно из бесконечного числа основных состояний, окружающих его и эквивалентных в том смысле, что энергия каждого из них одна и та же и ее значение минимально – из каждого из этих состояний падать уже некуда. Но ни в одном из них уже нет изначальной вращательной симметрии вертикально стоящего карандаша – симметрия нарушена.
Теперь я поняла, что эти основные состояния – это калибровки, эталонные положения лежащего карандаша. Это точки зрения. Это означает, что в действительности карандаш никогда не падает – это только кажется, что он упал. Это представление в одной выделенной системе отсчета наблюдателя. С этой точки зрения, карандаш отбрасывает горизонтальную тень, которую мы принимаем за реальность, тень, которая не обладает изначальной вращательной симметрией. Чтобы увидеть симметрию полностью, нужно быть в положении Бога, который мог бы видеть карандаш одновременно с каждой точки, расположенной по окружности вокруг него. Поскольку это невозможно, мы вынуждены догадываться о существовании симметрии вращения с позиций нашего выделенного положения. Но мы можем сделать это, обходя по кругу на все 360 градусов наш карандаш, переходя от одной системы отсчета к другой. Обходя по кругу карандаш, мы проходим одну за другой калибровки, не забывая учитывать незначительное угловое смещение, необходимое, чтобы удерживать карандаш в поле зрения, пока мы делаем наш круговой обход. Калибровочная симметрия гарантирует, что такие преобразования систем отсчета возможны. Калибровочные силы компенсируют угловое смещение.
Вильчек предположил, что Вселенная образовалась в результате спонтанного нарушения симметрии, которой обладало ничто. Это объяснение раздражало меня, потому что это вообще не было настоящим объяснением – необходимость какого-то изначального квантового ветерка нарушала принцип Смолина, сформулированного им в качестве «первого принципа космологии»: «за пределами Вселенной ничего нет». Но если карандаш никогда по-настоящему не падает, Вселенная, может быть, никогда по-настоящему не рождалась? Может быть, это просто выглядит так отсюда, изнутри нее?
И сами по себе симметрии не нарушаются – они просто выглядят нарушенными в наших ограниченных системах отсчета, не способных объять полную симметрию конечной реальности. Если бы можно было видеть все пространство-время из некой Архимедовой точки, расположенной за пределами Вселенной, то фазы каждый волновой функции выглядели бы взаимно согласованными и был бы виден каждый угол карандаша одновременно. В мире царила бы симметрия. Силы бы исчезли. И что бы тогда осталось – инварианты? Это, как я знала, был конечный вопрос. Ответом, каким бы он ни был, является окончательная реальность.
Здесь – внутри Вселенной, под одеялом – мне остается только наблюдать вещи в кривом зеркале, в надежде воссоздать единую реальность из обманчивого разнообразия. Все равно я должна была признать, что искажения были довольно необычными. Спин, заряд, спиральность, скорость, причинно-следственная связь, масса… они все работают вместе, сохраняя реальность единой, несмотря на фрагментарность наших точек зрения, и при этом образуют наш мир. Издалека физика выглядит чрезвычайно запутанно, настолько она изобилует разными разделами и таким большим количеством произвольных параметров. Только в действительности ни один из них не является произвольным. Все они работают для достижения одной и той же цели: для того чтобы описать, как единая реальность выглядит со всех возможных точек зрения.
Это как раз то, что я люблю в физике – момент абсолютной неожиданности, когда вы вдруг осознаете: то, что, как вы думали, было одним, в действительности оказалось чем-то другим, или две вещи, которые, казалось, настолько разные, в действительности оказались просто двумя ракурсами одного и того же. Это такое приятное ощущение, которое возникает от открытия, что мир далеко не таков, каким он нам кажется.
С возрастом я признала необходимость имитировать простые поступки обыденной жизни, хотя так и не научилась совершать их как надо. Ни платить по счетам, ни готовить, ни посидеть за кофе, ни вести «малые разговоры» – ничего из перечисленного, хотя этим исчерпывается жизнь здесь, на поверхности бытия. Иногда, гуляя по улице, я чувствую, что все вокруг словно парят над землей, едва касаясь ее, а мои ноги налиты тяжестью и земля прогибается подо мной, я могу провалиться в любой момент, и я бы очень хотела провалиться под землю, но этого делать нельзя, потому что жизнь проходит здесь, на поверхности, и наше дело – держаться и не соскальзывать вниз. Случалось, что из-за этого я по несколько дней мучила себя сомнением: может быть, я чужая не только на физических конференциях и редакционных совещаниях, но и здесь, в мире, на поверхности бытия? И временами по ночам, вот так же как сегодня, я вдруг видела будто бы краем глаза очертания базовой структуры мироздания, мир за нашим миром, истину, скрытую под поверхностью. Я видела, как все идеально связано со всем остальным, как все основано на простых понятиях сингулярности и симметрии, – и это было просто чертовски красиво. «Я верю, что природа совершенна», – писал Эйнштейн. Лежа в постели в темноте, я начала понимать, что он имел в виду.
