Глава 8
Бесплатный обед?
Наука не может ответить на самые глубокие вопросы. Как только вы задаетесь вопросом, почему есть Нечто вместо Ничто, вы выходите за пределы науки.
Аллан Сэндидж, отец современной астрономии
Наука не в состоянии объяснить тайну бытия – по крайней мере, так часто утверждается. Особенно страстно высказался на эту тему Джулиан Хаксли, светский гуманист и эволюционный биолог: «Ясный свет науки, как нам часто говорят, уничтожил тайну, оставив лишь логику и мышление. Это совсем не так. Наука сняла покрывало тайны со многих явлений, что принесло много пользы человеческому роду, однако она ставит нас перед основной и универсальной тайной – тайной бытия… Почему существует мир? Почему он состоит именно из того, из чего он состоит? Почему он обладает не только материальными и объективными аспектами, но и ментальными или субъективными? Мы не знаем… Но мы должны научиться жить с этим, принимать его и наше существование как одну главную тайну»88.
Предполагается, что вопрос «Почему существует Нечто, а не Ничто?» слишком велик, чтобы наука могла на него ответить. Ученые могут объяснить, как устроена физическая Вселенная, могут проследить причинные взаимодействия отдельных объектов и сил в ней. Они могут пролить свет на эволюцию Вселенной в целом, как она развивалась из одного состояния в другое. Однако когда дело доходит до первоисточника реальности, им нечего сказать. Это загадка, которую лучше предоставить метафизике, или теологии, или поэтическому восхищению, или молчанию.
Пока считалось, что Вселенная вечна, ее существование не слишком мучило ученых. Эйнштейн в своих гипотезах просто принял, что Вселенная вечна, и подправил уравнения теории относительности соответствующим образом. Однако с открытием Большого взрыва все изменилось. Мы явно живем в расширяющихся, охлаждающихся остатках гигантского космического взрыва, который произошел около 14 миллиардов лет назад. Что могло вызвать этот первозданный взрыв? И что ему предшествовало – и предшествовало ли ему что-нибудь вообще? Эти вопросы определенно входят в компетенцию науки, но любая попытка науки на них ответить натыкается на кажущееся непреодолимым препятствие, известное как «сингулярность».
Допустим, мы возьмем законы общей теории относительности, управляющие эволюцией космоса на макроуровне, и экстраполируем их назад в прошлое, к началу Вселенной. Рассматривая развитие нашей расширяющейся и охлаждающейся Вселенной в обратном порядке, мы увидим, как ее содержимое сжимается и нагревается. В момент времени t=0 (в момент Большого взрыва) температура, плотность и кривизна Вселенной стремятся к бесконечности – на этом месте уравнения общей теории относительности дают сбой и теряют смысл. Мы достигли сингулярности, края или границы самого пространства-времени, точки, в которой сходятся нити причинности. Если у этого события была причина, то она должна выходить за пределы пространства-времени, то есть быть вне досягаемости для науки.
Концептуальный сбой на Большом взрыве настолько беспокоил космологов, что они стали искать сценарии, позволяющие избежать первоначальной сингулярности. Однако в 1970 году физики Стивен Хокинг и Роджер Пенроуз показали, что эти попытки не могут увенчаться успехом. Хокинг и Пенроуз начали со вполне логичного предположения о том, что гравитация всегда притягивает, и приняли плотность материи во Вселенной примерно равной измеренной. На основе этих двух допущений они с математической точностью доказали, что в начале Вселенной должна лежать сингулярность.
Означает ли это, что первоисточник Вселенной навсегда покрыт тайной? Необязательно. Это просто означает, что Большой взрыв не может быть полностью понят «классической» космологией, то есть космологией, основанной только на общей теории относительности Эйнштейна, – потребуются и другие теории.
Какие именно, можно понять, если учесть, что через долю секунды после своего рождения вся наблюдаемая Вселенная была не больше атома. В таких масштабах классическая физика неприменима: в микромире правят законы квантовой теории. Поэтому космологи (самая заметная фигура среди них – это Стивен Хокинг) стали задаваться вопросом: «А что, если квантовую теорию, которая раньше использовалась только для описания субатомных явлений, применить ко всей Вселенной в целом?» Так родилась квантовая космология, названная физиком Джоном Гриббином «наиболее значительным шагом вперед в науке со времен Исаака Ньютона»89.
