Кто придумал ракеты
Оставим на совести уфологов и иных исследователей древности утверждения о реальности палеоконтактов. Давайте теперь поговорим о том, как ракеты в древности использовались на самом деле.
Изобретение китайцев?
«Никогда и ни у кого не было сомнений в том, что ракета как таковая была изобретена китайцами», — пишет в своей знаменитой книге «Ракеты и полеты в космос» известный историк космонавтики Вилли Лей. И тут же добавляет: «Однако отсутствие точных исторических данных о ее происхождении, а также большое количество легенд способствовали тому, что возраст ракеты был сильно преувеличен. Есть много древних книг, в которых со всей категоричностью утверждается, что ракеты и тому подобные пиротехнические устройства были известны китайцам по крайней мере за 3000 лет до нашей эры. Откуда авторы этих книг брали такую информацию, пока остается неизвестным, но тем не менее нет никаких оснований думать, что ракета возникла так давно».
Пожалуй, больше можно доверять американскому справочнику Handbook of Astronautical Engineering («Руководство по разработке космических систем»), где говорится, что первые рисунки устройств, напоминающих внешним видом ракеты, были обнаружены в вавилонских рукописях, датируемых 3200 годом до н. э. Но в самих манускриптах нет ни описания ракет или устройств, с ними сходных, ни даже иносказательного намека на то, что они существовали.
Использование «головы Брахмы» в «Махабхарате». Книжная иллюстрация
Куда более информативно описание «оружия Брахмы» или «пламени Индры» в древнеиндийском эпосе «Махабхарата»: «Сверкающий снаряд, обладающий сиянием огня, был выпущен. Густой туман внезапно покрыл войско. Все стороны горизонта погрузились во мрак. Поднялись несущие зло вихри. Тучи с ревом устремились в высоту неба… Казалось, даже солнце закружилось. Мир, опаленный жаром этого оружия, казалось, был в лихорадке».
По мнению Александра Железнякова, члена-корреспондента Российской академии космонавтики имени К. Э. Циолковского, это описание применения «оружия Брахмы» в битве, проходившей в 3138 году до н. э., весьма похоже на картину взрыва ядерной боеголовки, доставленной на поле боя баллистической ракетой. Во всяком случае, в эпосе это оружие сравнивают с «огромной железной стрелой, напоминающей гигантского посланца смерти».
Весь вопрос в том, откуда это оружие взялось? Кто его изобрел?.. Один из вариантов ответа приведет нас к теории о множественности некогда существовавших на Земле цивилизаций, предшествовавших нашей. Можно, например, предположить, что пять с лишним тысяч лет назад на Земле случился ядерный апокалипсис, который и уничтожил высокоразвитую цивилизацию, существовавшую некогда в Азии. Тем более что в последующие 3000 лет ни в эпосах, ни в летописях нет никаких упоминаний о чем-то, что хотя бы отдаленно напоминало ракету.
Поэтому нам волей-неволей придется снова вернуться к китайцам. Некоторые историки предполагают, что именно мудрецы Поднебесной впервые составили секретную смесь — три части селитры и одна часть порошкообразного древесного угля, смешанного с серой, впоследствии получившую название черного, или дымного, пороха.
Эта технология была доведена до стадии кустарного производства примерно к 1200 году. Поэтому неудивительно, что защитники Кайфэна в 1232 году уже обладали бомбами, взрывавшимися с оглушительным грохотом. И не случайно через десяток лет после этих событий ученый-араб по имени Абу Мохаммед Абдаллах бен Ахмат Альмалики, известный также по прозвищу ибн-Альбаитхар, написал книгу, в которой упоминал о селитре как о составной части взрывчатого вещества. Он называл селитру «цветком камня Ассос» и добавлял, что египтяне это вещество называют «снегом из Китая».
Более полные сведения о первой взрывчатке изложены в другом манускрипте — «Книге о сражениях с участием кавалерии и военных машин», написанной в 1280 году арабом Хассаном ар-Раммахом — «гениальным горбуном», как его прозвали современники, величавшие его также Недшмэддином — «Светочем веры». В его сочинении приводятся не только рецепты изготовления пороха, но и даются указания по изготовлению ракет, которые автор называет «китайскими стрелами».
Еще Хассан упоминает о новинке того времени — «самодвижущемся горящем яйце», которое состояло из двух плоских противней, между которыми был заключен порох. На хвосте «яйца» имелись стабилизаторы и две ракеты-двигателя. Предполагалось, что такая зажигательная «бомба» должна производить большие разрушения в стане противника.