– Я все время думаю об инвариантности и ее связи с симметрией, – сказал отец, передавая мне сироп.
Мы сидели в блинной и завтракали.
– Теорема Нётер утверждает, что для каждой непрерывной симметрии есть свой интеграл движения – инвариант. Если мы ищем инварианты, то симметрии помогут нам их найти.
– Наверное, так и есть, – сказала я. – Симметрии говорят нам о том, что остается неизменным при переходе от одной системы отсчета к другой.
Я в это время решала сложную задачу: начать ли мне завтрак с омлета или с блинов. Они выглядели симметрично вкусно. Я даже вспомнила какого-то философского осла, умершего с голоду. Буриданова, что ли?
– Правильно. Снежинка после поворота на шестьдесят градусов выглядит так же, как до поворота, то есть она обладает осевой симметрией шестого порядка. Но это дискретная симметрия, она не исключает таких преобразований системы отсчета, при которых, как, скажем, при повороте на шестьдесят четыре градуса, снежинка не совпадет сама с собой. Поэтому чтобы найти настоящие инварианты, нам потребуется непрерывная симметрия, которую не нарушит никакое преобразование системы отсчета.
– Хорошо, – сказала я, – давай рассматривать непрерывные симметрии.
Я все-таки решила начать с блинов. Симметрия была нарушена. Осел сегодня не собирался умереть от голода.
– Ну, трансляционная симметрия пространства дает нам сохранение импульса, вращательная симметрия пространства сохраняет угловой момент, – сказал отец. – Смещение во времени сохраняет энергию. Вращательная симметрия четырехмерного пространства-времени сохраняет пространственно-временной интервал. А калибровочная симметрия сохраняет заряд.
– Хорошо. Значит, у нас уже есть несколько претендентов на подлинное существование. Давай составим список, – сказала я, вынимая ручку из сумки. Взяла салфетку и написала на ней: «Ингредиенты окончательной реальности».
– Давай просто перечислим все, что могло бы быть реальным, и после этого мы рассмотрим их более детально. Давай посмотрим… пространство, время, пространство-время, гравитация, электромагнетизм, ядерные взаимодействия, масса, энергия, импульс, момент импульса, заряд… что еще?
– А как насчет количества измерений? – спросил отец. Я записала на салфетке и это.
– Или элементарные частицы? Мы ведь должны предположить, что элементарные частицы тоже реальны, верно?
– Если только они не струны, – сказала я.
– Ну, частицы – это возбужденные состояния поля, поэтому частицы нельзя отделить от полей. А поля определены в вакууме.
Я кивнула, добавив их в список. Частицы/поля/вакуум. Струны.
– Как насчет Вселенной? Я надеюсь, что она реальна. Может быть, она подходит нам по умолчанию?
Отец покачал головой:
– Ничто в физике не делается по умолчанию.
Я добавила Вселенную в список. И, немного подумав, добавила мультивселенную тоже.
– Скорость света, – сказал отец, указывая на список и одновременно сделав глоток кофе. – Это однозначно инвариант.
Я записала: «Скорость света».
– Бостром сказал бы, что мы должны рассмотреть реальность самой реальности, – сказала я. – Но боюсь, что добавление ее в этот список может отправить нас в своеобразную бесконечную башню, построенную из черепах.
– Пропустим, – кивнул он. – Это как рассматривать пирожное в качестве ингредиента самого пирожного.
– Итак, давай посмотрим, – сказала я, переворачивая салфетку, чтобы мы могли оба читать список. – Исходя из теории относительности, мы можем поставить крест на пространстве и времени. И то и другое зависит от наблюдателя.
– Можно вычеркнуть гравитацию, – сказал папа. – И все другие взаимодействия. Все они фиктивны. Как насчет массы? Масса – это инвариант, верно? По крайней мере, масса покоя?
