Книга: Жизнь на грани. Ваша первая книга о квантовой биологии
Назад: Квантовое туннелирование электронов в биологии
Дальше: Так что же составляет «квантовую часть» квантовой биологии

Кинетический изотопный эффект

Вы когда-нибудь пробовали заехать на вершину холма на велосипеде? Если пробовали, то вас наверняка обгоняли пешеходы. На ровной дороге вы, управляя велосипедом, без труда обогнали бы всех пешеходов и даже бегунов. Так почему же езда на велосипеде по склону холма становится менее продуктивной?

Теперь представьте себе, что вы слезли с велосипеда и идете пешком, ведя его за собой по ровной дороге или по склону холма. Сейчас все очевидно. Идя по склону, вы не только должны сами подниматься, но и толкать вверх велосипед. Вес велосипеда, который не имел особого значения при езде по горизонтальной поверхности, теперь работает против вас, когда вы пытаетесь подняться на вершину холма: вы тянете на себе велосипед, на протяжении многих метров преодолевая силу притяжения Земли. Вот почему производители гоночных велосипедов придают большое значение тому, насколько легкой будет модель велосипеда. Безусловно, вес объекта имеет большое значение в том случае, если его придется двигать человеку, однако наш пример с велосипедом скорее говорит о том, что важен не только вес объекта, который приходится толкать, но и тип движения.

А сейчас вообразите, что вам хочется узнать, какая между двумя городами, скажем А и Б, пролегает местность: ровная или холмистая. При этом у вас не было возможности поехать в эти города и проверить это лично. Если вам известно, что между этими городами есть почтовое сообщение, причем почтальоны используют легкие и тяжелые велосипеды, один из вариантов выяснить особенности рельефа таков: необходимо отправить наборы одинаковых посылок из одного города в другой, при этом половину посылок передать с почтальонами на легких велосипедах, а вторую – с почтальонами на тяжелых. Если выяснится, что доставка всех ваших посылок заняла примерно одинаковое время, вы можете сделать вывод о том, что между городами местность скорее ровная. Если же доставка посылок на тяжелых велосипедах заняла гораздо больше времени, вы поймете, что местность между А и Б скорее холмистая. Таким образом, наши почтальоны-велосипедисты занимаются зондированием неисследованных территорий.

Атомы любого химического элемента бывают, как и велосипеды, разного веса. Возьмем, к примеру, водород – самый простой элемент, который тем не менее представляет для нас с вами большой интерес. Каждый элемент определяется количеством протонов в ядре, которое совпадает с количеством электронов, окружающих ядро. Так, в ядре водорода находится один протон, в ядре гелия – два, лития – три и т. д. Однако ядра атомов содержат не только протоны, но и нейтроны, о которых мы упоминали в главе 1, когда говорили о слиянии ядер водорода внутри Солнца. Если в ядро попадают нейтроны, он становится тяжелее и его физические свойства меняются. Атомы одного элемента, отличающиеся количеством нейтронов в ядре, называются изотопами. Обычный изотоп водорода – самый легкий, поскольку состоит только из одного протона и электрона. Это самая распространенная форма водорода. Существует еще два более редких изотопа водорода: дейтерий (D), имеющий один лишний электрон, и тритий (Т), у которого два лишних электрона.

Поскольку химические свойства элементов обусловливаются в основном количеством электронов в атомах, разные изотопы одного и того же элемента, отличающиеся количеством нейтронов в атомных ядрах, будут иметь очень сходные, однако не идентичные химические свойства. Кинетический изотопный эффект показывает, насколько чувствительна химическая реакция к замене атомов в молекуле реагирующего вещества на более тяжелые изотопы. Он определяется как отношение скоростей реакции, протекающей с тяжелыми и легкими изотопами. Например, если в реакции участвует вода, тогда атомы водорода в молекулах H2O могут заменяться своими более тяжелыми собратьями – дейтерием и тритием, образуя соответственно молекулы D2O или T2O. Точно как наши почтальоны на велосипедах, реакция может отреагировать на изменение веса атомов, а может и не отреагировать – все зависит от пути, который выберут вещества, вступающие в реакцию, чтобы в итоге стать ее продуктами.

Существует несколько механизмов, обеспечивающих сильные кинетические изотопные эффекты. Одним из этих механизмов является квантовое туннелирование – процесс, который, как и езда на велосипеде, зависит от массы частицы, пытающейся преодолеть барьер. Чем больше масса частицы, тем меньше проявляются ее волновые свойства, а следовательно, тем ниже вероятность того, что частица преодолеет энергетический барьер. Поэтому увеличение массы атома вдвое, например, в случае замены обычного изотопа водорода дейтерием резко снижает вероятность его участия в квантовом туннелировании.

Таким образом, наличие сильного кинетического изотопного эффекта может свидетельствовать о том, что механизм реакции – путь от реагирующих веществ до продуктов – подразумевает квантовое туннелирование. Однако это не единственно возможный вывод, поскольку эффект может быть обусловлен и классическими химическими явлениями, не связанными с законами квантовой механики. Но если в ходе реакции имеет место именно квантовое туннелирование, реакция должна определенным образом отреагировать на изменение температуры: ее темп перестает ускоряться и выравнивается при низкой температуре, как и показал опыт Де-волта и Чанса в случае туннелирования электронов. То же самое показали опыты Клинман и ее команды для фермента АДГ, причем в ходе экспериментов были получены строгие доказательства того, что квантовое туннелирование было в данном случае частью механизма реакции.

Команде ученых под руководством Клинман удалось получить важные доказательства того, что туннелирование протонов часто происходит в ходе ферментативных реакций при температурах, при которых также протекают жизненные процессы. Другие коллективы ученых, в том числе и группа под руководством Найджела Скраттона из Манчестерского университета, проводили подобные эксперименты с другими ферментами и наблюдали кинетические изотопные эффекты, указывающие на то, что реакция сопровождается квантовым туннелированием [10]. И все же вопрос о том, каким образом ферменты поддерживают квантовую когерентность и способствуют возникновению туннельного эффекта, остается противоречивым. Некоторое время считалось, что ферменты не статичны, что в ходе реакций они постоянно совершают колебания, движутся. Например, «челюсти» коллагеназы открываются и захлопываются каждый раз, когда они разрывают коллагеновую связь. Ученые полагали, что подобные движения, наблюдающиеся в ходе реакции, являются случайными либо призваны захватить субстраты и выровнять и упорядочить все атомы, вступающие в реакцию. Однако в наше время специалисты в области квантовой биологии утверждают, что подобные колебания – так называемые «приводные двигатели» и основная их функция – максимально близко подвести друг к другу атомы и молекулы, чтобы квантовое туннелирование частиц (электронов и протонов) стало возможным [11]. К этой теме – одной из самых захватывающих и быстроразвивающихся в квантовой биологии – мы вернемся в последней главе нашей книги.

Назад: Квантовое туннелирование электронов в биологии
Дальше: Так что же составляет «квантовую часть» квантовой биологии

Helium
Вместо этой детективной захватывающей картины, можно просто представить себе, что электрон не является точкой а является сферической стоячей волной в пространстве без дисперсии.