Дуэль с бесконечностью
Чтобы доказать Великую теорему Ферма, Уайлсу было необходимо сначала доказать гипотезу Таниямы-Шимуры о том, что каждой эллиптической кривой можно поставить в соответствие некоторую модулярную форму. Многие математики отчаянно пытались доказать эту гипотезу, но все попытки окончились неудачей. Уайлс хорошо сознавал, какие чудовищные трудности ожидают его на пути к доказательству: «В конце концов всё, что наивно надеялись сделать одни и что действительно пытались сделать другие, сводилось к тому, чтобы пересчитать эллиптические кривые и модулярные формы и показать, что число одних совпадает с числом других. Но никто и никогда не предложил простого способа, который позволил бы сделать это. Первая трудность состоит в том, что существует бесконечно много эллиптических кривых и бесконечно много модулярных форм, и поэтому количество тех и других невозможно выразить конечным числом».
Уайлс решил воспользоваться своим обычным подходом к решению трудных задач. «Иногда я записываю на листке бумаги каракули. Строго говоря, они ничего не обозначают. Это, так сказать, подсознательные каракули. Компьютером я не пользуюсь никогда». Во многих задачах теории чисел, компьютеры оказываются совершенно бесполезными. Гипотеза Таниямы-Шимуры относится к бесконечно многим уравнениям, и хотя компьютер может проверить за несколько секунд каждый отдельный случай, он никогда не сможет проверить все случаи. Требовалось нечто другое: логическое рассуждение, которое допускало бы разбиение на отдельные шаги, которое бы в целом указывало причину и давало объяснение, почему все эллиптические кривые без исключения должны соответствовать модулярным формам. И в поиске доказательства Уайлс полагался только на листок бумаги, карандаш и свой разум. «Я не забывал ни на миг о своей цели. С этим я просыпался по утрам, над этим размышлял весь день, об этом думал, засыпая. Не отвлекаясь, я только и делал, что размышлял и размышлял над всем этим».
После года размышлений Уайлс решил избрать за основу доказательства общий метод, известный под названием индукции. Индукция — чрезвычайно мощный способ доказательства, поскольку он позволяет математику доказать, что утверждение справедливо для бесконечно многих случаев, доказав, что оно справедливо только в одном случае. Например, представим себе, что некий математик хочет доказать, что какое-то утверждение справедливо для всех натуральных чисел от 1 до бесконечности. Первый шаг состоит в том, чтобы убедиться в истинности этого суждения для числа 1, что обычно достигается прямой проверкой. Следующий шаг состоит в том, чтобы показать, что если утверждение верно для числа 1, то оно должно быть верно для числа 2, а если оно верно для числа 2, то оно должно быть верно для числа 3, а если оно верно для числа 3, то оно должно быть верно для числа 4 и т. д. Более общо, математик должен показать, что если утверждение верно для некоторого числа n, то оно должно быть верно для следующего числа n+1.
По существу доказательство по индукции представляет собой процесс, состоящий из двух частей:
1. доказательство того, что утверждение верно в первом случае;
2. доказательство того, что если утверждение верно для какого-нибудь одного случая, то оно должно быть верным для следующего случая.
Другой способ наглядно представить себе доказательство по индукции заключается в том, чтобы бесконечное количество случаев сравнить с бесконечным множеством костей домино. Чтобы доказать каждый случай, необходимо найти способ, позволяющий сбить каждую из костей домино. Если сбивать домино одно за другим, то на это потребуется затратить бесконечно много усилий. Но доказательство по индукции позволяет математикам сбить все домино, сбив только первую кость. Если домино расставлены правильно, то первое домино, упав, собьет второе домино, оно в свою очередь собьет третье и т. д. до бесконечности. Доказательство по индукции порождает эффект домино. Математический аналог этого явления (падая, каждая кость домино, сбивает следующую, поэтому достаточно повалить одну-единственную кость домино, как повалятся все остальные кости до единой) позволяет доказать бесконечно много случаев, доказав один-единственный первый случай. В Приложении 10 показано, как доказательство по индукции можно использовать для доказательства сравнительно простого математического утверждения относительно всех чисел.
Задача, стоявшая перед Уайлсом, требовала построить индуктивное рассуждение, которое показывало бы, что каждой из бесконечно многих эллиптических кривых может быть поставлено в соответствие какая-то из бесконечно многих модулярных форм, и, наоборот, каждая модулярная форма может быть поставлена в соответствие какой-то из бесконечно многих эллиптических кривых. Каким-то образом Уайлсу предстояло разделить доказательство на бесконечно много отдельных случаев, а затем доказать первый случай. Затем Уайлсу требовалось доказать, что, толкнув первую кость домино (доказав первый случай), он вызовет эффект домино (все остальные случаи будут доказаны). И в конце концов Уайлс пришел к заключению, что первый шаг его индуктивного доказательства скрыт в работе одного трагически погибшего математического гения, жившего и работавшего во Франции в XIX веке.