Квантовая космология предлагает способ обойти проблему сингулярности. Классические космологи полагали, что сингулярность, притаившаяся за Большим взрывом, – это что-то вроде точки с нулевым объемом. Однако квантовая теория запрещает столь точно определенное состояние, утверждая, что на самом фундаментальном уровне природа обладает неизбежной размытостью, поэтому невозможно указать точный момент возникновения Вселенной, t=0.
То, что квантовая теория разрешает, еще более интересно, чем то, что она запрещает. А разрешает она спонтанное возникновение частиц из вакуума. Такой способ создания Нечто из Ничто дал квантовым космологам увлекательную идею: что, если сама Вселенная, по законам квантовой механики, возникла из ничего? Тогда причина того, что существует Нечто, а не Ничто, состоит в неустойчивости пустоты, как они это называют.
Утверждение физиков «пустота неустойчива» иногда осмеивается философами как неверное словоупотребление. «Пустота» не является названием объекта, говорят они, поэтому не имеет смысла приписывать ей какие-то качества, например неустойчивость. Однако о пустоте можно думать не только как об объекте, но и как об описании состояния. Для физика «пустота» описывает такое состояние, когда нет частиц и все математические поля равны нулю. Возможно ли такое состояние в действительности? То есть согласуется ли оно логически с физическими принципами? Одним из наиболее глубоких принципов, лежащих в самой основе нашего квантового понимания природы, является принцип неопределенности Гейзенберга, утверждающий, что определенные пары свойств (так называемые «канонически сопряженные переменные») связаны друг с другом таким образом, что не могут быть точно измерены вместе. Одна такая пара переменных – координаты и импульс частицы: чем точнее вы установили положение частицы, тем менее точно вам известно значение ее импульса, и наоборот. Другой парой сопряженных переменных являются время и энергия: чем точнее вам известен промежуток времени, в течение которого произошло какое-то событие, тем меньше вы знаете о энергии, связанной с этим событием, и наоборот.
Квантовая неопределенность также запрещает точное определение значений поля и скорости изменения этого значения. (Это аналогично утверждению, что вы не можете знать точную цену акции и скорость изменения этой цены одновременно.) И если подумать, то это в общем-то исключает пустоту. По определению, пустота – это состояние, в котором все значения полей постоянно равны нулю, однако принцип неопределенности Гейзенберга говорит, что если мы точно знаем значение поля, то скорость его изменения совершенно случайна, то есть не может быть равна нулю. Таким образом, математическое описание неизменной пустоты несовместимо с квантовой механикой – точнее, пустота неустойчива.
Имеет ли это какое-то отношение к космогенезу? Впервые такая мысль пришла в 1969 году к физику из Нью-Йорка по имени Эд Трайон. Витая в облаках во время лекции, которую читал знаменитый физик из университета Колумбии, Трайон вдруг выпалил: «Может быть, Вселенная – это квантовая флуктуация!»90 Говорят, что несколько присутствующих нобелевских лауреатов разразились насмешливым хохотом, но Трайон наткнулся на нечто ценное. Идея, что Вселенная, содержащая сотни миллиардов галактик в одном только маленьком регионе, доступном для нашего наблюдения, могла появиться из пустоты, выглядит невероятной. Как показал Эйнштейн, любая масса представляет собой замороженную энергию. Однако огромному количеству положительной энергии, запертой в звездах и галактиках, должна противостоять отрицательная энергия гравитационного притяжения между ними. В «закрытой» Вселенной (той, которая со временем снова сожмется) положительная и отрицательная энергии должны точно уравновешивать друг друга. Другими словами, общая энергия такой Вселенной равна нулю.
Возможность создания целой Вселенной из нулевой энергии поражает воображение. Во всяком случае, Эйнштейн был поражен, когда его коллега-физик Георгий Гамов рассказал ему об этой идее во время прогулки по Принстону. По воспоминаниям Гамова, «ошеломленный Эйнштейн встал как вкопанный, а поскольку мы как раз переходили дорогу, то несколько машин были вынуждены остановиться, чтобы нас не переехать»91.
