Книга: История всего
Назад: Глава 12 Межпланетные истории
Дальше: Часть V Возникновение жизни

Глава 13
Сложение Вселенной из миров. Планеты за пределами Солнечной системы

Когда себя являет Бог в мирах,
Являет ли нам Бога здешний прах?
Кто видит сквозь невидимый покров
Сложение Вселенной из миров,
Другие солнца, коим счету нет,
В круговращении других планет,
Других созданий и других эпох,
Тот скажет нам, как сотворил нас Бог.

Александр Поуп. Опыт о человеке. (1733)
Почти пять веков назад Николай Коперник возродил гипотезу, впервые предложенную еще древнегреческим астрономом Аристархом. Отнюдь не являясь центром Вселенной, заявил тогда Коперник, Земля — лишь одна из планет, что вращаются вокруг Солнца.
Правда, многим еще только предстоит признать это, ибо они до сих пор свято верят в то, что именно небеса вращаются вокруг нашей неподвижной Земли. Однако астрономы уже давно не скрывают ни от кого убедительных доказательств тому, что Коперник был тогда совершенно прав насчет нашего родного космического дома. Заключение о том, что Земля лишь одна из планет Солнца, позволяет немедленно предположить, что другие планеты очень похожи на нее и что на них вполне могут жить обитатели, обремененные, как и мы с вами, своими планами и мечтами, работой, играми и фантазиями.
На протяжении многих веков астрономам, которые пользовались телескопами наблюдения за сотнями тысяч отдельных звезд, не хватало навыков и возможностей, чтобы определить, есть ли у этих звезд свои собственные планеты. Их наблюдения позволяли утверждать, что наше Солнце вполне себе среднестатистическая звезда и что ее братья и сестры, почти идентичные ей, в огромном множестве рассыпаны по галактике Млечный Путь. Если у Солнца есть свое семейство планет, то почему бы ему не быть и у других звезд? Получается, что такие планеты тоже вполне могли бы создавать условия жизни самых разных существ. Джордано Бруно, к сожалению, выразил свою солидарность с этой мыслью в оскорбительной манере, подрывающей авторитет церкви, за что и угодил в 1600 году на костер. Сегодня любой турист, одолев толпы людей и столики уличных кафе на римской площади Кампо ди Фиори, может оказаться у подножия памятника Бруно и, возможно, поразмышлять немного о том, как сила его мыслей и идей (пусть и не его личная сила) одержала блестящий триумф над теми силами, что пытались подавить его.
Как наглядно демонстрирует судьба Джордано Бруно, сама идея жизни в других мирах — одна из самых сильных мыслей, на которую способен человеческий разум. Если бы это было не так, Бруно дожил бы до более зрелых лет, а NASA не на что было бы просить финансирование. Все эти разговоры о жизни в других мирах на протяжении всей истории — а NASA. увлекается ими и сегодня — вертелись вокруг планет Солнечной системы. Однако в поисках внеземной жизни мы столкнулись с определенной проблемой: ни один из миров нашей Солнечной системы, за исключением Земли, не подходит жизни.
Хотя этот вывод совершенно не отдает должное самому факту, что жизнь в принципе может зародиться и поддерживать себя миллионами возможных способов, все же доказательства налицо: наши первоначальные исследования Марса и Венеры, а также Юпитера и его наиболее крупных лун не смогли обнаружить на них сколько-нибудь убедительных признаков жизни. Скорее, наоборот: мы обнаружили множество аргументов в защиту утверждений о том, что на этих планетах и лунах условия категорически неблагоприятны для жизни в привычном для нас виде. Нам предстоит продолжать свои исследования еще очень долго, и, к счастью (в том числе для тех, кто любит обо всем этом поразмышлять), мы не прекращаем их ни на секунду — особенно в погоне за признаками жизни на Марсе. Тем не менее вероятность того, что финальный вердикт по наличию внеземной жизни в пределах Солнечной системы будет отрицательным, настолько велика, что многие умы уже переключились на поиски этой жизни за ее пределами, избрав своей целью те многочисленные миры, что вращаются не рядом с нашим Солнцем, но вокруг других звезд.
