С меня рассказ об еще одном слое иммунитета, довольно-таки новом, а вернее, недавно открытом. Теперь, когда мы о нем знаем, нам, как ни странно, удается обнаружить его чуть ли не у каждого организма, от грибов до растений и животных, от насекомых до людей. Речь идет о так называемой РНКи, где «и» означает «интерферирующая», поскольку эта РНК интерферирует с другими РНК.
Во всех живых клетках РНК – чрезвычайно важная молекула, она выполняет множество ключевых функций. Самая известная ее форма – иРНК (информационная РНК): ее молекулы представляют собой так называемые транскрипты – многочисленные копии, которые постоянно производятся на основе ДНК клетки. Эти транскрипты доставляют инструкции о том, какой белок должен синтезироваться, в рибосомы, машины по сборке белков, поэтому вполне понятно, что иРНК подвергается строжайшему контролю и регуляции: именно посредством иРНК клетки реагируют на среду. Если клетке внезапно понадобится больше белка Х, регуляторные механизмы обеспечат производство большого количества иРНК-копий гена х, а это, в свою очередь, позволит быстро синтезировать белок Х. Многие регуляторные механизмы известны уже долгое время, однако об интерферирующей РНК мы узнали только недавно: причина такой задержки – во многом в том, что с РНК, как известно, очень трудно работать, особенно с короткими цепочками. Молекулы РНК быстро распадаются и легко загрязняются.
Теперь, разработав технологию, позволяющую как следует анализировать такие молекулы, мы все больше выясняем об интерференции РНК. Небольшая молекула интерферирующей РНК «пристраивается» к подходящей информационной РНК, прикрепляется к ней и мешает ей делать свою работу (это явление в данном случае и называется интерференцией). Теперь информационная РНК бесполезна, и соответствующий белок не удастся синтезировать.
Такова роль интерферирующей РНК в «мирное время»: это еще один механизм обратной связи, регулирующий работу клеток. Однако некоторые транскрипты интерферирующей РНК специфичны не к клеточной информационной РНК, а к вирусной РНК.
Все организмы могут страдать (и страдают) от атак вирусов. Сами по себе вирусы размножаться не умеют: им для этого требуется захватить клетку-хозяина. И для того чтобы начать себя воспроизводить, все вирусы, захватив клетку, производят РНК. Для некоторых вирусов генетическим материалом служит ДНК (как и для нас с вами), другие (скажем, ВИЧ) используют РНК. В обоих случаях, инфицировав клетку, вирусная частица вбрасывает в нее свою РНК и начинает делать копии, которые будут использоваться для того, чтобы взять под контроль клетку-хозяина, а в случае РНК-вирусов – для упаковки в белковую оболочку и производства новых вирусов, которые станут затем искать новые клетки для заражения, и т. д., и т. п. В свою очередь, клетка-хозяин может распознать, что эта новая РНК – не ее собственная, а какой-то захватчик, и начать кромсать ее (to dice it up: группа белков, занимающихся этим, так и называется – дайсеры, «кромсатели»). Затем клетка использует разрезанную вирусную РНК, чтобы помешать осуществлению планов вируса, предотвратить захват клетки и победить врага.
Однако проблема в том, что вирусы переняли этот фокус (а может, они сами его первыми изобрели) и способны сами вырабатывать свою интерферирующую РНК, подавляя клеточную активность ради своих коварных целей. Игра продолжается, по клетке плавают маленькие молекулы РНК и ферменты, регулируя процессы правильно и ошибочно, в ту или другую сторону. Соперники пытаются обойти друг друга в этих маневрах и взаимных подавлениях активности. А мы примерно до 1989 года даже не подозревали об этих жарких боях!
Транскрипт интерферирующей РНК должен соответствовать параметрам своей мишени, чтобы суметь к ней прикрепиться. А значит, у всех этих «примитивных» видов – растений, насекомых, грибов – антивирусные процессы весьма специфичны. Одно из недавних исследований дрозофил показало, что зараженная вирусом клетка может еще и подавать сигнал о заражении другим антивирусным системам организма-хозяина, делая реакцию системы врожденного иммунитета и специфичной, и строго регулируемой.
Дальше я собирался рассказать об иммунной системе растений, но вы, наверное, уже понимаете, к чему я клоню. Разумеется, у растений тоже есть иммунная система, ведь и на них нападают самые разные вредители, большие и малые, и несчастным представителям флоры нужно как-то бороться с этими врагами, ведь наши зеленые друзья не могут удрать куда-нибудь в более благоприятную среду. Растения проявляют главным образом врожденную иммунную реакцию, весьма эффективную и нередко специфичную к определенному типу патогена. А еще растения проявляют так называемую системную приобретенную устойчивость, что-то вроде иммунной памяти, только менее избирательную, однако эта способность может (вероятно) сохраняться на протяжении поколений. Иммунные системы растений подозрительно сходны с иммунными системами животных и даже используют вариации тех же молекул (например, ТП-рецепторов). Они умеют отличать собственные клетки растения от инфекционных агентов. Они умеют отличать безвредные или полезные микробы (чья концентрация особенно высока в корнях, где микробы и растения сотрудничают) от микробов опасных – посредством двухуровневой сети сигналов и эффекторов. И наконец, как в случае всех других организмов, о которых шла речь, про растения нам еще многое предстоит узнать (скажем, разобраться в удивительном явлении – мозаицизме… Нет, не подначивайте меня).
Правда, есть и различия. К примеру, растения не обладают какими-то специальными иммунными клетками, которые циркулировали бы по их телу. У них каждая клетка способна давать иммунный отклик и сигнализировать собратьям о приближении опасности. Но, думаю, вы согласитесь: сходства поразительные.
Все это вообще-то не должно бы нас удивлять, потому что мы и так знаем, что растения – сложно устроенные существа со множеством органов и систем. Вполне логично, что у них есть какие-то иммунные функции. Но как обстоит дело у по-настоящему примитивных – простейших – существ, этих одноклеточных созданий на дальнем конце шкалы? Как там у микробов? Они тоже проявляют какой-то свой иммунитет?