С точки зрения квантовой механики Вселенная с нулевой энергией представляет собой интересную возможность, за которую и ухватился Трайон. Допустим, что полная энергия Вселенной точно равна нулю. Тогда, благодаря взаимосвязи в неопределенности между энергией и временем (как диктует принцип Гейзенберга), неопределенность во времени становится бесконечной. Другими словами, как только такая Вселенная возникнет из пустоты, то сможет существовать вечно, подобно займу бытия, который никогда не будет выплачен. Что же касается причины, по которой Вселенная возникла, то это просто квантовая вероятность. «В ответ на вопрос о том, почему это случилось, – написал Трайон позднее, – я могу выдвинуть скромное предположение, что наша Вселенная – это просто одно из тех явлений, которые случаются время от времени»92.
Является ли это примером сотворения из пустоты? Не совсем. В сценарии происхождения мира по Трайону энергия и материя действительно равны нулю и в этом смысле похожи на «получение Нечто из Ничто». Однако то состояние, из которого спонтанно возникла Вселенная, называется «квантовый вакуум», и оно совсем не похоже на философскую концепцию Ничто. Во-первых, это что-то вроде пустого пространства, а пространство – это не Ничто. К тому же оно на самом деле не пустое. Квантовый вакуум – это сложная математическая структура, которая изгибается и растягивается, как резина; она наполнена энергией полей, и в ней кипит активность виртуальных частиц. Квантовый вакуум – это физический объект, настоящий маленький протокосмос сам по себе.
Почему вообще существует такое явление, как квантовый вакуум? Как заметил физик Алан Гут: «Предположение, что Вселенная появилась из пустого пространства, выглядит не более фундаментальным, чем предположение, что Вселенная родилась из куска резины. Оно может быть верным, но все равно возникает вопрос о том, откуда взялся кусок резины»93.
Видимо, ближе всех к решению «резиновой проблемы» подошел Александр Виленкин. Он родился на Украине, где после получения диплома физика работал ночным сторожем в зоопарке. В 1976 году Виленкин переехал в США и меньше чем за год получил степень доктора философии по физико-математическим наукам. Теперь он преподает в университете Тафтса возле Бостона, где также занимает должность директора Института космологии Тафтса. Виленкин известен тем, что на семинарах носит темные очки в стиле Анны Винтур, предположительно, из-за чувствительности глаз к свету.
Когда Виленкин говорит о возникновении Вселенной из «Ничто», он именно это и имеет в виду, как я узнал из разговора с ним несколько лет назад. «Ничто есть Ничто! – настаивал он с некоторой горячностью. – Это не просто отсутствие материи, это отсутствие пространства, отсутствие времени – полное отсутствие всего».
Но как может физик хотя бы определить состояние полной пустоты? И вот здесь Виленкин проявил изобретательность. Представьте себе пространство-время как поверхность сферы (такое пространство-время называется «замкнутым», потому что оно искривлено само в себя; оно ограниченно, хотя не имеет границ). Теперь предположим, что эта сфера сжимается, как воздушный шарик, из которого выпускают воздух. Радиус становится все меньше и меньше и со временем (попытайтесь это вообразить) превращается в ноль. Поверхность сферы полностью исчезает, а с ней и само пространство-время. Мы дошли до полной пустоты – и одновременно до точного определения пустоты: это замкнутое пространство с нулевым радиусом. Это и есть самая полная и совершенная пустота, которую можно описать научно. Она не только лишена какого-либо содержимого, в ней также нет ни координат, ни продолжительности.
С таким определением Виленкин сумел произвести интересные вычисления. Используя принципы квантовой механики, он показал, что из такого начального состояния пустоты может спонтанно появиться крохотный кусочек наполненного энергией вакуума. Насколько крохотный? Возможно, размером всего лишь в одну стотриллионную сантиментра. Однако оказывается, что этого вполне достаточно для космогонических целей. Под действием отрицательного давления «инфляции» этот кусочек энергетического вакуума испытает безудержное расширение. Через пару микросекунд он достигнет космических размеров, испустив поток света и материи – Большой взрыв!
Таким образом, по мнению Виленкина, переход от Пустоты к Бытию происходит в два этапа: на первом крохотный кусочек вакуума появляется из абсолютного Ничто; на втором он раздувается в наполненную материей предшественницу той Вселенной, которую мы сейчас видим вокруг. С точки зрения науки эта схема безупречна. На данный момент принципы квантовой механики, управляющие первым этапом, являются самыми надежными принципами в науке. Что касается теории инфляции, которая описывает второй этап, то с момента своего создания в начале 80-х годов она была успешно подтверждена не только теоретически, но и эмпирически – в частности, распределением реликтового излучения, оставшегося после Большого взрыва, по данным наблюдений спутника СОВЕ.