Европейские премудрости
Примерно за три десятилетия до того, как Хассан написал свою книгу, в Европе появились свои ракеты — ignis volans — «летающий огонь». Летали они опять-таки благодаря пороху, изобретение которого в очередной раз приписывают кто немцу Бертольду Шварцу, кто англичанину Роджеру Бэкону… Во всяком случае, в «Эпистоле» английского монаха, созданной примерно в 1247 году, есть три секретные главы, написанные шифром, состоящие из вводящих в заблуждение терминов и большого количества бессмысленных фраз.
Тем не менее английский историк Генри Гайм взял на себе труд повозиться с шифром и расшифровал одну из анаграмм, которая, по его мнению, должна означать «sed tamen sails petre recipe VII partes, V novelle, corule, et V sulphuris», то есть «возьми 7 частей селитры, 5 частей свежего древесного угля и 5 частей серы». Или, говоря попросту, перед нами один из рецептов опять-таки черного пороха.
Вслед за Роджером Бэконом немецкий алхимик Альбертус Магнус в своей книге «О чудесах мира», написанной между 1250 и 1280 годами, уже прямым текстом советовал для получения порохового заряда брать фунт серы, два фунта древесного угля и шесть фунтов селитры. И при этом ссылался на Liber Ignium («Огневую книгу»), которая была написана несколько раньше неким Маркусом Грекусом по арабским источникам.
В общем, с появлением пороха оружейники начали экспериментировать как с огнестрельным оружием, датой изобретения которого некоторые исследователи считают 1330 год, так и с ракетами.
Например, немецкий военный инженер Конрад Эйхштедт в своей книге «Военная фортификация», изданной в 1405 году, пишет о трех типах ракет: вертикально взлетающих, плавающих и запускаемых при помощи тугого лука.
Уильям Конгрев. Художник Дж. Лонсдейл
Далее стали предлагаться различные усовершенствования. Так, ракета «Бегущий заяц», например, должна была передвигаться на деревянных роликах и пробивать бреши в стенах или в воротах крепостей. Ракеты с парашютами, похоже, предлагались для освещения местности в ночное время. А некто граф Нассау предложил ракету, которая могла нырять и взрываться под водой для поражения кораблей противника; ну, прямо-таки современное изобретение — ракета-торпеда!
Архитектор Иосиф Фуртенбах, в свободное время занимавшийся ракетостроением, написал даже две объемистые книги о применении ракет в военно-морском деле. По его мнению, ракеты могли использоваться на море не только для освещения, сигнализации, фейерверков, но и в качестве зажигательного средства, рассчитанного на поджог просмоленного такелажа кораблей противника.
Много усилий для развития ракетного дела в Европе приложил англичанин Уильям Конгрев. Прочитав в «Обзоре военных действий на Коромандельском побережье» (1789), как индийцы под руководством Хайдара Али, принца Майсоры, эффективно атаковали конницу англичан ракетами, весившими от 2,7 до 5,4 кг, на расстоянии 1,5–2,5 км, он загорелся желанием сделать ракетное оружие доступным и англичанам.
В 1801–1802 годах Конгрев скупил самые большие ракеты, которые только были в Лондоне, платя за них из собственного кармана, и начал опыты по дальнобойной стрельбе. Опытным путем он вскоре установил, что дальность полета этих ракет не превышает 450–550 м, в то время как индийские летали вдвое дальше.
Тогда он обратился к начальству с просьбой разрешить ему поставить новые опыты. С помощью отца, генерал-лейтенанта Уильяма Конгрева, инспектора королевской лаборатории в Вулвиче, а также лорда Чатама Конгрев-младший провел серию усовершенствований и испытаний, добившись полета ракет на 1800 м.
В 1805 году новое оружие было испытано во время экспедиции Сиднея Смита, руководившего штурмом Булони с моря. По городу было выпущено около 200 ракет, повредивших три здания. Французы, противостоявшие англичанам, поначалу лишь посмеивались. Однако в дальнейшем ракетные обстрелы стали более эффективными. В 1806 году Булонь подверглась разрушительному огневому налету. Впоследствии английский «ракетный корпус» отличился в битвах при Копенгагене и под Лейпцигом, где 16–19 октября 1813 года была окончательно сломлена мощь армий Наполеона.
Впрочем, несмотря на это, надежды Конгрева, что его зажигательные ракеты вытеснят мортиры, не оправдались. Артиллерия быстро совершенствовалась и вскоре по точности стрельбы и мощности зарядов превзошла ракетное оружие.
