Эйнштейнов поиск объединенной теории поля получил не слишком активную поддержку в том числе и потому, что конфликт между общей теорией относительности и квантовой механикой становится очевиден лишь в областях настолько малых, что даже в наши дни нет никакой надежды наблюдать их впрямую. Но Евклид говорил, что пространство состоит из точек, и геометрия должна быть применима к любой сколь угодно малой области, какую только можно вообразить. Если же теории конфликтуют, значит, что-то не так с одной теорией или с обеими – ну или с Евклидом.
Область, в которой возникает этот самый конфликт, часто описывают как ультрамикроскопическую. Для приверженцев строгих цифр: это расстояние порядка 10–33 сантиметра, и называется оно планковской длиной. Для любителей зрительных образов: если увеличить планковскую длину до диаметра яйцеклетки человека, обычный детский игральный шарик раздуется до размеров наблюдаемой Вселенной. Планковская длина – о-очень маленькая. И все же по сравнению с точкой ее размер громаден сверх всякой меры.
Как-то ночью, после работы над этой главой, битва между Эйнштейном и Гейзенбергом явила себя во сне. Сон начался с того, что пришел Николай в образе Эйнштейна и показал мне кое-какие теоретические выкладки, которые он накропал цветным карандашиком в своем школьном альбоме по рисованию:
Николай в роли Эйнштейна: Пап, я открыл общую теорию относительности! Когда вокруг есть материя, пространство искривляется, а в пустом пространстве гравитационное поле равно нулю и пространство плоское. На самом деле, если взять достаточно малую область, пространство приблизительно плоское.
(Тут я уже собираюсь сказать: «Какая замечательная теория! Можно я ее на стенку повешу?» – как входит Алексей.)
Алексей в роли Гейзенберга: Пррошу пррощения. Гравитационное поле, как и любое другое, подчиняется принципу неопределенности.
Николай в роли Эйнштейна: И что?
Алексей в роли Гейзенберга: А то, что в пустом пространстве поле в среднем, может, и ноль, но на самом деле оно флуктуирует в пространстве и времени. И в прям очень маленьких областях эти флуктуации – мегаздоровенные.
Николай в роли Эйнштейна (ноет): Но если гравитационное поле флуктуирует, то флуктуирует и кривизна пространства, потому что мои уравнения показывают, что кривизна пространства связана со значением силы поля…
Алексей в роли Гейзенберга (насмехается): Ха-ха! Это означает, что пространство крошечных областей нельзя считать плоским… На самом деле, если приглядеться поближе – в масштабах планковской длины – возникают крошечные черные дырочки… Некрасиво…
Николай в роли Эйнштейна: Я сказал, хочу, чтобы крошечные области пространства были плоскими!
Алексей в роли Гейзенберга: А вот и нет!
Николай в роли Эйнштейна: А вот и да!
Алексей в роли Гейзенберга: Нет.
Николай в роли Эйнштейна: Да.
…Диалог продолжался в том же духе, покуда я не проснулся весь дрожа. (Это знак! Не следовало ложиться спать, не дописав главу.)
Одновременное применение принципа неопределенности и общей теории относительности к малым областям пространства приводит к фундаментальному противоречию с теорией относительности вообще. Кто прав – Гейзенберг или Эйнштейн? Если прав Эйнштейн, квантовая теория неверна. Но история с квантами не похожа на ошибочную: эксперимент и теория сходятся с точностью выше миллионной доли. Корнеллский физик Тоитиро Киносита, один из ведущих в квантовой электродинамике ученых, называет это «самой достоверной теорией на Земле, а может, и во всей Вселенной – в зависимости от того, сколько в ней инопланетян».
Если квантовая теория верна, значит, ошибочна теория относительности. Да, у теории относительности были свои поводы торжествовать. Однако есть нюанс. Победы теории относительности связаны с наблюдением макроскопических явлений – со светом, движущимся мимо Солнца, или с летающими вокруг Земли часовыми механизмами. Общая теория относительности в малых масштабах элементарных частиц пока еще не проверена. Измерять воздействие сил тяготения на них невозможно – их массы для этого слишком малы. Поэтому физики предпочитают ставить под вопрос резонность теории относительности, особенно эйнштейновы допущения о приблизительной плоскости мельчайших областей пространства. Быть может, необходимо пересмотреть теорию Эйнштейна в отношении ультрамикроскопических областей.
Если Планк и впрямь победил в споре с Эйнштейном, и метрика ультрамикроскопического пространства флуктуирует в широком диапазоне значений, возникает другой вопрос, поглубже. Какова структура пространства на ультрамикроскопическом уровне? Ключ к ответу, похоже, – в идее, которую Фейнман и другие проглотили с таким трудом и за которую дразнили Шварца, однако он не считал это недостатком, а просто милой особенностью возлюбленной своей теории. В царстве ультрамикроскопичности есть, судя по всему, другие измерения, свернутые в себе самих, настолько малые, что, как и квант в 1899 году, остаются незамеченными. Они и есть ключевой ингредиент в спасительном снадобье для общей теории относительности. Именно о них размышлял, но позднее отбросил десятки лет назад сам создатель теории относительности.
За день до своей смерти Эйнштейн попросил, чтобы ему подали его последние расчеты по объединенной теории поля. Он тридцать лет бесплодно пытался изменить общую теорию относительности так, чтобы она охватывала и электромагнитные силы. Один из самых многообещающих вариантов возник у Эйнштейна в 1919 году, в самом начале его поисков, пока он разбирал почту. Идея посетила его сознание не напрямую, а через письмо одного нищего математика по имени Теодор Калуца.
