От издательства
Трудно найти более известное математическое утверждение, чем последняя теорема Ферма. Своей обманчивой простотой она привлекала внимание к себе на протяжении более чем 350 лет.
И вот, наконец, теорема Ферма доказана. История ее доказательства только за последние двадцать лет уже заслуживает отдельного описания: связь с гипотезой Таниямы, объявление о доказательстве Мияоки, газетная шумиха и последующее разочарование в 1993 году, и, наконец, заявления об окончательном доказательстве и публикации в 1995 году. Учитывая ажиотаж, возникший после объявления премии в 1908 году и не утихший до сих пор, трудно поверить, что в этой интригующей истории поставлена последняя точка…
И тем не менее, перед нами книга, в которой подробно прослежена вся история доказательства от появления самой проблемы на полях «Арифметики» Диофанта в 1637 году до публикаций Э. Уайлса и Р. Тейлора в 1995 году. Столь длинный временной промежуток позволил автору сообщить множество интересных и малоизвестных подробностей из истории математики.
Эта книга была опубликована в 1997 году и стала бестселлером. Ее автору удалось успешно разрешить трудную дилемму: написать подробный и интересный рассказ о доказательстве математической теоремы, практически не используя математический аппарат. Конечно же, это стало возможным только при помощи целого ряда чрезмерных упрощений. Характерной особенностью книги является и то, что она написана, как это и отражено в предисловии, по «горячим» следам событий. К сожалению, это привело к появлению некоторых неточностей, а иногда и прямых ошибок. Тем не менее, мы уверены, что публикация этой книги на русском языке вызовет большой интерес.
В заключение нам хотелось бы привести несколько ссылок. Так, оригинальные исследования Ферма можно найти в [1]. Классические результаты можно найти в [2,3]. О связи эллиптических кривых и теоремы Ферма см. [4].
В качестве первоначальных книг по теории чисел, эллиптическим функциям и модулярным формам мы рекомендуем [4,5,6,7].
1. Ферма П. Исследования по теории чисел и диофантову анализу. — М.: Наука, 1992.
2. Эдвардс Г. Последняя теорема Ферма. Генетическое введение в алгебраическую теорию чисел. — М.: Мир, 1980.
3. Постников М.М. Введение в теорию алгебраических чисел. — М.: Наука, 1982.
4. Прасолов В.В., Соловьев Ю. П. Эллиптические функции и алгебраические уравнения. — М.: Факториал, 1997.
5. Боревич 3. И., Шафаревич И. Р. Теория чисел. — М.: Наука, 1985.
6. Коблиц Н. Введение в эллиптические кривые и модулярные формы. — М.: Мир, 1988.
7. Айерланд К., Роузен М. Классическое введение в современную теорию чисел. — М.: Мир, 1987.