И все же влияние Конгрева на развитие ракетного дела оказалось велико. После его смерти, последовавшей 16 мая 1826 года, среди его бумаг были найдены чертежи ракеты калибра 203 мм, а также разработки ракет весом 225 и 450 кг. К тому времени Дания, Египет, Франция, Италия, Нидерланды, Польша, Пруссия, Сардиния, Испания и Швеция создали в составе своей артиллерии ракетные батареи. Россия, Австрия, Англия и Греция имели ракетные корпуса, выделившиеся в самостоятельный род войск.
Впрочем, не один Конгрев был тому причиной. Так, скажем, в нашей стране производство и применение ракет известно с начала XVII века, благодаря работам подьячего Онисима Михайлова. В 1680 году в России было основано первое «ракетное заведение», производившее большое количество боевых ракет. В середине XIX столетия работы по усовершенствованию боевых ракет приняли еще большие масштабы, особенно когда ракетное дело возглавил К. И. Константинов.
Российские войска довольно широко применяли ракеты во время Туркестанской войны. В русской «Технической энциклопедии», опубликованной в 1897 году, было сказано, что эти ракеты имели диаметр около 50 мм и весили примерно 4 кг.
И все же ракеты пригодились больше не на суше, а на море. Еще при жизни Конгрева, в 1821 году, капитан Скорсби использовал для охоты на китов ракетные гарпуны. Затем с помощью ракет стали перебрасывать концы тросов с корабля на корабль или с корабля на берег.
Говорят, что первая идея использования спасательной ракеты — линомета — принадлежит прусскому ремесленнику Эрготту Шеферу, который сделал нужные чертежи в 1784 году. Но идею поначалу забраковали. И лишь через 13 лет, когда аналогичное предложение сделал английский лейтенант — артиллерист Селл, ракетные линеметы начали применять на практике.
Дальнейшее совершенствование ракет на флоте связано с созданием ракетных торпед. Например, с 1860 по 1900 год было изобретено и испытано несколько десятков различных торпед. Начинал с ракетных торпед и шотландец Уайтхед, который затем все же предпочел конструкцию торпеды с винтом, поскольку она оказалась точнее. Да и дальность ее действия оказалась больше.
В итоге лишь в ХХ веке некоторые конструкторы все же вернулись снова к идее создания ракет-торпед. А тогда, к концу XIX столетия, ракеты как оружие перестали интересовать военных. Ими теперь больше начали заниматься гражданские исследователи. И достигли в этом деле довольно своеобразных успехов.
Например, прослышав о том, что в 1895 году бургомистр Штигер смог при помощи стрельбы из пушек защитить от выпадения града поля и сады в Штейермарке, швейцарский пиротехник Мюллер из Эмисхофена предложил атаковать град и ракетами. Оказалось, что если ракета выпускалась при выпадении первых градин, то происходящее после детонации перемешивание воздушных масс обусловливало превращение града в снежные хлопья, которые после запуска второй и третьей ракет таяли и выпадали в виде дождя. Причем для достижения эффекта достаточно было ракет диаметром 3–4 см и длиной 25–35 см.
Параллельно с идеей использования ракет развивалась и мысль о применении реактивной силы в транспортных целях. Так, например, ныне мало кто знает, что спустя несколько месяцев после того, как в 1783 году братьям Монгольфье удалось запустить свой первый воздушный шар, наполненный дымом, еще два француза — аббат Миоллан и некий господин Джаннинэ — сделали заявление, что ими решена проблема управления полетом таких воздушных шаров.
Их идея была простой: они предлагали проделать в боковой части оболочки шара отверстие, через которое нагретый воздух истекал бы из шара, создавая таким образом реактивную силу. А чтобы можно было по необходимости менять направление полета, изобретатели предлагали сделать по окружности оболочки несколько отверстий, прикрытых клапанами, открытием и закрытием которых можно было управлять из гондолы.
Однако попытка испробовать это изобретение на практике летом 1784 года закончилась неудачей. На глазах у почтенной публики шар сгорел, так и не поднявшись в воздух.
Впрочем, время от времени делались и попытки не только использовать ракетную тягу для управления воздушными шарами, но и летать при помощи ракет. Вслед за китайцем Ван Гу аналогичную попытку взлететь сделал уже в самом начале XIX века ракетный мастер Клод Руджиери, по всей вероятности, итальянец, хотя и жил он в Париже.