* * *
Эварист Галуа родился в Бур-ля-Рейне, небольшой деревушке, расположенной к югу от Парижа, 25 октября 1811 года, ровно через 22 года после Французской революции. Наполеон Бонапарт находился в ту пору в расцвете сил, но в следующем году пережил разгром в Русской кампании и в 1814 году был отправлен в ссылку. На французский трон взошел король Людовик XVIII. В 1815 году Наполеон бежал с острова Эльбы, вернулся в Париж и восстановил свою власть, но через сто дней потерпел поражение в битве при Ватерлоо и был вынужден снова отречься в пользу Людовика XVIII. Подобно Софи Жермен, Галуа рос в период великой смуты, но если Жермен отрешилась от бурных событий Французской революции и сосредоточилась на математике, то Галуа неоднократно оказывался в самом центре политических споров, которые не только помешали ему сделать академическую карьеру, но и привели к его безвременной кончине.
Помимо общей смуты, неизбежно сказывавшейся на жизни каждого француза, интерес Галуа к политике возник под влиянием его отца Николя-Габриэля Галуа. Когда Эваристу Галуа исполнилось четыре года, его отец был избран мэром Бур-ля-Рейна. Это было время триумфального возвращения Наполеона к власти, и либеральные ценности, высоко ценимые отцом Галуа, отвечали тогда духовному настрою нации. Николя-Габриэль Галуа был культурным и обходительным человеком, и в первые годы своего пребывания на посту мэра он снискал уважение всего населения. Даже когда Людовик XVIII опять взошел на трон, отец Галуа был снова выбран мэром. Вне политики его любимым занятием было сочинение эпиграмм, которые он, к восторгу своих сторонников, читал на собраниях жителей города. Много лет спустя именно недюжинный талант эпиграмматиста привел его к падению.
Когда Эваристу Галуа исполнилось двенадцать лет, он поступил в первую свою школу — лицей Людовика Великого, престижное учебное заведение с жесткой дисциплиной. Сразу же скажем, что Галуа не слушал никаких математических курсов, и его успехи вообще не были выдающимися. Но в первый же семестр произошло событие, которое оказало влияние на всю его жизнь. До Революции лицей был иезуитским колледжем, и теперь появились слухи, что лицей снова возвращается под власть священников. В то время между монархистами и республиканцами шли бесконечные споры, равновесие власти между Людовиком XVIII и представителями народа нарушалось в пользу то одной, то другой стороны.
Возрастающее влияние священнослужителей в такой атмосфере могло рассматриваться как указание на перевес власти в пользу короля. Учащиеся лицея, в большинстве своем придерживавшиеся республиканских взглядов, решили поднять восстание, но директор лицея месье Берто раскрыл заговор и, не колеблясь, исключил с десяток зачинщиков. На следующий день, когда месье Берто потребовал от остальных учащихся старших классов демонстративного выражения лояльности, учащиеся лицея отказались поднять тост за Людовика XVIII, после чего было исключены еще сто учащихся. Галуа был еще слишком юн для того, чтобы участвовать в провалившемся восстании, и поэтому остался в лицее. Но унижения, которым на его глазах подверглись его товарищи, только усилили его республиканские настроения.
Лишь в возрасте шестнадцати лет Галуа записался на первый в своей жизни математический курс, который, по мнению преподавателей лицея, превратил Галуа из послушного ученика в учащегося, который сильно выделялся среди остальных. Судя по отметкам, он стал пренебрегать всеми другими предметами и сосредоточил все свое внимание на новом для него предмете, которому он отдался со всем пылом души.
«Этот учащийся занимается только самым высшими разделами математики. Юношей овладело какое-то математическое безумие. Думаю, что для него было бы лучше всего, если бы родители позволили ему заниматься только математикой. Иначе он только напрасно теряет здесь время и мучает преподавателей, навлекая на себя множество наказаний».
Скоро ненасытная жажда математических познаний со стороны Галуа намного превзошла то, что могли ему дать учителя, и Галуа стал учиться по книгам, написанными наиболее выдающимися учеными того времени. Галуа легко усваивал сложнейшие понятия, и к тому времени, когда ему исполнилось семнадцать лет, он опубликовал свою первую работу в журнале «Annales de Gergonne». Казалось, путь, открывавшийся перед вундеркиндом, был ясен.
Единственным препятствием на пути к успеху был необычайный блеск, присущий его разуму. Познания Галуа в математике значительно превосходили тот уровень знаний, который был необходим для сдачи экзаменов за курс лицея, и решения Галуа нередко были настолько оригинальны и изысканны, что его экзаменаторы не могли по достоинству оценить их. Непонимание со стороны преподавателей усугублялось тем, что многие вычисления Галуа производил в уме и не трудился ясно изложить их на бумаге, что еще больше затрудняло работу преподавателей и вызывало у них раздражение.