Итак, вычисления Виленкина выглядят верными. Однако, разговаривая с ним, я вынужден был признаться, что мое воображение отказывается представить сотворение из ничего. Пузырек ложного вакуума, из которого родился космос, должен ведь был откуда-то взяться. Тогда Виленкин довольно ехидно предложил мне представить пузырек газа в шампанском – а потом убрать шампанское.
Даже вообразив себе эту картинку (не слишком-то убедительную), я остался в замешательстве. Пузырек в шампанском формируется с течением времени, а пузырь Виленкина, возникающий из пустоты, представляет собой пузырь пространства-времени. Поскольку само время (вместе с пространством) создается в процессе перехода из Ничто в Нечто, то и сам переход не может происходить во времени. Похоже, что переход разворачивается не во времени, а в логике. Если Виленкин прав, то у Ничто никогда не было ни единого шанса: законы физики требуют, чтобы, с некоторой ненулевой вероятностью, существовала Вселенная. Но на каком онтологическом основании стоят эти законы? Если они логически предшествуют миру, то где именно они были написаны?
«Если угодно, можете сказать, что они в уме Бога», – отвечает Виленкин. После разговора с ним я подумал, что, может быть, это лучшее, на что способна наука. Она может показать, что законы, объясняющие, как устроен мир, также объясняют, почему мир вообще должен быть – а значит, почему существует Нечто, а не Ничто. Законы классической физики, включая общую теорию относительности Эйнштейна, на это не способны. Они могут описать эволюцию Вселенной, но не могут объяснить, как она появилась, – в точке ее возникновения они перестают работать. Квантовая космология – это шаг вперед. Она может рассматривать возникновение мира как одно из квантовых событий, которому, к счастью, не требуется первопричина. Квантовая теория может показать, что с онтологической точки зрения Вселенная в самом деле может быть «бесплатным обедом».
Тем не менее квантовая космология не может быть последним словом в науке. Проблема состоит в том, что до сих пор никто не смог объяснить, каким образом можно связать гравитацию с квантовыми явлениями. В конце концов, именно гравитация определяет общую структуру Вселенной. На уровне Вселенной в целом общая теория относительности Эйнштейна успешно объясняет, как работает гравитация. Однако когда вся масса Вселенной упакована в объем размером с атом – как это было сразу после Большого взрыва, – квантовая неопределенность вызывает нарушение гладкой геометрии общей теории относительности, и невозможно предсказать, как поведет себя гравитация. Чтобы понять зарождение космоса, нам нужна квантовая теория гравитации, которая «объединит» общую теорию относительности и квантовую механику. Сам Стивен Хокинг с этим согласен: «…Квантовая теория гравитации является неотъемлемой частью общей теории, если мы хотим описать раннюю Вселенную», – провозгласил Хокинг в 1980 году во время своей инаугурационной лекции при вступлении на кафедру Лукасовского профессора математики в Кембриджском университете. «Такая теория также нужна, если мы хотим ответить на вопрос: действительно ли время имеет начало…»94 Сегодня, по прошествии более чем тридцати лет, физики все еще ищут такую теорию, которая бы аккуратно связала все силы природы, включая гравитацию, в единое математическое целое. Пока неясно, какую форму будет иметь эта теория. На данный момент физики возлагают надежды на теорию струн, которая пытается представить всю физическую реальность как состоящую из крохотных энергетических струн, вибрирующих в многомерном пространстве. Несогласные с этой общепринятой теорией ищут другие подходы. Некоторые физики считают, что сама идея объединения взаимодействий – это иллюзия.
Что может сказать нам окончательная теория, или «теория всего», как ее иногда называют, о происхождении Вселенной? Скорее всего, она сможет заглянуть глубже, чем квантовая космология Хокинга, Виленкина и других. Например, теория струн позволяет представить себе реальность до Большого взрыва, когда сами понятия пространства и времени не имели смысла. Но сможет ли она дать убедительное объяснение самой себя? Если это в самом деле окончательная теория, то она должна объяснить, почему она верна. Может ли теория всего оказаться самокатегоризированной?