В то время очень модными были запуски воздушных шаров и рассказы о действии боевых ракет Конгрева. Так что Руджиери, видимо, неплохо зарабатывал, организуя публичные зрелища, в которых мелкие животные, вроде мышей и крыс, поднимались в небо на воздушных шарах, а то и в больших ракетах. После подъема они возвращались на землю живыми и здоровыми с помощью парашютов.
Размеры и мощность ракет Клода Руджиери все увеличивались, и в 1830 году предприимчивый ракетчик объявил, что «большая комбинированная ракета поднимет в небо барана». Узнав об этом, к нему тут явился некий юный сорвиголова и заявил, что готов полететь вместо барана. Руджиери согласился, понимая, что может сорвать невиданный куш. Но тут в дело вмешалась полиция и полет запретила, указав на слишком большой риск мероприятия.
Знал об этом инциденте некий наш соотечественник или нет, так и осталось неизвестным. Однако в 1843 году в российских газетах появились сообщения об изобретении некоего Эмиля Жира (инженера И. Третесского), который утверждал, что решил проблему управления полетом воздушного шара с помощью созданного им секретного механизма.
А еще спустя шесть лет инженер И. Третесский направил губернатору Кавказа графу Воронцову рукопись объемом 208 страниц, озаглавленную «О способах управления воздушным кораблем». В ней изобретатель прояснил суть своего секрета. Оказалось, что Третесский намеревался снабдить воздушный корабль реактивными соплами, направленными во все стороны. Если требовалось начать движение в каком-то направлении, необходимо было соединить соответствующее сопло с «генератором реактивной струи». В роли же такого генератора выступал либо баллон со сжатым воздухом, либо паровой котел, подогреваемый спиртовой горелкой.
Рукопись была переправлена ее в военный комитет на рассмотрение технических экспертов. Те полистали рукопись, посовещались и пришли к выводу, что проект невыполним.
На том, казалось бы, и конец истории. Однако Третесский не успокоился. И через 21 год (!) предложил использовать для управления аэростатом пороховые ракеты. Однако и этот проект опять-таки не нашел поддержки. И на склоне лет он был вынужден-таки констатировать, что жизнь свою потратил на никому не нужные изобретения.
Больше повезло адмиралу русского флота H. M. Соковнину. Его сочинение — проект дирижабля с реактивным движителем — было опубликовано. И книжка «Воздушный корабль» быстро разошлась, выдержала несколько изданий. Да и сам Николай Михайлович был на флоте человек весьма уважаемый, состоял членом Морского ученого комитета, и даже публикации в «Морском сборнике» ряда статей по воздухоплаванию — теме по тем временам крайне легкомысленной — не изменили отношения к нему окружающих.
Тем не менее даже адмиралу не удалось превратить в «железо» мысль, что «воздушный корабль должен летать способом, подобным тому, как летит ракета». Реактивный дирижабль так и не был построен. А жаль!.. Дело в том, что реактивную струю в проекте Соковнина должен был создавать воздух, засасываемый прямо из атмосферы, a затем сжатый с помощью дополнительного двигателя. Таким образом, он, по существу, подошел к той схеме, которая сегодня называется турбореактивным двигателем.
Однако что не случилось, то не случилось… Причем не только у нас. Особые проекты подобного рода выдвигались и за рубежом.
Секретные «стрелялки»
Например, мексиканец Николас Петерсен в 1892 году предложил проект реактивного дирижабля, двигатель которого был похож на барабан револьвера. «Пулями» в нем служили пороховые ракеты. «Отстреливаясь», дирижабль Петерсена толчками должен был двигаться вперед. А американец Самтер Бэтти предложил приделать к хвосту дирижабля даже своего рода пулемет. Специальный автомат должен подавать в камеру взрывчатку в виде шариков. Взрывные газы и должны были толкать дирижабль вперед…
Аналогичную конструкцию пытался внедрить и немецкий студент Герман Гансвиндт. Он родился 12 июня 1856 года в Восточной Пруссии. Его родители решили, что сын должен стать преуспевающим человеком, а для этого изучить право и получить докторскую степень. Однако Герман стал не юристом, а изобретателем.
Он изобретал велосипеды, экипажи, движущиеся без лошадей, моторные лодки, пожарные машины, воздушные и космические корабли. Одним из его изобретений и стал реактивный дирижабль весьма своеобразного типа.