Юный гений отнюдь не способствовал смягчению ситуации, так как отличался вспыльчивостью и опрометчивостью поступков, что не вызывало симпатии к нему. Когда Галуа подал документы в самое престижное высшее учебное заведение Франции — Политехническую школу (École Polytechnique), — краткость решений и отсутствие каких-либо пояснений на устном экзамене привели к тому, что Галуа не был принят. Между тем Галуа во что бы то ни стало хотел поступить туда не только потому, что это было самое лучшее учебное заведение, но и потому, что оно славилось как центр республиканцев. Через год Эварист Галуа предпринял еще одну попытку поступить в École Polytechnique, и снова на устном экзамене по математике «скачки» в логике его рассуждений только смутили экзаменатора месье Дине. Чувствуя, что он на грани второго провала, и разочарованный тем, что его блестящие способности не получили должного признания, Галуа вышел из себя и швырнул в Дине тряпкой. Бросок оказался точным. Больше Галуа никогда не возвращался в священные аудитории École Polytechnique.
Неудачи на вступительных экзаменах не поколебали уверенность Галуа в своем математическом таланте, и он продолжал свои приватные исследования. Его основной интерес был сосредоточен на решении алгебраических уравнений. Как известно, квадратные уравнения имеют вид
ax2 + bx + c = 0,
где a, b и c могут иметь любые значения. Задача состоит в том, чтобы найти такие значения x, которые удовлетворяют этому квадратному уравнению. Метод проб и ошибок не удовлетворяет математиков. Они предпочитали бы иметь рецепт, позволяющий находить решения, и к счастью такой рецепт действительно существует:
Подставляя значения a, b и c в эту формулу, мы получаем правильные значения x. Например, приведенный выше рецепт можно применить к уравнению
2x2–6x + 4 = 0,
где a=2, b=–6 и c=4. Подставляя значения a, b и c, мы получаем x=1 или x=2. Квадратные уравнения — это частный случай гораздо более широкого класса уравнений, известных под названием полиноминальных. Полиноминальным уравнением более сложным, чем квадратное, является кубическое уравнение
ax3 + bx2 + cx + d = 0.
Дополнительное осложнение возникает из-за члена ax3. Добавляя еще один член, x4, мы получаем еще один вид полиноминального уравнения, известного как уравнение четвертой степени:
ax4 + bx3 + cx2 + dx + e = 0.
К началу XIX века математикам были известны рецепты, позволяющие находить решения кубических уравнений и уравнений четвертой степени, но не был известен метод решения уравнений пятой степени
ax5 + bx4 + cx3 + dx2 + ex + f = 0.
Галуа увлекся идеей найти рецепт для решения уравнений пятой степени. Это была одна из наиболее трудных проблем современной ему математики. К тому времени, когда Галуа исполнилось семнадцать лет, он сумел продвинуться в решении этой проблемы настолько, что представил Академии наук два мемуара с результатами своих исследований. Рецензентом, которому мемуары поступили на отзыв, был Огюстен Луи Коши — тот самый, кто много лет спустя вступит в полемику с Ламе по поводу пробела в доказательстве Великой теоремы Ферма. Работы юного Галуа произвели на Коши сильное впечатление, и он счел, что мемуары Галуа заслуживают быть представленными на премию Академии по математике. Чтобы удовлетворить формальным требованиям, предъявляемым к работам, представленным на конкурс, оба мемуара следовало объединить в один, поэтому Коши ввернул работы Галуа и стал ожидать, когда тот подаст их уже в виде одного мемуара.
После несправедливой критики преподавателей лицея и двукратного провала на вступительных экзаменах в École Polytechnique гений Галуа был уже на грани признания, но ряд личных и профессиональных трагедий, пережитых им в следующие три года, поставили крест на его честолюбивых замыслах. В июле 1829 года в городок Бур-ля-Рейн, мэром которого все еще оставался отец Галуа, прибыл новый священник-иезуит. Он с неодобрением отнесся к республиканским симпатиям мэра и начал кампанию по смещению того с поста, распространяя всяческие дискредитирующие мэра слухи. В частности, иезуит воспользовался тем, что Николя-Габриэль Галуа сочинял остроумные эпиграммы. Священник-интриган написал ряд грубых стишков, высмеивавших местных жителей и подписал их именем мэра. Галуа-старший не выдержал позора и последовавших кривотолков и решил, что единственный достойный выход из создавшегося положения состоит в том, чтобы покончить жизнь самоубийством.