До 1995 года гипотезы о планетах на орбитах других звезд выдвигались практически вне контекста каких-либо признанных фактов. За исключением ряда объектов размером примерно с Землю, вращающихся вокруг останков взорвавшихся звезд, которые почти наверняка образовались только после взрыва сверхновой и едва ли могут считаться планетами, астрофизикам ни разу не удалось наткнуться на экзосолнечную планету, просто экзопланету, — мир, вращающийся вокруг какой-то другой звезды. В конце 1995 года было сделано заявление о первом открытии подобного рода, несколько месяцев спустя было обнаружено еще четыре экзопланеты. И тогда словно прорвало плотину — обнаружение новых миров было практически поставлено на конвейер. Сегодня нам известно о более чем сотне экзопланет, вращающихся вокруг других звезд. В ближайшие годы это число непременно будет только расти.
Прежде чем описать эти обнаруженные миры-новинки и проанализировать их роль в наших поисках внеземной жизни, нам придется столкнуться с фактом, поверить в который на первый взгляд трудно. Астрофизики утверждают, что не только знают достоверно, что эти планеты существуют, но и способы оценить их массу, удаленность от центральной звезды, период обращения и даже форму их орбит… Но никто никогда не видел и не сфотографировал ни одной из этих экзопланет.
Как такое возможно — знать так много о планете, которую никогда не видел? Предоставим ответить тем, кто занимается изучением звездного света. Разложив свет на все цвета его спектра (спектральные линии) и сравнивая их со спектрами тысяч звезд, профессионалы своего дела могут отличать друг от друга разные типы звезд исключительно по интенсивности отдельных цветов, составляющих собой звездный спектр. Давным-давно этим астрофизикам приходилось фотографировать спектры звезд, но сегодня у них есть в разы более чувствительные приборы, которые регистрируют на цифровой носитель данные о том, сколько звездного света каждого конкретного цвета достигает Земли. Хотя звезды находятся от нас в миллиардах миль, их фундаментальная природа уже давно для нас словно открытая книга. Теперь астрофизики могут с легкостью определять, просто измеряя спектр звездного света, какие из этих звезд больше всего напоминают Солнце, какие более горячие и яркие, а какие более прохладные и заметно бледнее.
Но они могут не только это. Ознакомившись как следует с распределением цветов в спектре разных типов звезд, астрофизики теперь могут быстро идентифицировать знакомые закономерности в интересующем их спектре конкретной звезды: как правило, в спектре мало или совсем нет определенных оттенков. Характерное соцветие спектра узнается часто, но ученые обнаруживают, что все составляющие его цвета были немного смещены в сторону красного фиолетового сегмента спектра и потому все привычные ориентиры приобрели более красный фиолетовый оттенок, чем считается нормальным.
Ученые характеризуют эти цвета по длине волн, которая отражает расстояние между двумя вершинами («гребнями») вибрирующей световой волны. Так как они соответствуют цветам, которые могут воспринимать наши глаза и мозг, назвать конкретную длину волны — это то же самое, что и назвать определенный цвет, только еще более точно. Когда астрофизики обнаруживают знакомую интенсивность света, разложенную на тысячи разных оттенков, но замечают, что все волны на этом участке (к примеру) на 1 % длиннее, чем обычно, они заключают, что спектр звездного света изменился вследствие эффекта Доплера, который описывает, что именно происходит, когда мы наблюдаем приближающийся к нам или удаляющийся от нас объект. Если, например, объект движется к нам навстречу (или мы сами движемся ему навстречу), мы получим более короткие волны, чем если бы аналогичный объект не двигался относительно нас в пространстве. Если объект от нас удаляется — или мы удаляемся от него, — волны его излучения будут длиннее, чем волны излучения такого же статичного относительно нас объекта. Разница в длине волны в обоих случаях зависит от относительной скорости отдаления сближения источника света и стороннего наблюдателя. Для скоростей, существенно недотягивающих до скорости света (186 000 миль в секунду), фракционное изменение длин всех световых волн, которое называется доплеровским смещением, равняется отношению скорости приближения удаления к скорости света.
В течение 1990-х годов две команды астрономов, одна в США и другая в Швейцарии, посвятили себя тому, чтобы научиться еще более точно измерять воздействие эффекта Доплера на звездный свет. Они занялись этим не только потому, что ученые в принципе любят производить как можно более точные измерения, но и потому, что у них была весьма конкретная цель: обнаружить планеты с помощью изучения света звезд.