Гансвиндт полагал, что «один лишь газ не в состоянии создать достаточную реактивную силу». А потому добавил к нему тяжелые стальные гильзы, начиненные динамитом. Они должны были подаваться в прочную взрывную камеру, имеющую форму колокола. Одна половина гильзы выбрасывается взрывом заряда, другая половина ударяет в верхнюю часть взрывной камеры и, передав последней свою кинетическую энергию, выпадает из нее.
Однако конструкция оказалась настолько сложной в техническом исполнении, что так и не была доведена до конца.
Тем не менее реактивные двигательные установки продолжали изобретать. Так, на одной старинной карикатуре изображен длинноногий джентльмен, который несется в небе верхом на снаряде, из которого извергается реактивная струя. Так высмеивали англичане Чарльза Голяйтли, который еще в 1841 году получил патент на машину, приводимую в движение реактивным паровым двигателем.
Подобные патенты были у француза Бурдона, немца Геберта, итальянца Леваренно… К ним присоединился и киевский архитектор Федор Романович Гешвенд, происходивший из семье обрусевших скандинавов (отец его — швед, a мать — финка). B 1887 году он издал брошюру с описанием «устройства воздухоплавательного парохода (паролета)». Реактивная сила паровой струи должна была поднять в небо четырехколесный снаряд с острым носом, увенчанный двумя эллипсовидными крыльями — одно над другим.
Летательная машина Н. И. Кибальчича
B брошюре приводились расчеты изобретателя, из которых следовало, что с пятью остановками в пути по 10 мин. для заправки «паролет» мог совершить перелет по маршруту Киев — Петербург всего за 6 ч. Причем на час полета ему требовалось 16 л керосина и 104 л воды. Гешвенд подсчитал даже стоимость «паролета» — 1400 рублей. Но, видно, денег этих у него не было, а мецената, который помог бы ему, тоже не нашлось.
На шаг дальше подвинулся артиллерийский офицер Н. А. Телешов. Николай Афанасьевич почти за 40 лет до полета самолета братьев Райт спроектировал в 1867 году летательный аппарат с двигателем, который сегодня мы назвали бы «пульсирующим воздушно-реактивным». Проект по схеме напоминает немецкий самолет-снаряд Фау-1, построенный в годы Второй мировой войны. Однако в то время российские военные чины отказали Телешову даже в выдаче российского патента. Тогда он запатентовал свою «ракетную систему» во Франции, но на том дело и кончилось.
Аналогичная судьба постигла и разработку другого талантливого русского инженера — Сергея Сергеевича Неждановского. В 1882–1884 годах он вплотную подходит к идее жидкостного ракетного двигателя. «…Можно получить взрывную смесь из двух жидкостей, смешиваемых непосредственно перед взрывом», — пишет он, по существу описывая схему работы жидкостного ракетного двигателя.
Однако он собрался построить вовсе не ракету, а… геликоптер. Описывая «реактивные горелки» на концах лопастей несущего винта своего вертолета, он тем самым дает схему двигателя, который через много лет получил название прямоточного воздушно-реактивного двигателя. Причем он даже собирался в 1904 году в Кучино, имении Д. П. Рябушинского, который был учеником Н. Е. Жуковского и серьезно увлекался авиацией, воссоздать подобный аппарат в реальности.
Интересная деталь: многие изобретатели, будучи людьми военными, и изобретения свои предназначали для дел ратных. Подобно конструктору «небесного парохода» контр-адмиралу А. Ф. Можайскому, они предназначали свои воздушные корабли для целей разведки. Первый опыт наблюдения за передвижением сил противника, корректировки артиллерийского огня с аэростатов к тому времени уже имелся. А потому и секретили свои изобретения, обращались с ними прежде всего в военные ведомства.
Но самая перспективная, на взгляд многих, разработка, принадлежавшая Н. И. Кибальчичу, оказалась засекреченной на 30 с лишним лет совсем по другой причине.
Его наверняка бы посадили и в наши дни. Как-никак Николай Иванович был самым заправским террористом, одним из организаторов покушения на царя Александра II, закончившегося гибелью монарха 13 марта 1881 года. Главой группы был Александр Желябов. Непосредственным исполнителем, бросившим бомбу в царя, был Николай Рысаков. Ну а участие Кибальчича выразилось в том, что он изготовил бомбы и обучил Рысакова и других пользоваться ими. За что и был, наряду с другими пятью участниками покушения, казнен.
Однако нас в данном случае он интересует вот по какой причине. Находясь под арестом в Петропавловской крепости, Кибальчич выдал «на-гора» рукопись под заглавием «Предварительная конструкция ракетного самолета».