Я знал, что лучше всего на этот вопрос может ответить Стивен Вайнберг: как никто другой из физиков, он стоял в центре усилий по созданию окончательной теории. В 1979 году Вайнберг получил Нобелевскую премию по физике за свой вклад десятилетием раньше в объединение двух из четырех фундаментальных взаимодействий: электромагнитного и слабого (вызывающего радиоактивный распад). Оба взаимодействия представляют собой лишь низкоэнергетические аспекты базовой «электрослабой» силы. Это и другие достижения в данной области дают Вайнбергу хорошее основание считаться отцом «стандартной модели» физики частиц – наиболее полного имеющегося на данный момент понимания физического мира на микроуровне.
Кроме того, Вайнберг еще и исключительно красноречивый популяризатор науки. В 1977 году он опубликовал книгу «Первые три минуты» – красочное, захватывающее описание первобытной Вселенной в мгновения после Большого взрыва. На последней странице именно этой книги он сделал заявление, вскоре ставшее широко известным: «Чем более постижимой представляется Вселенная, тем более она кажется бессмысленной».
В 1993 году он опубликовал книгу «Мечты об окончательной теории», в которой объясняется на глубоком философском уровне, к чему мы на самом деле стремимся в попытках объединить законы природы. Вайнберг описывает, как физики, ведомые своим чувством математической красоты, ищут все более и более глубокие принципы, позволяющие связать стандартную модель с общей теорией относительности Эйнштейна во всеобъемлющую окончательную теорию. В этой точке сойдутся все направления объяснений: каждое «почему» поглотится окончательным «потому что». Вайнберг объясняет, почему он думает, что современная физика может стоять на грани открытия именно такой теории, и даже признает, что это отчасти печально: «Открытие окончательной теории может принести разочарование, так как природа станет более обычной, в ней останется меньше чудес и тайн»95.
Какая часть космической тайны останется после открытия теории всего, по мнению Вайнберга? Он довольно явно отрицает, что эта теория действительно объяснит абсолютно все. Например, Вайнберг считает, что наука никогда не сможет объяснить существование моральных истин, поскольку между научным и этическим лежит логическая пропасть. Но может ли наука объяснить существование мира? Может ли обосновать победу Нечто над Ничто?
Мне не терпелось задать эти вопросы Вайнбергу. На самом деле мне не терпелось с ним познакомиться: из всех ныне живущих физиков он вызывает у меня наибольшее восхищение. И ни один другой физик (не считая Фримэна Дайсона) не обладает таким даром излагать свои идеи в столь сжатой форме. Кроме того, судя по описаниям в прессе, Вайнберг – человек достаточно неординарный. «С его розовыми щечками, слегка азиатскими глазами и седыми волосами с легкой рыжинкой Стивен Вайнберг похож на большого, степенного эльфа, – написал один журналист после встречи с ним. – Из него получился бы отличный Оберон, король фей в пьесе „Сон в летнюю ночь“»96.
Чувствуя себя Ником Боттомом, я связался с Вайнбергом, который преподает в Техасском университете в Остине, куда он перешел в 1982 году из Гарварда. Я предложил приехать в Остин, чтобы поговорить с ним о тайне бытия. Вайнберг любезно отозвался на мое покушение отнять у него время: «Раз уж вы приедете сюда из самого Нью-Йорка, то я угощу вас обедом».
«Надо же, – подумал я, – не только Вселенная оказывается бесплатным обедом!»
Перспектива впервые посетить Остин добавляла заманчивости. Из того, что я слышал о городе, мне рисовался замечательный бастион авангардной культуры и богемной жизни, стоящий посреди в общем-то отсталого штата, который еще и считается теологически продвинутым.
Когда я спросил Вайнберга, яростного противника религии («С религией или без будут добрые люди, делающие добро, и злые люди, творящие зло. Но чтобы добрые люди начали творить зло, необходима религия»97), как он может быть счастлив в таком рассаднике баптизма, как Техас, он заверил меня, что далеко не все общины баптистов одинаково фанатичны, а некоторые даже настолько либеральны, что их не отличить от унитариев. А еще меня впечатлила репутация Остина как мировой столицы живой музыки, хотя я не поклонник инди-рока.
Так что я, не раздумывая, забронировал билет на рейс в Остин и заказал номер в гостинице «Интерконтиненталь», предвкушая восхитительные выходные, полные пищи для ума, – и не зная, что мои планы окажутся расстроены небольшим вторжением Ничто в мою жизнь.