Зачем же идти столь откровенно в обход на пути к обнаружению экзопланет? На самом деле это единственный эффективный способ их обнаружить. Судя по Солнечной системе, расстояния от звезд до вращающихся вокруг них планет можно назвать совершенно незначительными по сравнению с тем, как далеко друг от друга расположены сами звезды. Ближайшие звезды-соседки Солнца находятся примерно в полмиллиона раз дальше от нас, чем самая внутренняя планета Солнечной системы Меркурий — от Солнца. Даже расстояние между Плутоном и Солнцем составляет менее одной пятитысячной доли расстояния от нас до Альфы Центавра, ближайшей к нам звездной системы. Эти астрономически ничтожные расстояния между звездами и их планетами в сочетании с бледностью света, который исходит от планет (будучи, соответственно, отраженным светом от ее звезды), делают почти невозможным увидеть воочию одну из планет за пределами Солнечной системы. Представьте себе, допустим, одного астрофизика на планете, вращающейся вокруг одной из звезд Альфы Центавра. Этот астрофизик направляет свой телескоп в сторону Солнца и пытается разглядеть в него самую крупную планету — Юпитер. Расстояние от Солнца до Юпитера составит всего лишь одну пятидесятитысячную долю расстояния от астрофизика до Солнца, при этом звезда будет сиять в миллиард раз ярче, чем ее планета. Астрофизики любят проводить аналогию с тем, как трудно разглядеть светлячка в свете мощного фонарика. Когда-нибудь, возможно, нам это и удастся, но пока крестовый поход за экзопланетами сводится лишь к изучению спектра звездного излучения; нам пока не хватает технических возможностей делать что-то еще.
Эффект Доплера предлагает альтернативный способ, доступный нам уже сегодня. Изучив звезду подробно, мы можем тщательно замерить любые изменения в доплеровском смещении излучения этой звезды Они могут появляться вследствие изменения скорости, с которой звезда к нам приближается от нас удаляется. Если изменения оказываются циклическими, то есть скорость с определенной регулярностью демонстрирует максимальное значение, затем минимальное, затем снова максимальное и т. д., тогда мы можем совершенно справедливо утверждать, что эта звезда перемещается по определенной орбите, которая заставляет ее водить хороводы в космосе вокруг одной конкретной точки.
Что может заставить звезду исполнять такой танец? Только гравитационное воздействие других объектов. Нет никаких сомнений в том, что планеты по определению обладают массами, существенно меньшими, чем звезды, поэтому их гравитационное влияние весьма скромно. Когда они тянут к себе близлежащую звезду, чья масса в разы превышает их собственную, они навязывают ей лишь незначительные изменения в скорости движения. Юпитер, к примеру, меняет скорость Солнца примерно на 40 футов в секунду, что, конечно, побольше скорости самого первоклассного бегуна на короткие расстояния. В то время как Юпитер совершает свое обращение вокруг Солнца на протяжении 12 лет, сторонний наблюдатель, расположившийся где-то вдоль плоскости его орбиты, может измерить величину доплеровского смещения в излучении Солнца. Полученные им результаты покажут, что в определенный момент времени скорость Солнца относительно самого наблюдателя окажется на 40 футов в секунду выше своего среднего значения. Шесть лет спустя тот же наблюдатель обнаружит, что скорость Солнца упала на 40 футов ниже средней скорости его движения. В течение этого шестилетнего промежутка относительная скорость будет плавно проходить переменный путь от одного экстремального значения к другому. Пронаблюдав за этим однообразным циклом несколько десятков лет, наблюдатель будет вправе заявить, что у Солнца есть планета, описывающая вокруг него один оборот за 12 лет и являющаяся причиной изменений в скорости самой звезды, которые, в свою очередь, рождаются в результате этого движения. Размер орбиты Солнца, в сравнении с орбитой Юпитера, равен обратному отношению масс двух объектов. Так как масса Солнца в тысячу раз больше массы Юпитера, орбита Юпитера вокруг их общего центра тяжести оказывается в тысячу раз больше орбиты Солнца. Это лишнее доказательство тому, что сдвинуть с места Солнце в тысячу раз труднее, чем Юпитер.
Конечно, у Солнца есть не одна, а несколько планет, каждая из которых одновременно тянет его к себе с помощью своей гравитации. Суммарная динамика движений Солнца, таким образом, представляет собой наложение подобных орбитальных танцев, у каждого из которых разный период повторения. Так как Юпитер — самая крупная и массивная планета Солнца — оказывает на него наибольшее гравитационное воздействие, следы танцевальных уроков Юпитера преобладают в сложном комплексе движений и колебаний Солнца в космосе.