Эварист Галуа прибыл на похороны отца и своими глазами увидел, на какие враждующие стороны разделилось население Бур-ля-Рейна под влиянием нового священника. Когда гроб опускали в могилу, между священником-иезуитом, проводившим заупокойную службу и сторонниками мэра, осознавшими, что против него был составлен заговор, завязалась потасовка. Священник получил удар в голову, потасовка переросла в драку, а гроб бесцеремонно столкнули в могилу. Наблюдая за поруганием и разрушением устоев государственной власти, укреплению которой его отец отдал многие годы жизни, Галуа все более убеждался в правильности своего выбора в пользу дела республиканцев.
По возвращении в Париж Галуа задолго до последнего срока объединил оба своих мемуара в один и представил свою работу непременному секретарю Академии Жозефу Фурье, который, как предполагалось, должен был передать ее жюри конкурса на соискание премии. В своем мемуаре Галуа не предлагал готового рецепта решения уравнения пятой степени, но высказывал блестящую идею, и, по мнению многих математиков, в том числе Коши, был одним из наиболее вероятных кандидатов на получение премии. К величайшему разочарованию, чтобы не сказать потрясению, самого Галуа и его друзей, он не только не получил премию, но даже не был официально допущен в конкурсу. Фурье умер за несколько недель до заседания конкурсной комиссии, и хотя в его бумагах была обнаружена целая кипа работ, представленных на соискание премии, мемуара Галуа среди них не было. Этот мемуар так никогда и не был найден. Вот как описывает столь вопиющую несправедливость один французский журналист.
«1-го марта прошлого года месье Галуа передал непременному секретарю Института мемуар о решении численных уравнений. Этот мемуар должен был быть представлен на соискание премии по математике, и он действительно заслуживал премии, поскольку позволял преодолеть некоторые трудности, с которыми не сумел справиться Лагранж. Месье Коши высоко оценил шансы автора мемуара на высшую премию. И что же случилось? Мемуар утерян, и премия присуждена без участия молодого ученого…» (Ле Глоб, 1831).
Галуа считал, что его мемуар был умышленно утерян политически небеспристрастной Академией, и это его убеждение еще больше укрепилось через год — Академия отвергла его новый мемуар, мотивируя свой отказ тем, что его «аргументация недостаточна ясна, и недостаточно развернута для того, чтобы мы могли судить о ее строгости». Галуа решил, что против него существует тайный заговор, цель которого состоит в том, чтобы исключить его из математического сообщества. И он пренебрег своими исследованиями, оставив их ради политической борьбы на стороне республиканцев. К тому времени он был студентом Нормальной школы (École Normale) — высшего учебного заведения, лишь немногим менее престижного, чем École Polytechnique. В École Normale высокая репутация Галуа как математика затмевала его дурную славу возмутителя спокойствия. Кульминация событий наступила во время июльской революции 1830 года, когда Карл X бежал из Франции, и борьба за власть выплеснулась на улицы Парижа. Директор École Normale месье Гиньо, монархист по убеждениям, знал, что большинство его студентов были радикальными республиканцами. Он приказал им разойтись по спальням и запер ворота учебного заведения на замок. Галуа не мог принять участия в борьбе плечом к плечу со своими соратниками, и, когда республиканцы в конце концов потерпели поражение, его разочарованию и гневу не было предела. Воспользовавшись первой же возможностью, он опубликовал язвительную заметку о директоре École Normale, обвиняя его в трусости. Неудивительно, что Гиньо исключил непокорного студента, и формально карьера Галуа как математика на этом завершилась.
4 декабря своенравный гений вознамерился стать профессиональным революционером, предприняв попытку записаться в артиллерию Национальной гвардии — республиканского рода войск, известного под названием «Друзья народа». Но еще до конца месяца новый король Луи-Филипп, опасаясь дальнейшего расширения восстания, распустил артиллерию Национальной гвардии. Галуа остался без средств к существованию и без дома. Самый блестящий юный талант во всем Париже мог быть задержан на каждом углу как бродяга. Некоторых из его бывших коллег-математиков положение Галуа беспокоило все больше и больше. Софи Жермен, ставшая к тому времени почтенной статс-дамой французской математики, выразила свою озабоченность случившимся в письме к другу семейства графу Либри-Каруччи: «Решительно во всем, что касается математики, нас преследует невезение. Смерть месье Фурье стала последним ударом для этого студента, Галуа, который, несмотря на всю свою дерзость, обнаружил недюжинные математические способности. Он был исключен из École Normale, остался без средств к существованию, у его матери средств тоже очень мало, и он продолжает вести себя вызывающе. Говорят, что он окончательно сойдет с ума. Боюсь, что это так».
Покуда Галуа продолжал с присущей ему страстью заниматься политикой, его положение не могло не ухудшаться, что подтверждается свидетельством Александра Дюма. Великий французский писатель был приглашен на банкет по случаю оправдания девятнадцати республиканцев, ранее обвиненных в антиправительственном заговоре. Он оставил описание этого события: «Внезапно посреди беседы, которую я вел с соседом слева, послышалось имя Луи-Филиппа, после чего кто-то свистнул пять или шесть раз. Я обернулся. Самая оживленная сцена разворачивалась через пятнадцать-двадцать мест за столом от меня. Трудно было бы найти во всем Париже человек двести, настроенных более враждебно по отношению к правительству, чем те, что собрались в тот день в пять часов пополудни в длинном зале на первом этаже над садом.