Когда мне еще в детстве на глаза первый раз попался рассказ о том, как народоволец Кибальчич в 1881 году создавал свой «воздухоплавательный прибор», я был потрясен. Слезы навернулись на глаза. Человек с петлей на шее думал не о завтрашнем утре, когда его повесят, а о послезавтрашнем, когда люди начнут собираться в космос.
Теперь о сути изобретения. Согласно описанию Кибальчича, «воздухоплавательный прибор» имел вид платформы с отверстием в центре. Над ним устанавливалась цилиндрическая «взрывная камера», в которую должны были подавать «свечки» из прессованного пороха (и тут — бомба…). Для их зажигания и подачи без перерыва автор предлагал сконструировать особые «автоматические механизмы». Но что они должны собой представлять — об этом ни гу-гу. Нет также ни слова об устройстве герметичной кабины, средствах защиты и безопасности экипажа и т. д.
Словом, перед нами типичный «прожект», какими и поныне каждую весну и осень — в пору обострения некоторых заболеваний — регулярно заполняются редакционные корзины в любом научно-популярном журнале. Единственное, что в нем оригинального, — Кибальчич предложил один из первых вариантов «взрыволета». И идея эта время от времени муссируется и по сей день.
Сама же работа Кибальчича была, так сказать, рассекречена и обнародована лишь спустя 36 лет после разработки — в августе 1917 года. Листки с его проектом были случайно обнаружены в судебном деле, будучи аккуратно подшиты вместе с обвинительным приговором и прочими документами.
Идея идее рознь…
Еще один «столп», на которого опираются наши историки ракетостроения, — К. Э. Циолковский.
Среди выдвинутых им технических идей наиболее известны, пожалуй, многоступенчатые ракеты. Он предлагал два варианта: ракетные эскадрильи и поезда.
«Эскадрильи», когда ракеты стыкуются в одну шеренгу параллельно одна другой, может быть, когда-то будут использованы для передвижения буксиров в открытом космосе.
Что же касается идеи ракетного поезда, то она реализована с точностью до наоборот. Вот как описывает суть вопроса сам Циолковский: «Дело происходит приблизительно так. Поезд, положим, из пяти ракет скользит по дороге в несколько сот верст длиною, поднимаясь на 4–8 верст от уровня океана. Когда передняя ракета почти сожжет свое горючее, она отцепляется от четырех задних. Эти продолжают двигаться с разбегу (по инерции), передняя же уходит от задних вследствие продолжающегося, хотя и ослабленного взрывания. Управляющий ею направляет ее в сторону, не мешая движению оставшихся сцепленными четырех ракет».
Ф. А. Цандер (стоит слева) с сослуживцами и единомышленниками
Как видите, нет ничего и близкого к современной практике. Ракеты ныне стартуют не горизонтально, по эстакадам, как предлагал Циолковский, а вертикально. И работать начинает именно нижняя ступень (или задний вагон ракетного поезда, по терминологии Циолковского). И управляет работой каждой ступени автоматика, а не специальные «пускачи»…
А теперь давайте обратим внимание на такую частность. Представьте себе: по рельсовой эстакаде, постепенно поднимающейся «на 4–8 верст над уровнем океана», мчится ракетный поезд. Ракетчик, сидящий в первом вагоне, отцепляется от напирающего сзади состава и сваливает в сторону. Куда интересно? И что с ним дальше произойдет?
В бумагах Циолковского нет ответа на этот частный вопрос. Зато есть рассуждения о том, что надо строить побольше ракетопланов, даже если и первые из них будут плохи. «Сами по себе они ценны, т. е. и в одиночку могут служить народам, — пишет Циолковский. — Опыты с несколькими ракетопланами будут производиться между прочим, как интересные трюки»…
Сколько стоят такие «трюки», он, похоже, не отдавал себе отчета. Тем не менее, его непонятные занятия, на которые смотрели сквозь пальцы царские власти, весьма заинтересовали власти новые.
В итоге 17 ноября 1919 года в дом Циолковских нагрянули люди из ЧК. Константина Эдуардовича отправили в Москву, на Лубянку, где в течение двух недель его допрашивали.
Наконец, убедившись, что имеют дело с малость сумасшедшим изобретателем, его выпустили. И он косвенным образом подтвердил эту репутацию. Дойдя до вокзала и убедившись, что сегодня поезда на Калугу уже не будет, Циолковский… вернулся на Лубянку и попросился переночевать! Самое интересное, его впустили, а наутро снова выпустили…
Труды калужского мечтателя были признаны ценными, а ему самому был тут же выделен совнаркомовский паек. Стали публиковать его работы за государственный счет, в том числе переиздали и его фантастический роман «За пределами Земли», где описывалось путешествие в космос.