Когда астрофизики решили заняться поиском экзопланет, наблюдая за колебаниями звезд, они поняли: чтобы найти сравнимую с Юпитером планету, расположенную на расстоянии от своей звезды, сопоставимом с расстоянием от Юпитера до Солнца, им понадобится измерить доплеровские смещения с точностью, достаточной того, чтобы затем отследить изменения в относительной скорости изучаемого объекта, составляющие примерно 40 футов в секунду. В земных условиях это весьма немалая скорость (около 27 миль в час), но с точки зрения астрономии она не составляет даже одной миллионной доли скорости света, а также равняется примерно одной тысячной доле той скорости, с которой звезды, как правило, движутся в нашем направлении от нас. Таким образом, чтобы обнаружить вызванное изменением скорости источника излучения доплеровское смещение, чей размер составляет не более одной миллионной доли скорости света, астрофизикам нужно измерять разницу в длинах волн, то есть в палитре звездного света, составляющую одну часть на миллион.
Такая точность дала научному миру не просто возможность обнаруживать планеты. Так как подобная схема обнаружения основана на анализе и выявлении цикличных повторений в изменении скорости движения звезды, продолжительность каждого из этих циклов напрямую отражает период обращения планеты, которая является причиной этих изменений. Если звезда танцует согласно определенным образом повторяющемуся циклу, значит, планета танцует с идентичным периодом кругового движения, только на гораздо более широкой орбите. Этот период обращения, в свою очередь, позволяет оценить расстояние от этой планеты до ее звезды. Исаак Ньютон давно доказал, что объект, вращающийся вокруг звезды, тем быстрее будет завершать одно полное вокруг нее обращение, чем ближе он к этой звезде расположен и тем медленнее, чем он дальше. Каждый период обращения соответствует конкретному значению величины среднего расстояния между звездой и объектом на ее орбите. Так, в Солнечной системе однолетний период обращения подразумевает, что такой объект находится на том же расстоянии от Солнца, что и Земля, а период обращения 12 лет означает, что этот объект находится на расстоянии в 5,2 раза больше расстояния от Солнца до Земли — как Юпитер, соответственно. Поэтому исследователи смогли объявить, что не только обнаружили планету как таковую, но и вычислили ее период обращения и то среднее расстояние, что отделяет ее от своей звезды.
Но о планете можно узнать еще больше. Двигаясь на определенном расстоянии от своей звезды, планета, точнее, ее гравитация притягивает к себе звезду с силой, которая зависит от ее массы. Более массивные планеты оказывают большее воздействие, из-за чего и звезда «танцует» быстрее. Вычислив расстояние от звезды до планеты, команда ученых смогла определить и массу такой планеты, добавив ее в список характеристик, полученных ранее методом тщательных наблюдений и вычислений.
Надо признать, что вычисление массы планеты с помощью наблюдений за перемещениями ее звезды в определенной мере слагает с нас ответственность. Астрономы не могут знать наверняка, изучают ли они такую танцующую звезду с луча зрения, полностью совпадающего с плоскостью, в которой лежит орбита планеты, или с луча зрения выше плоскости орбиты (в таком случае им нужно измерять нулевую скорость звезды), с луча зрения, идущего и не вдоль плоскости, и не перпендикулярно ей (наверняка это почти всегда именно так). Плоскость, где лежит орбита интересующей нас планеты, которую та описывает вокруг звезды, накладывается на плоскость движения звезды в ответ на гравитационное воздействие планеты. Получается, что мы наблюдаем полные орбитальные скорости только в том случае, если наш луч зрения при взгляде на звезду полностью совпадает с плоскостью орбиты этой планеты вокруг своей звезды. Попробуем вообразить аналогичную ситуацию в более понятных декорациях: вы на бейсбольном матче и можете измерить скорость мяча, брошенного питчером, в тот момент, когда он летит прямо на вас или от вас, но не скорость, с которой такой мяч пересекает ваше поле зрения. Если вы приехали на поиски талантливых спортсменов, лучше всего садитесь сразу за основной базой, где стоит игрок с битой — на одной линии с траекторией полета бейсбольного мяча. Но если вы будете смотреть игру с первой или третьей базовой линии, тогда брошенный питчером мяч по большей части не полетит ни на вас, ни от вас и измеренная вами скорость движения мяча по вашему лучу зрения будет практически равна нулю.