Я сделала глоток кофе и покачала головой:
– Это не так. Масса покоя – это инвариант в специальной теории относительности, но в общей теории относительности она не определена. Для того чтобы ее определить, нам придется нарушить принцип общей ковариантности: мы должны будем определить координатную ось времени, а это приведет к выделенной системе отсчета. Масса определяется только относительно конкретной системы отсчета, и поскольку соотношение E = mc2 связывает массу с энергией, то же самое касается и энергии. И масса и энергия зависят от системы отсчета наблюдателя.
Я вычеркнула их из списка.
– Импульс и угловой момент определяются через массу, так что они тоже становятся зависимыми от наблюдателя в рамках общей теории относительности.
– Даже в квантовой теории поля масса изменяется в зависимости от масштаба, – сказал отец. – В зависимости от разрешении, с которым она измеряется.
Я кивнула.
– Стандартная модель говорит, что все частицы в конечном счете безмассовые – масса возникает как следствие нарушения симметрии или структуры вакуума при низких энергиях или при взаимодействии с бозоном Хиггса. При достаточно высоких энергиях массы исчезают.
– Мы должны добавить бозон Хиггса в список?
– Я думаю, частицы/поля/вакуум включают его.
– Ладно, – сказал отец, переходя вниз к следующей позиции на салфетке. – А что насчет заряда? Зарядовая четность ведь нарушается в некоторых видах слабого ядерного распада?
– Да, – сказала я. – Она сохраняется, только когда мы используем ее одновременно вместе с пространственной четностью и отражением времени. Но CPT-инвариантность – это просто Лоренц-инвариантность. Лоренц-инвариантность сохраняет пространственно-временные интервалы. Так что нам нужно сохранить пространство-время в списке.
– Мы можем вычеркнуть спин, – сказал отец. – Суперсимметрия показывает, что то, что представляется как бозон в одной системе, выглядит как фермион в другой.
Это был хороший аргумент. Обычно легко отличить бозоны, переносчики взаимодействия, которые обладают целочисленным спином, и фермионы, или частицы материи, которые несут полуцелый спин: просто поверните частицу на 360 градусов, и если она будет выглядеть точно так же, как и до вращения, то это бозон. Если же амплитуда ее волновой функции окажется перевернутой и вы должны повернуть ее второй раз, в сумме на семьсот двадцать градусов, чтобы она выглядела точно так же, как вначале, то это фермион.
Чтобы превратить фермион в бозон и наоборот, необходимо некоторым способом преобразовать амплитуду его волновой функции. Вы можете это сделать, если добавите несколько дополнительных измерений. Не пространственных измерений, а математических. При вращении частицы в дополнительных измерениях положительная амплитуда станет отрицательной, а отрицательная амплитуда положительной, целый спин – полуцелым, и наоборот. В многомерном суперпространстве бозоны и фермионы идентичны. В обычном пространстве они – разные тени одного и того же куска картона, их различие зависит от системы отсчета, в которой они рассматриваются.
– Мы принимаем суперсимметрию? – спросила я.
Экспериментальных подтверждений суперсимметрии пока нет. Если бы реальность действительно была суперсимметричной, у каждого бозона был бы свой партнер-фермион, и наоборот. В каждой паре частицы-партнеры были бы идеальной копией друг друга, но только подчинялись бы противоположной статистике. Физики с нетерпением ждут начала охоты на такие суперсимметричные пары при помощи Большого адронного коллайдера около Женевы, но ускоритель еще не начал свою работу. Суперсимметрия остается теорией.
Отец пожал плечами:
– Есть веские теоретические основания в нее верить.
Это правда. Одно из них заключалось в том, что в суперсимметричном вакууме все фундаментальные взаимодействия могут быть объединены. Мы видим мир холодным, энергии частиц в нем низки, и сильное взаимодействие в 100 раз сильнее электромагнитного, а слабое – в 100 миллиардов раз слабее. Но при нагревании вакуума относительные силы взаимодействий начинают изменяться. Вакуум ослабляет хватку кварков – сильное взаимодействие ослабевает. В то же время электромагнитные и слабые силы крепнут. Продолжая нагрев, можно приблизить все три силы к одному и тому же значению. При температуре около 1016 миллиардов электрон-вольт электромагнитные и слабые силы сливаются в единое электрослабое взаимодействие, но сильное взаимодействие все еще остается немного более сильным. Но в рамках суперсимметичных моделей ситуация меняется, силы объединяются в одной точке, и все три взаимодействия оказываются проявлениями единой фиктивной суперсилы.