Молодой человек поднял свой бокал, держа в той же руке обнаженный кинжал, и пытался перекричать окружающих. Это был Эварист Галуа — один из самых ярых республиканцев. Шум стоял такой, что разобраться в его причинах было невозможно. Я мог понять лишь, что была высказана угроза и упомянуто имя Луи-Филиппа: о намерениях красноречиво свидетельствовал обнаженный кинжал.
Происходившее явно выходило за рамки моих республиканских воззрений. Я поддался настояниям моего соседа слева, которому как королевскому коменданту не хотелось компрометировать себя, и мы выпрыгнули из окна в сад. Несколько обеспокоенный, я отправился домой. Было ясно, что происшедший эпизод не останется без последствий. И действительно, через два-три дня Эварист Галуа был арестован».
После месячного заключения в тюрьме Сент-Пелажи Галуа было предъявлено обвинение в угрозе жизни короля, и он предстал перед судом. Хотя действия Галуа не оставляли сомнения в его виновности, царившие на банкете шум и неразбериха привели к тому, что никто из присутствовавших на банкете не мог утверждать, будто слышал от Галуа прямые угрозы в адрес короля. Судья, сочувственно относившийся к обвиняемому, принял во внимание его юный возраст (Галуа едва исполнилось двадцать лет) и вынес оправдательный приговор. Но через месяц Галуа был снова арестован.
В День Бастилии, 14 июля 1831 года, Галуа прошествовал через Париж в форме объявленной вне закона артиллерии Национальной гвардии. За это он был осужден на шесть месяцев тюремного заключения и вернулся в тюрьму Сент-Пелажи. За несколько следующих месяцев окружавшие Галуа подонки приучили его к пьянству. Ботаник и ярый республиканец Франсуа Распай, отбывавший заключение в тюрьме за отказ принять от Луи-Филиппа Крест Почетного Легиона, стал свидетелем того, как Галуа напился впервые в жизни:
«Он взял в руки стаканчик вина с таким видом, с каким Сократ мужественно принял чашу с цикутой; Галуа выпил вино залпом, не моргнув глазом и скорчил зверскую мину. Опустошить второй стаканчик было ничуть не труднее, чем первый, за вторым стаканчиком последовал третий. Новичок утратил равновесие. Триумф! Честь и хвала Бахусу тюрьмы Сент-Пелажи! Ты отравил блестящий разум человека, со страхом взявшего вино в руки».
Через неделю снайпер, стрелявший из мансарды напротив тюрьмы, попал в соседа Галуа по камере. Галуа был убежден, что пуля предназначалась ему, что против него существовал правительственный заговор и его намеревались убить. Мысль о политических преследованиях не покидала его ни днем, ни ночью. Он был изолирован от друзей и семьи, его математические идеи были отвергнуты, — все это повергло Галуа в состояние глубокой депрессии. Допившись до белой горячки, Галуа пытался заколоть себя кинжалом, но Распаю и другим заключенным удалось схватить его и обезоружить. Распай вспоминает слова, произнесенные Галуа непосредственно перед попыткой совершить самоубийство: «Знаете, чего мне не достает? Друга! Признаюсь только вам: это должен быть человек, которого я смогу полюбить всей душой. Я потерял отца, и никто мне его не заменит, слышите?»
В марте 1832 года, за месяц до истечения срока, к отбыванию которого был приговорен Галуа, в Париже вспыхнула эпидемия холеры, и заключенные тюрьмы Сент-Пелажи были выпущены на свободу. О том, что случилось с Галуа в следующие несколько недель, ходили различные слухи. Достоверно известно лишь, что в это время начался его роман с некоей таинственной женщиной по имени Стефани Фелиции Потери дю Мотель, дочерью почтенного парижского врача. Хотя никто не может сколько-нибудь достоверно сказать, с чего начался этот роковой роман, подробности его трагической развязки превосходно документированы.
Стефани уже была помолвлена с неким господином по имени Пешо д'Эрбенвилль, который пришел в ярость, обнаружив, что невеста ему не верна. Д'Эрбенвилль, будучи одним из лучших стрелков Франции, без колебаний послал Галуа вызов на дуэль. Галуа был хорошо осведомлен о репутации своего противника. В ночь накануне поединка, полагая, что это последняя для него возможность изложить свои идеи на бумаге, Галуа пишет письма друзьям, объясняя свои обстоятельства:
«Я прошу моих друзей не винить меня за то, что я умираю не за свою страну. Я умираю, став жертвой бесчестной кокетки и двух глупцов, обманутых ею. Я завершаю свою жизнь, как жертва жалкой клеветы. О, почему я должен умереть за нечто столь ничтожное, столь презренное? Я призываю небеса в свидетели, что только под нажимом, уступая силе, я поддался на провокацию, которую изо всех сил пытался предотвратить».