Из-за того что эффект Доплера измеряет только ту скорость, с которой звезда приближается к нам или удаляется от нас, но не ту скорость, с которой звезда пересекает наш луч зрения, как правило, мы не можем определить, насколько наш луч зрения в сторону звезды совпадает с плоскостью звездной орбиты. Это говорит о том, что те значения, которые были получены нами с помощью этой методики для масс экзопланет, являются минимальными: они окажутся в полном соответствии с реальной массой этих планет только в том случае, если мы действительно все это время смотрели на их звезды вдоль плоскости их орбит. В среднем фактическая масса экзопланеты в два раза больше полученной путем наблюдений за ее звездой минимальной величины, но нам неоткуда знать, какие из уже обнаруженных нами экзопланет окажутся по факту крупнее более чем в два раза, а какие — менее.
Астрофизики способны не только определять орбитальный период и размер орбиты планеты, а также ее минимальную массу. Астрофизики, изучающие «танцы» звезд с помощью эффекта Доплера, достигли еще одного успеха: они умеют определять форму орбиты планеты. Для некоторых орбит, как в случае с Венерой и Нептуном относительно Солнца, характерна почти совершенная круглая форма. Но другие орбиты — Меркурия, Марса и Плутона — существенно вытянуты по форме, из-за чего в какие-то периоды времени такие планеты проходят гораздо ближе к Солнцу, чем в остальное время. Так как планета всегда движется быстрее, когда находится ближе к своей звезде, скорость самой звезды в такие периоды более тесного контакта тоже изменяется заметнее. Если астрономы наблюдают за звездой, скорость которой меняется с постоянной интенсивностью на протяжении всего ее цикла вращения, они делают вывод, что эти изменения скорости вызывает планета, вращающаяся вокруг этой звезды по округлой орбите.
Если же, наоборот, они видят, что скорость звезды изменяется то быстрее, то медленнее, ученые могут утверждать, что являются свидетелями воздействия на звезду планеты с вытянутой орбитой. Более того, они даже могут вычислить степень этого растяжения — то, насколько форма орбиты отходит от идеального круга, — измерив разницу в темпе, с которым скорость звезды меняется на протяжении всего ее орбитального цикла.
Итак, демонстрируя настоящее торжество точности наблюдений в сочетании с точностью вычислений над тайнами Вселенной, изучающие экзопланеты астрофизики могут предоставить данные о четырех ключевых характеристиках любой обнаруженной планеты: период обращения, среднее расстояние до своей звезды, минимальную массу и степень вытянутости орбиты по форме. И все это астрофизикам удается благодаря исследованию всей палитры света звезд, которые лежат в сотнях миллиардов миль от Солнечной системы, и умению измерять крошечные изменения в характеристиках этой палитры цветов с точностью до одной миллионной доли и даже еще точнее. Что это, если не новая и значительнейшая покоренная вершина знаний об устройстве Вселенной в поисках родных и двоюродных братцев и сестриц Земли?
Остается только одна проблема. Многие из обнаруженных за последнее десятилетие экзопланет вращаются вокруг своих звезд на расстояниях, гораздо меньших, чем расстояние от Солнца до какой-либо из его планет. Проблема эта немаленькая, потому что все на данный момент обнаруженные экзопланеты обладают массой, сравнимой с массой Юпитера — гигантской планеты, которая вращается вокруг Солнца на расстоянии, в пять с лишним раз превышающем расстояние от него до Земли. Давайте еще раз пройдемся по всем фактам, прежде чем выразить восхищение тем, как ловко астрофизики объясняют, как так вышло, что эти крупные планеты занимают орбиты в разы меньше тех, что мы привыкли наблюдать в своей Солнечной системе.
Каждый раз, когда мы прибегаем к методике «звездных танцев», чтобы искать и находить планеты, вращающиеся вокруг других звезд, мы не должны забывать о заложенных в нее погрешностях. Во-первых, чем ближе расположены планеты к своей звезде, тем меньше времени им нужно на то, чтобы совершить вокруг нее полное обращение. Так как у астрофизиков есть лишь ограниченное количество времени на то, чтобы наблюдать Вселенную, они, безусловно, в первую очередь будут обнаруживать планеты, скажем, с шестимесячным периодом обращения, а не те, которым требуется 10–12 лет на то, чтобы совершить один оборот. В обоих случаях, однако, астрофизикам так иначе нужно выжидать как минимум пару полноценных орбитальных циклов, чтобы убедиться в том, что они обнаружили повторяющееся поведение скорости звезды. Получается, что на обнаружение планеты с периодом обращения, сравнимым с юпитерианскими 12 годами, может уйти большая часть чьей-то карьеры.