Это было не единственным теоретическим основанием. Суперсимметричные частицы не участвуют ни в электромагнитном, ни в сильном ядерном взаимодействии, но они взаимодействуют гравитационно. Как темная материя.
– Кроме того, нет никаких оснований надеяться, что экспериментаторы смогут обнаружить суперсимметричные частицы, – продолжал отец. – Для этого могут потребоваться значительно бо́льшие энергии, чем есть в их распоряжении в обозримом будущем.
– Ладно, – сказала я. – Давай предположим, что есть суперсимметрия, и вычеркнем спин.
– И что же осталось?
От волнения я стиснула зубы, взяла салфетку и зачитала торжественно, будто это была Геттисбергская речь, а ожиревшие посетители блинной в тренировочных костюмах были храбрыми воинами Союзной Армии:
– «Потенциальные ингредиенты окончательной реальности».
– Еще кофе?
Отец засмеялся, и мы оба кивнули официантке. Когда наши чашки были снова полны ароматного кофе, я начала читать второй раз:
– «Потенциальные ингредиенты окончательной реальности»: пространство-время, размерность, частицы/поля/вакуум, струны, Вселенная, мультивселенная и скорость света.
– Ты знаешь, я подозреваю, ничто из перечисленного в действительности не является инвариантом, – сказал мне отец с улыбкой.
– То есть ничто не реально?
– Точно. Только ничто могло бы быть реально. Если все в конечном счете – ничто (и правда, так и должно быть!) и мы определяем окончательную реальность как нечто инвариантное, то единственным инвариантом и должно быть ничто. И это понятно: ничто – это самая симметричная вещь, которую мы знаем.
– Но у нас много инвариантов в списке. Неужели все они ничто?
– А ты посмотри, сколь многое из того, что физики когда-то считали инвариантным, уже вычеркнуто. Борн говорил, что таково развитие физики. Я сомневаюсь, что оно уже достигло конца.
– Но если все в конечном счете – ничто, тогда каждый из оставшихся ингредиентов в этом списке должен оказаться зависимым от наблюдателя.
– Да. Должен.
Я улыбнулась, заинтригованная:
– Ну что ж, посмотрим!
Мне хотелось записать свои мысли об инвариантности, симметрии и реальности, и я в поисках ручки выдвинула ящик письменного стола в своей детской спальне. Мой взгляд упал на синюю папку, торчащую из-под кипы бумаг. Я вытащила ее и, усевшись на кровать, открыла.
Ты первые годы молчала.
Ждала, дожидалась слов.
Я усмехнулась. Это было стихотворение, которое отец написал мне по случаю окончания школы много лет назад. Я всегда думала, что это что-то слащавое. Но когда я прочла его сейчас, меня наконец осенило, что он сделал, чтобы написать это. Дело не только в том, что он обратил внимание на книги, которые я читала, и близкие мне идеи.
И Керуака, «В дороге»
Ритма, словесного ритма
И Гинзберга, «Вопль» и «Кадиш»
Ритма певучего
И Кизи, и Бэрроуза, Фитцджеральда и Пруста
Слова, слова
Это означало, что он прочел слова. Он заметил, какие из книг имели для меня самое большое значение, и он – в его чрезвычайно ограниченное свободное время в промежутках между спасением жизней, маркированием сосков и разгадкой секретов Вселенной – читал их, причем так, что смог написать мне стихотворение, которое я бы услышала, стихотворение, чтобы отправить меня в Нью-Йорк, чтобы отправить меня в мир. Только это был не просто мир, и даже не просто его мир. Это был мой мир. Словно мой мир был. Словно было мое слово.
Весь мир – это чистый дневник
Он ждет твоих слов
Пускай все услышат ритм, ритм твоих слов.
Я закрыла папку и осторожно положила ее обратно в стол. Накатила щемящая грусть. Как ностальгия, противоречащая факту. Будто мир все еще огромен и по-прежнему пуст. Будто я все еще жду, все еще жду.
Несколько дней спустя я села на самолет, направлявшийся обратно в Лондон. Сколько бы я ни путешествовала, я никак не могла заставить себя не волноваться в полете. На взлете – больше всего. Я заставила себя дышать глубоко, пока самолет выезжал на взлетно-посадочную полосу. «Физика работает, физика работает», – твердила я свои стандартные мантры. Внезапно мне вспомнилась девушка из моей группы по философии. Самолеты летают только потому, что мы все соглашаемся, что они умеют это делать. Я закатила глаза в раздражении. Самолет набирал скорость, разгоняясь по взлетно-посадочной полосе. В нескольких рядах позади меня начал плакать ребенок. Салон завибрировал. В багажном отделении над головой что-то заскрипело. Затем колеса оторвались от земли, самолет подрагивал. Мы взлетели. Я согласна, что самолеты могут летать, я согласна, что самолеты могут летать, повторяла я про себя. Тревога побеждает реализм. Постмодернистский Паскаль.