Несмотря на приверженность республиканским идеям и романтическое приключение, Галуа всегда оставался верен своему увлечению математикой. Более всего он опасался, что его мемуар, уже отвергнутый Академией, будет утрачен навсегда. В отчаянной попытке обрести признание, он всю ночь напролет излагал на бумаге теоремы, которые, по его убеждению, полностью объясняли загадку уравнений пятой степени. На рис. 22 вы видите одну из последних страниц, написанных Галуа в ночь перед дуэлью. На этих страницах Галуа изложил в основном те же идеи, которые он ранее представил Коши и Фурье. На этот раз эти идеи были скрыты за алгебраическими выкладками и перемежались время от времени упоминаниями о «Стефани» или о «той женщине» и преисполненными отчаяния восклицаниями: «У меня нет времени! У меня нет времени!» На исходе ночи Галуа закончил вычисления и написал сопроводительное письмо своему другу Огюсту Шевалье с просьбой передать бумаги в случае гибели его, Галуа, на дуэли величайшим математикам Европы:
«Мой дорогой друг!
Я сделал несколько открытий в области анализа. Первое из них относится к теории уравнений пятой степени и других целых функций.
В теории уравнений я исследовал условия разрешимости уравнений в радикалах; мне представился случай углубить эту теорию и описать все возможные преобразования уравнения, даже если оно не разрешимо в радикалах. Все это изложено здесь в трех мемуарах…
За мою жизнь я часто отваживался выдвигать утверждения, в которых я сам не был уверен. Но все написанное было мне ясно более года, и было бы не в моих интересах оставаться под подозрением, будто я высказывал теоремы, не располагая доказательством.
Попроси Якоби или Гаусса опубликовать их мнение не о том, верны ли мои теоремы, а о том, насколько они важны. Я надеюсь, что найдутся несколько человек, которые сочтут полезным разобраться в моих каракулях.
Дружески обнимаю тебя. Э. Галуа»
В ночь накануне дуэли Галуа попытался изложить все свои математические идеи в письменном виде. Впрочем, в тексте встречаются и замечания не математического содержания. На этой странице слева и ниже от центра стоят слова «Une femme» (некая женщина) второе слово зачеркнуто. Возможно это упоминание о той женщине из-за которой состоялась дуэль
Когда Галуа в роковую ночь отчаянно пытался записать все наиболее важные положения своей теории, ему вдруг стало ясно, что он может не успеть осуществить задуманное. Слова «je n'ai pas le temps» (у меня нет времени) читаются в конце двух строк в нижней части страницы
На следующее утро, в среду 30 мая 1832 года, Галуа и д'Эрбенвилль сошлись на расстоянии двадцати пяти шагов. Стрелялись на пистолетах. Д'Эрбенвилля сопровождали два секунданта, Галуа был один. Он никому не сообщил о предстоящей дуэли. В записке, посланной брату Альфреду, о дуэли не сообщалось ни слова. Лишь через несколько дней, когда до друзей стали доходить письма, написанные Галуа в ночь накануне дуэли, они узнали о случившемся.
Но вот пистолеты подняты, прозвучали выстрелы. Д'Эрбенвилль остался стоять, Галуа получил пулю в живот. Хирурга, который мог бы оказать срочную помощь, на месте дуэли не было, и победитель спокойно удалился, предоставив раненному противнику умирать. Через несколько часов на место дуэли прибыл Альфред Галуа и отвез брата в больницу Кошена. Но было поздно: начался перитонит, и на следующий день Галуа умер.
Похороны Эвариста Галуа походили на фарс, как и похороны его отца. Полиция, опасаясь, что похороны Галуа перерастут в политический митинг, арестовала накануне ночью тридцать его товарищей. Тем не менее, проводить Галуа пришли две тысячи республиканцев, и между его единомышленниками и правительственными официальными лицами, которые прибыли, чтобы своими глазами наблюдать за происходящим, вспыхнули неизбежные потасовки.
Республиканцы были в ярости: все больше распространялось мнение о том, что д'Эрбенвилль был не обманутым женихом, а правительственным агентом, и что Стефани была не просто любовницей Галуа, а коварной соблазнительницей. Такие события, как выстрел, прозвучавший, когда Галуа находился в тюрьме Сент-Пелажи, также указывали, что уже в то время против Галуа существовал заговор с целью его убийства — слишком много хлопот он причинял властям своим неуемным характером. И друзья Галуа решили, что он обманным путем был вовлечен в роман, который был частью существовавшего против него заговора. Историки и поныне продолжают спорить по поводу того, была ли дуэль исходом трагического романа, или корни ее следует искать в политических разногласиях между республиканцами и монархистами. Но, как бы то ни было, величайший математик того времени был убит, когда ему исполнился всего двадцать один год и он успел проучиться математике только пять лет.
