Книга: Тайны чисел: Математическая одиссея
Назад: Каким образом у формы может быть размерность 1,26?
Дальше: Как видеть в четырех измерениях?

Можно ли подделать Джексона Поллока?

Осенью 2006 г. картина, написанная художником XX в. Джексоном Поллоком, стала самой дорогой из когда-либо проданных. По сообщениям прессы, мексиканский финансист Дэвид Мартинес заплатил 140 миллионов долларов (что тогда соответствовало 75 миллионам фунтов) за картину с простым названием «№ 5, 1948».
Картина была создана с использованием фирменной техники Поллока – разбрызгивания краски по холсту. За свою манеру письма он был прозван «Джеком-оросителем». Критики были шокированы ценой, которая была уплачена за подобное произведение, заявляя: «Что же, я сам мог бы нарисовать такую картину!» На первый взгляд действительно кажется, что любой мог бы разбрызгать краску и надеяться стать миллионером. Но математики обнаружили, что Поллок действовал значительно тоньше, чем можно было бы подумать.
В 1999 г. группа математиков, возглавляемая Ричардом Тейлором из Орегонского университета, проанализировала картины Поллока и открыла, что используемая им прерывистая техника воссоздает фрактальные формы, столь возлюбленные природой. Увеличенные участки картин Поллока сильно напоминают полотна в целом и обладают характерной бесконечной сложностью фрактала. (Разумеется, все большее и большее увеличение в конечном счете приведет к отдельным пятнам краски, но это случится, лишь когда вы увеличите холст в 1000 раз.) Для анализа техники, развитой Поллоком, можно даже привлечь понятие фрактальной размерности.
Поллок начал создавать фрактальные полотна в 1943 г. Фрактальная размерность его ранних картин была в районе 1,45, близко к значениям норвежских фьордов, но при дальнейшем развитии техники фрактальная размерность стала ползти вверх, что свидетельствовало о растущей сложности его произведений. Для завершения одной из последних картин Поллока в технике разбрызгивания, «Синие столбы», потребовалось шесть месяцев. Ее фрактальная размерность равна 1,72.

 

Рис. 2.34. Фрактальная размерность картины возрастает, когда вы разбрызгиваете все больше краски

 

Психологи исследовали формы, которые люди находят эстетически привлекательными. Нас постоянно притягивают изображения с фрактальными размерностями между 1,3 и 1,5, что соответствует размерностям многих форм, встречающихся в природе. На самом деле у этого могут быть веские эволюционные причины. Вероятно, так устроен наш мозг, чтобы можно было приспособиться к джунглям вокруг нас. Либо, подобно тому как лучшая музыка находится где-то между крайностями скучных звуков, издаваемых лифтом, и случайным белым шумом, эти формы притягательны для нас, потому что их сложность находится между слишком регулярными и слишком случайными объектами.
Если Поллок создавал фракталы, то насколько трудно воспроизвести его технику? В 2001 г. один техасский коллекционер произведений искусства был немало обеспокоен тем, что на его «Поллоке» не было подписи либо даты. Тогда он обратился к математикам, которые ранее открыли фрактальную размерность, присущую стилю Поллока. Их исследование показало, что у данной картины не было специальных фрактальных свойств, характерных для работ Поллока, то есть она, вероятно, была подделкой. Пятью годами позже комиссия по аутентификации, созданная фондом Поллока – Краснер для вынесения заключения по оспариваемым работам, попросила Ричарда Тейлора и его команду применить фрактальный анализ к коллекции из 32 картин, недавно найденных в камере хранения, которые якобы принадлежали кисти Джексона Поллока. Согласно фрактальному анализу, все они также были подделками.
Это вовсе не значит, что полотна Поллока невозможно подделать, – Тейлор даже создал приспособление, названное им «Поллокайзером», которое рисует подлинно фрактальные картины. Баночки с краской, висевшие на веревках, приводились в движение катушкой индуктивности, запрограммированной на воспроизведение хаотического движения, в результате чего получались вполне убедительные «Поллоки». Поэтому, хотя математика и помогает разоблачать подделки, она способна также сама создавать изображения, которые будут убедительны даже для экспертов.
У фракталов, несомненно, странные формы, ведь их размерности, вроде 1,26 или 1,72, не являются целыми числами. Но мы, по крайней мере, способны нарисовать их изображения. Но теперь положение вещей станет еще более необычным, потому что нам предстоит сделать шаг в гиперпространство, чтобы исследовать формы, которые существуют вне нашего трехмерного мира.
Назад: Каким образом у формы может быть размерность 1,26?
Дальше: Как видеть в четырех измерениях?

Антон
Перезвоните мне пожалуйста по номеру. 8 (953) 367-35-45 Антон