Вскоре мы уже плавно летели над облаками. Я разжала кулаки и вновь убедилась в правильности моей философии. На высоте тридцать тысяч футов над Атлантическим океаном, в состоянии покоя относительно того полного мужчины, через кресло от меня, в самолете, летящем со скоростью пятьсот миль в час, мое движение относительно медленно вращающейся внизу планеты не быстро, и я могу подумать о своей миссии познания Вселенной. Найди инварианты, и ты найдешь реальность. Я вытащила из кармана скомканную салфетку и уставилась на горстку позиций, которые выжили в первом раунде отсева, – оставшиеся кандидаты в ингредиенты окончательной реальности. Пространство-время. Размерность. Частицы/поля/вакуум. Струны. Вселенная. Мультивселенная. Скорость света. Все они были достойны внимания, и я почувствовала новый прилив энтузиазма – теперь у нас надежный план. Стратегия.
По-прежнему я не могла избавиться от мысли, что, окажись любой из этих ингредиентов инвариантом, это бы меня разочаровало. Реальность имеет десять измерений и состоит из крошечных струн – это, должно быть, правильное заключение, но я была уверена, что оно не удовлетворило бы меня. По правде говоря, любая онтология выглядела бы неуклюжей и произвольной. Реальность по форме напоминает тромбон и сделана из маленьких печенюшек. Я задумалась над фразой Уилера: «[Подозреваю], что, проникая все глубже и глубже в структуру физики, мы никогда не сможем достичь конца, обнаружив, что она завершается на каком-то N-ом уровне. …на каком-то мельчайшем объекте, на каком-то исходном поле». Казалось, он верил, что единственной конечной реальностью был сам наблюдатель. Тогда, если мы посмотрим достаточно внимательно на Вселенную, мы увидим себя, смотрящими в ответ на нас. Но кто были эти наблюдатели – крекеры в форме золотых рыбок или что-то менее произвольное? Я постоянно задаю себе все тот же старый вопрос: откуда берутся эти наблюдатели? Вселенная представляет собой самонастраивающийся контур. Мне действительно нужно выяснить, что, черт возьми, это значит.
Мой отец, между тем, казалось, был убежден, что инвариантом не будет ничто. То есть ничто и будет инвариантом. Второе выглядит получше. Ничто, и спрашивать не о чем. К чему вопрос «откуда оно взялось?» Ничто не появляется откуда-то. На то оно и ничто. Оно не нуждается в объяснении. В то же время почти невозможно представить, как вся эта безумная Вселенная, страдающий ожирением пассажир и упаковки Ксанакса, пресс-пассы и шляпы-панамы, океаны и крысы, стихи и блины… как это все может быть просто ничем?
Возвратившись на твердую землю, в мою крошечную квартирку, я достала крошечную бутылочку содовой из моего крошечного холодильника и села за компьютер, чтобы проверить мою электронную почту. В почтовом ящике я нашла письмо из New Scientist.
От: Майкл Бонд
Кому: Аманда Гефтер
Тема: New Scientist
Здравствуйте, Аманда,
Вам пишет редактор отдела комментариев и мнений журнала New Scientist. Майкл Брукс рекомендовал мне обратиться к Вам как к прекрасному специалисту. В конце апреля одна из сотрудниц отдела уходит в декретный отпуск на шесть месяцев, и я ищу, кто мог бы работать на ее месте в течение этого периода. Может ли Вас заинтересовать такое предложение? Работа обычная и предполагает редактирование, написание текстов и интервьюирование по различным темам отдела комментариев и мнений. Работа в лондонском офисе.
С наилучшими пожеланиями,
Майкл
Вот как? Работа редактора в журнале New Scientist? Мы только что выработали стратегию охоты за реальностью, и теперь мне предлагают свою пресс-карту? Черт возьми, да, мне было интересно! Я начала сочинять ответ. Пока я набирала текст, я заметила что-то краем глаза. На прекрасном деревянном полу, между одноместным диваном и миниатюрной раковиной, была поставлена ловушка с клеем, и из этой ловушки торчал одинокий серебристый хвост.