Прежде чем рассылать мемуары Галуа, его брат и Огюст Шевалье переписали их, чтобы сделать объяснения более понятными. Галуа, по своему обыкновению, излагал идеи торопливо, опуская существенные подробности. Этот недостаток его стиля усугубился тем, что на изложение результатов исследований, которыми он занимался несколько лет, у него была только одна ночь.
Выполняя волю Эвариста Галуа, Огюст Шевалье и Альфред Галуа разослали копии рукописи Карлу Гауссу, Карлу Якоби и другим выдающимся математикам, но прошло почти десять лет прежде, чем его работа была оценена по достоинству. Впервые это произошло, когда одну из копий получил в 1846 году Жозеф Лиувилль. Прочитав полученную рукопись, Лиувилль ощутил в ней искру гения и потратил несколько месяцев на то, чтобы разобраться в этих заметках. В конце концов Лиувилль отредактировал мемуары Галуа и опубликовал в своем престижном журнале «Journal de Mathèmatiques pures et appliquées». Многие математики живо откликнулись на эту публикацию, потому что Галуа продемонстрировал полное понимание того, как следует действовать, чтобы найти решения уравнений пятой степени. Сначала Галуа разделил все уравнения пятой степени на два типа: уравнения разрешимые и неразрешимые, а затем для разрешимых уравнений предложил рецепт, как найти решения таких уравнений. Кроме того, Галуа рассмотрел уравнения более высокого порядка, содержащие x6, x7 и т. д., и смог указать, какие из них разрешимы. Его труд стал одним из шедевров математики XIX века.
В предисловии к работам Галуа Лиувилль пустился в рассуждения о том, почему этот молодой математик был отвергнут старшими коллегами и как его, Лиувилля, собственными усилиями Галуа был возрожден: «Гипертрофированное стремление к точности было причиной того дефекта, которого всеми силами следует избегать при изучении абстрактных и загадочных проблем Алгебры. Ясность тем более необходима, чем дальше автор пытается увести читателя от проторенного пути вглубь неизвестной территории. Как говорил Декарт, "при рассмотрении трансцендентальных вопросов нужно быть трансцендентально ясным".
Галуа слишком часто пренебрегал этим предписанием, и мы можем понять, как знаменитые математики своими суровыми мудрыми советами пытались наставить на истинный путь новичка, гениально одаренного, но неопытного. Автор, которого они осудили, был перед ними, преисполненный рвения, деятельный; он мог бы извлечь пользу из данного ему совета.
Но теперь все изменилось. Галуа больше нет с нами! Не будем вдаваться в бесполезную критику; оставим же его недостатки и обратимся к достоинствам…
Мое усердие было вознаграждено, и я испытал необычайное удовлетворение в тот момент, когда, восполнив мелкие пробелы, убедился в правильности метода, с помощью которого Галуа доказал эту прекрасную теорему».
Вычисления Галуа концентрировались вокруг так называемой теории групп — идеи, которую Галуа превратил в мощное оружие, способное решать проблемы, ранее казавшиеся неразрешимыми. С точки зрения математики, группа представляет собой множество элементов, над которыми можно производить некоторую операцию (обычно ее называют сложением или умножением), удовлетворяющую определенным условиям. Важным свойством группы является ее замкнутость относительно этой операции: комбинируя любые два элемента группы с помощью операции, мы получаем другой элемент, также принадлежащий группе.
Например, целые числа образуют группу относительно операции сложения. Комбинируя с помощью операции сложения одно целое число с другим, мы получаем третье целое число, например,
4 + 12 = 16.
Все возможные результаты сложения целых чисел всегда являются целыми числами, и математики, констатируя это обстоятельство, говорят, что «целые числа замкнуты относительно сложения», или «целые числа образуют группу по сложению». Однако, целые числа не образуют группу относительно операции деления, поскольку при делении одного целого числа на другое результат не обязательно будет целым числом, например, 4:12=1/3.
Дробь 1/3 — не целое число, оно выходит за пределы исходного множества целых чисел. Но если рассматривать более широкое множество так называемых рациональных чисел, то замкнутость относительно операции деления восстанавливается: рациональные числа замкнуты относительно деления. Даже после того, как эти слова произнесены, необходимо соблюдать осторожность, так как деление на нуль (элемент множества рациональных чисел) приводит к различным математическим кошмарам. Поэтому точнее было бы утверждение: рациональные числа без нуля замкнуты относительно деления. Во многих отношениях замкнутость аналогична понятию полноты, описанному в предыдущих главах.