В письме Эйнштейн нашел предложение, как можно объединить электромагнитные силы с гравитационными. У этой теории была одна маленькая странность. Эйнштейн написал в ответ: «Идея создания [объединенной теории] посредством пятимерного цилиндрического мира никогда не приходила мне в голову…» Пятимерный цилиндр? Да кому вообще такое могло прийти в голову? Никто не знает, как Калуца до этого додумался, однако Эйнштейн в том же письме добавил: «Мне чрезвычайно симпатична ваша мысль». Сейчас нам понятно, что Калуца обогнал время, однако пожадничал измерений.
Мы уже видели, что общая теория относительности описывала, как материя влияет на пространство через метрику, чьи компоненты – g-факторы – сообщают, как именно измерять расстояние между соседними точками на основании разности их координат. Количество g-факторов зависит от количества измерений пространства. Например, в трехмерном пространстве их шесть. В плоском расстояние равно (разница между координатами х)2 + (разница между координатами у)2 + (разница между координатам z)2, т. е. gxx, gyy и gzz все равны 1, а факторы, соответствующие перекрестным – gxy, gyz и gxz – все равны нулю и их нет в уравнении. В четырехмерном неевклидовом пространстве из общей теории относительности выходит десять независимых g-факторов (принимая во внимание равенства типа gxy = gyx), все они описываются уравнениями Эйнштейна. Калуца сначала осознал вот что: если взять пять измерений, возникнут еще g-факторы, отвечающие дополнительному измерению.
Далее Калуца задался вопросом: если формально расширить эйнштейново поле до пяти измерений, какие уравнения получатся для дополнительных g-факторов? Ответ ошеломительный: выходят уравнения Максвелла для электромагнитного поля! Начиная с пятого измерения электромагнетизм вдруг возникает в теории гравитации. Эйнштейн писал: «Формальное единство вашей теории поразительно».
Конечно, интерпретация метрики дополнительного измерения как физического электромагнитного поля требует некоторой возни с теорией. И что там, кстати, с той самой маленькой странностью – дополнительным измерением? Калуца утверждал, что оно конечно по длине, а еще точнее – такое маленькое, что мы бы и его и не заметили, даже если бы сами копошились внутри. Сверх того Калуца заявил, что новое измерение имеет новую топологию: в ней вместо прямой – окружность, т. е. оно замыкается на себе, свертывается (и поэтому, в отличие от конечной прямой, концов не имеет). Представьте Пятую авеню с нулевой шириной – в виде простой линии. В новом измерении Калуцы пересекающие ее улицы превратятся в окружности, прорезывающиеся из Пятой авеню. Разумеется, пересекающие улицы возникают с интервалом в квартал, но дополнительное измерение есть в каждой точке вдоль авеню. Таким образом если добавить линии новое измерение, она не обрастет окружностями, а превратится в цилиндр наподобие садового шланга. Только очень тонкого.
По сути, Калуца утверждал, что гравитация и электромагнетизм на самом деле суть компоненты одного и того же, но выглядят по-разному потому, что мы наблюдаем некоторое усредненное неощутимое движение крошечного четвертого пространственного измерения. Эйнштейн сомневался в теории Калуцы, однако чуть погодя все же передумал и в 1921 году помог Калуце опубликовать его теорию.
В 1926-м Оскар Клейн, ассистент профессора в Университете Мичигана, независимо от Калуцы предложил ту же теорию, но с некоторыми усовершенствованиями. Одно из них – осознание, что эта теория приводит к верным уравнениям движения частиц, если в этом загадочном пятом измерении частица имеет определенные значения импульса. Эти «разрешенные» значения оказались кратны определенному минимальному импульсу. Если допустить, как это сделал Калуца, что пятое измерение замкнуто на само себя, можно применять квантовую теорию для того, чтобы рассчитать из минимального импульса возможное значение «длины» этого свернутого пятого измерения. Если бы вдруг выяснилось, что измерение это – обозримого, макроскопического размера, теория оказалась бы под угрозой, поскольку мы этого измерения никак не наблюдаем. Но получился размер 10–30 сантиметра. Без проблем. Измерение скрыто от глаз будь здоров.
Теория Клейна-Калуцы намекала на формальную связь между теориями, но не на структуру, которая тут же предоставляла нечто совершенно новое. Следующие несколько лет физики искали другие предсказания, какие могла бы дать эта теория, – примерно в том же ключе, в каком Клейн рассуждал о размерах нового измерения. Им удалось найти новые доводы, которые вроде бы подразумевали, что с ее помощью можно предсказывать соотношение массы электрона и его заряда. Однако результат предсказания сильно расходился с реальностью. Где-то на полпути между этим затруднением и странным предсказанием пятого измерения физики охладели к новой теории. Эйнштейн в последний раз вернулся к ней в 1938 году.
Калуца, умерший за год до Эйнштейна, так почти и не продвинулся далее. Но кое-что с его неоперившейся теории ему по-крупному перепало. Когда он писал Эйнштейну, ему было 34 и он уже десять лет содержал семью на жалованье приват-доцента (примерный аналог ассистента профессора) в Кёнигсберге. Это самое жалованье лучше всего описывается в терминах дорогой его сердцу математики: за каждый семестр он получал 5 раз по х раз у немецких марок (или, говоря строго, золотых марок), где х было равно числу студентов в его классе, а у – числу лекционных часов еженедельно. В итоге получалось примерно 100 марок в год. В 1926 году Эйнштейн назвал такие условия жизни «schwierig», что примерно означает «только собаки могут жить так». С помощью Эйнштейна Калуца в 1929 году наконец получил профессорское звание в Университете Киля. Он перебрался в Гёттинген в 1935 году, где стал полноправным профессором. Там он и прожил еще девятнадцать отведенных ему лет. Однако вплоть до 1970-х возможность новых измерений всерьез не рассматривал никто.