В 1932 году, в день его 75-летия, в газетах и журналах были опубликованы большие статьи о его жизни и деятельности. А когда Циолковский три года спустя умер, его дом стал мемориальным музеем. Есть теперь в Калуге и музей космонавтики, носящий его имя.
Но ни одна из его идей так и не реализована на практике в полной мере. Как сказал о его работах однажды известный историк наук Гелий Салахутдинов, идеи Циолковского чаще всего примитивная фантастика, не имеющая ничего общего с наукой.
Во всяком случае, работы, например, А. П. Федорова выглядят куда серьезнее. Этот исследователь, незаслуженно забытый историками, оказывается, еще при жизни К. Э. Циолковского, а именно в 1927 году, представил на Выставку межпланетных аппаратов модель и описание атомно-ракетного корабля, который должен был приводиться в движение энергией атомного котла.
Согласно сохранившимся чертежам корабль этот должен был стартовать непосредственно с Земли с помощью крыльев и трех пропеллеров. В безвоздушном же пространстве пропеллеры и крылья убирались, вступал в действие ракетный двигатель. Общая длина конструкции — 60 м, диаметр — 8 м, масса — 80 т, а развиваемая скорость — 25 км/с, то есть выше третьей космической.
Циолковский смог противопоставить этому лишь модель дирижабля, который так и не был никогда построен.
А еще один современник Циолковского — Николай Алексеевич Рынин — между прочим, еще в 20-х годах ХХ века додумался двигать межпланетный корабль с помощью «энергетического луча». Эксперименты с прототипами капсул, которые приводятся в движение лазерным или микроволновым лучом, начались лишь в конце ХХ века, продолжаются и поныне…
В противовес «калужскому мечтателю» идеи Кондратюка и Цандера имеют совсем иной вес.
Юрий Кондратюк почти всю свою жизнь почему-то прожил по чужим документам (на самом деле его зовут Александр Игнатьевич Шаргей). И умер он какой-то странной смертью, сгинув в безвестности под Москвой, в ополчении. Но был ли он убит или попал в плен к немцам и со временем стал эмигрантом?..
В марте 1969 года восстановлению запретного, а потому и забытого имени не помогли… американцы. Журнал «Лайф» опубликовал статью о том, как лучше всего осуществить пилотируемую экспедицию на Луну. Изюминка идеи заключалась в том, чтобы не опускать на Селену весь корабль, а совершить десант на посадочном модуле. А потом на нем же снова стартовать на окололунную орбиту, пересесть на оставленный корабль и на нем вернуться домой, на Землю.
Так получалось энергетически выгоднее, и вся экспедиция обходилась дешевле. Идея была принята на вооружение НАСА, и вскоре на борту «Аполлона» американские астронавты слетали на Луну и вернулись на Землю. На Джона Хуболта — автора проекта полета — посыпались поздравления и награды. Но тот оказался малым честным и признал, что идея не новая. Аналогичную схему и основные параметры полета рассчитал некий Юрий Кондратюк — механик-самоучка из России — еще в начале ХХ века. Его брошюра «Завоевание межпланетных пространств» была издана в СССР, а именно — в Новосибирске в 1929 году.
Тут уж зашевелились и наши спецы. Первый секретарь ЦК КПУ Петр Ефимович Шелест распорядился собрать все об авторе книги «Завоевание межпланетных пространств», чтобы достойно оценить его научные достижения. Предполагалось даже соорудить бронзовый памятник изобретателю на его родине в Луцке.
Вот ту-то и выяснилось, что Кондратюк, что называется, человек с двойным дном, ухитрившийся практически всю жизнь прожить под чужим именем. И на самом деле он вовсе не Кондратюк Юрий Васильевич, а Александр Игнатьевич Шаргей и родился не в Луцке, а в Полтаве.
Получилась же такая метаморфоза, как одно из следствий Гражданской войны.
Александр Шаргей, родившийся в Полтаве в июне 1897 года, закончил гимназию с серебряной медалью за успехи в физико-математических науках, а затем поступил на механическое отделение Политехнического института в Петрограде. Но учиться пришлось недолго — началась Первая мировая война.