Целые числа и рациональные числа, или дроби, содержат бесконечное число элементов, и можно было бы предположить, что чем больше группа, тем больший интерес она вызывает к себе в математике. Но Галуа придерживался философии «чем меньше, тем лучше» и показал, что небольшие тщательно построенные группы могут обладать весьма богатым набором свойств. Вместо того, чтобы воспользоваться бесконечными группами, Галуа начал с конкретного уравнения и построил свою группу из нескольких решений этого уравнения. Именно группы, образованные из решений уравнений пятой степени, позволили Галуа получить результаты об этих уравнениях. Через полтора столетия Уайлс воспользовался теорией Галуа как одной из основ для своего доказательства гипотезы Таниямы-Шимуры.
* * *
Чтобы доказать гипотезу Таниямы-Шимуры, математикам было необходимо показать, что каждое из бесконечного множества эллиптических уравнений может быть поставлено в соответствие с какой-то модулярной формой. Первоначально математики пытались показать, что целая молекула ДНК одного эллиптического уравнения (E-ряд) может быть поставлена в соответствие целой молекуле ДНК (M-ряд) одной модулярной формы. Хотя такой подход вполне разумен, никому не удалось повторить процесс установления такого соответствия для бесконечно многих эллиптических уравнений и модулярных форм.
Уайлс избрал совершенно другой подход к этой проблеме. Вместо того, чтобы пытаться установить соответствие между всеми элементами E-ряда и всеми элементами M-ряда, а затем переходить к следующим рядам, он попытался установить соответствие между одним членом E-ряда и одним членом M-ряда, а затем переходить к следующей паре элементов. Иначе говоря, каждый E-ряд состоит из бесконечной последовательности элементов, своего рода генов, образующих ДНК эллиптического уравнения, и Уайлс хотел показать, что первый ген в каждом E-ряде можно поставить в соответствие первому гену какого-то M-ряда. Затем он доказал бы, что второй член E-ряда может быть поставлен в соответствие второму члену M-ряда, и т. д.
При традиционном подходе мы получили бы бесконечную задачу, состоявшую в том, что даже если бы удалось доказать соответствие между всеми членами каких-то конкретных E- и M-рядов, то и в этом случае осталось бы доказать, что такое соответствие может быть установлено между бесконечно многими остальными E-рядами и M-рядами. Избранная Уайлсом тактика обладала одним большим преимуществом.
Решающее значение имело то обстоятельство, что в методе Уайлса члены в E-рядах обладают естественным упорядочением, поэтому после того, как установлено соответствие между первыми членами (E1=M1), следующим шагом является установление соответствия между вторыми членами (E2 = M2), и т. д.
Именно такой естественный порядок был необходим Уайлсу, чтобы создать доказательство по индукции. Прежде всего Уайлсу было необходимо доказать, что первый элемент E-ряда можно поставить в соответствие первому элементу некоторого M-ряда. Затем ему было необходимо доказать, что если соответствие между первыми элементами рядов установлено, то оно будет установлено и между вторыми, третьими и т. д. элементами. Уайлсу было необходимо опрокинуть первую кость домино и доказать, что любое опрокинутое домино вызовет падение следующего домино.
Первый шаг в осуществлении этой программы был сделан, когда Уайлс понял всю мощь групп Галуа. Чтобы создать такую группу, можно было воспользоваться несколькими решениями уравнения, соответствующего эллиптической кривой. После анализа, на который ушло несколько месяцев, Уайлс доказал, что группы Галуа позволяют прийти к одному несомненному заключению: первый член любого E-ряда действительно может быть поставлен в соответствие с первым членом некоторого M-ряда. Благодаря теории Галуа, Уайлс сумел сделать первый шаг индукции. Следующий шаг требовал от Уайлса найти способ доказать, что если какой-то один член E-ряда поставлен в соответствие соответствующему члену M-ряда, то и следующий элемент E-ряда должен соответствовать следующему элементу M-ряда.
На преодоление первого этапа, Уайлсу понадобилось два года, и у него не было ни малейшего понятия о том, сколько времени потребуется, чтобы продолжить доказательство. Уайлс хорошо сознавал, какую проблему ему предстоит решить: «Вы можете спросить, как я мог неограниченно тратить время на проблему, которая могла просто оказаться неразрешимой. Ответ заключается в том, что мне очень нравилось работать над ней, я был очень увлечен. Мне нравилось испытывать свой разум. Кроме того, я знал, что та математика, с помощью которой я намеревался атаковать гипотезу Таниямы-Шимуры, позволит получить какой-нибудь интересный результат, даже если ее окажется недостаточно для доказательства гипотезы Таниямы-Шимуры. Я не собирался заниматься безнадежным делом, у меня на вооружении была заведомо превосходная математика. Разумеется, существовала ненулевая вероятность того, что я так и не сумею найти доказательство Великой теоремы Ферма, но я никогда не думал, что напрасно трачу время».