Александр был мобилизован и направлен в школу прапорщиков, где учился вместе с Леонидом Говоровым, будущим Маршалом Советского Союза. Но сам Шаргей ни о генеральских, ни о маршальских звездах не мечтал. Его больше интересовали звезды настоящие, и он думал, как к ним получше долететь. Над своей рукописью о космических путешествиях он продолжал урывками работать на Закавказском фронте, где прапорщик Шаргей командовал взводом. Но потом фронт рассыпался, вместо того чтобы воевать с немцами, русские стали воевать друг с другом. Шаргей поначалу оказался на стороне белой гвардии. Но в мае 1918 года он дезертировал из рядов Добровольческой армии. Вернувшись к мирной жизни, Александр начал карьеру инженера-строителя, продолжая параллельно работать над космическими проектами. Но Гражданская война его снова находит — на сей раз в Киеве. И он снова попадает в ряды белых, и снова бежит…
В итоге он оказался между двух огней. Бывший офицер был чужим и для красных (еще бы — белогвардеец!), и для белых (дезертир)… И те и другие запросто могли поставить его к стенке… Вот тогда-то его и выручила мачеха. В 1921 году она передала Саше документы двоюродного брата Георгия Кондратюка, родившегося в Луцке в 1900 году и умершего в Гражданскую от тифа. Так Александр Шаргей стал Юрием Кондратюком, человеком без опасного прошлого. Но заодно пришлось отречься и от инженерного образования. Поэтому следующие два десятилетия Кондратюк работал кочегаром, машинистом, механиком.
И хотя по-прежнему интересовался проблемами межпланетных путешествий, от приглашения работать в ГИРДе благоразумно отказался. Как он мог там работать, если даже в Обществе изучения межпланетных сообщений состоял действительным членом сам Ф. Э. Дзержинский? А уж с ГИРДа и других подобных организаций чекисты глаз вообще не сводили. И они, конечно, мгновенно вывели бы скрывавшегося под чужим именем «врага народа» на чистую воду.
Шаргей-Кондратюк все это отлично понимал и предпочел всю жизнь строить элеваторы да ветрогенераторы, поклоняясь своей любимой космонавтике издали, создавая в своих работах различные теоретические концепции да предлагая некоторые идеи. И этого, кстати, хватило, чтобы имя его осталось в истории освоения космоса.
А жизнь его закончилась героически. В 1941 году война опять-таки настигла его. Он вступил добровольцем в народное ополчение Москвы. Воевал на Западном фронте, где и погиб в феврале 1942 года. Причем, согласно одной из легенд, после окружения он попал в концлагерь, откуда его брались вызволить местные партизаны. Но он, имея на руках раненого товарища, отказался. Так вместе с ним и канул в Лету…
Лишь в 1995 году XXVIII сессия ЮНЕСКО приняла специальное постановление о праздновании 100-летия Александра Игнатьевича, Полтавскому техническому университету присвоено его имя, в Комсомольске-на-Днепре установлен памятник, в Петербурге на доме, где жил Шаргей, теперь висит мемориальная доска.
И Фридрих Артурович Цандер как инженер был куда грамотнее Циолковского. И практически продвинулся дальше теоретика Кондратюка. Он смог из идей своих предшественников выудить нечто ценное. Скажем, он объединил достоинства ракетных поездов и эскадрилий Циолковского в одной конструкции. И предложил центральную большую ракету окружать по периметру многими малыми. Посмотрите на первую ступень современной тяжелой ракеты — чаще всего она устроена именно так: основные двигатели еще и окружены стартовыми ускорителями.
Стремился он и максимально снизить стоимость межпланетных перелетов. А для этого пользоваться, например, бесплатной энергией давления солнечного света на зеркала или экраны. Так что именно Цандер, а не Артур Кларк, как можно ныне прочесть, является основоположником идеи солнечных космических парусников. Кларк лишь красочно расписал эту идею в одном из своих произведений.
И хотя его время от времени тоже заносило — чего, например, стоит его утреннее приветствие своим сотрудникам «Вперед, на Марс!» — Цандер не только мечтал, но и действовал. Добился свидания с В. И. Лениным, смог заинтересовать его космическими разработкам и добился содействия вождя пролетариата в деле организации Общества изучения межпланетных сообщений — первой организации в нашей стране, которая от слов перешла к делу.
Именно Цандер и его ученики начинают в 1928 году проектировать первый реактивный двигатель ОР-1 (аббревиатура составлена из слов «опытный реактивный первый»). А само общество стало предшественником знаменитого ГИРДа — Группы изучения реактивного движения, — где в 30-х годах ХХ века началась настоящая работа по созданию жидкостных ракетных двигателей.