Во-вторых, планеты оказывают тем большее гравитационное воздействие на свои звезды, чем ближе к ним они вращаются. Такое повышенное воздействие заставляет звезды «танцевать» быстрее, результатом чего становится более ощутимое доплеровское смещение в спектре их излучения. Так как обнаружить явное смещение проще, чем незначительное, более близкие к своим звездам планеты привлекают больше внимания — и делают это быстрее, чем более удаленные от звезды планеты. Однако на каком бы расстоянии от звезды она ни находилась, любая экзопланета должна примерно соответствовать по массе Юпитеру (а это в 318 раз больше массы Земли), чтобы ее можно было обнаружить с помощью доплеровского смещения. Планеты с гораздо меньшей массой не в состоянии заставить свои звезды «танцевать» достаточно заметно для того, чтобы современные технологии позволили нам запечатлеть их танцевальные па.
Таким образом, нет ничего удивительного в том, что из первых обнаруженных экзопланет все обладают массой, сравнимой с массой Юпитера, и все вращаются близко к своим звездам. Удивительно то, насколько близко к своим звездам подобрались эти планеты. Так близко, что им не требуется нескольких месяцев и тем более лет того, чтобы завершить каждый полный оборот вокруг своей звезды, что характерно планет Солнца, им хватает… всего нескольких дней.
На сегодняшний день астрофизики нашли уже более дюжины планет, которые совершают полное обращение вокруг своей звезды менее чем за неделю, а одна рекордсменка проделывает это всего за два с половиной дня! Эта планета, вращающаяся вокруг солнцеобразной звезды под названием HD73 256, обладает массой, превышающей массу Юпитера не менее чем в 1,9 раза, и движется по слегка вытянутой орбите на среднем расстоянии от своей звезды, составляющем всего 3,7 % расстояния, разделяющего Солнце и Землю. Другими словами, эта гигантская планета обладает массой, более чем в 600 раз превышающей массу Земли, и при этом находится на расстоянии от своей звезды, составляющем менее одной десятой расстояния от Солнца до Меркурия.
Меркурий состоит из камня и металла, запеченных при температуре во много сотен градусов с повернутой к Солнцу стороны. В отличие от него Юпитер и другие гигантские планеты Солнечной системы (Сатурн, Уран и Нептун) представляют собой огромные газовые шары, внутри которых находятся твердые ядра, составляющие лишь несколько процентов от общей массы каждой из планет. Согласно всем теориям планетообразования, планета с массой, сопоставимой с массой Юпитера, не может быть твердой, как Меркурий, Венера и Земля, поскольку в первичном облаке, из которого все планеты сформировались, было слишком мало вещества, которое могло бы собраться в твердый комок, превратившийся потом в планету, масса которой более чем в несколько десятков раз превышает земную. Из этого следует заключение — и оно приближает нас еще на один шаг к разгадке фантастически увлекательного детектива об экзопланетах, — что все обнаруженные на сегодня экзопланеты (так как они сопоставимы по массе с Юпитером) должны также представлять собой огромные газовые шары.
Сразу хочется задать два вопроса. Первый: как могут эти гигантские планеты, подобные Юпитеру, вращаться так близко от звезд? Второй: раз они вращаются так близко, почему их газовая оболочка не испарилась под воздействием мощной тепловой энергии звезды? На второй вопрос можно ответить относительно просто: огромная масса планет способна удерживать рядом с собой даже самые легкие газы, нагретые до сотен градусов, так как гравитация планет способна преодолеть склонность атомов и молекул газа отбиваться от своего стада и уплывать в космос. В самых экстремальных условиях, правда, в этом поединке гравитация ведет лишь с минимальным перевесом, а планеты в таких случаях вращаются буквально на границе с самыми внутренними областями звездной системы, окажись они внутри их, действительно растеряли бы свой газ в процессе испарения под влиянием тепла звезды.
Первый же вопрос о том, как могут такие громадные планеты вращаться так близко к солнцеобразным звездам, приводит нас к фундаментальной особенности самого планетообразования. Как мы уже установили в главе 11, теоретики приложили много усилий к тому, чтобы хоть что-нибудь понять о процессах образования планет в нашей Солнечной системе. Они пришли к заключению, что планеты Солнца формировались постепенно, из маленьких комков вещества, разрастаясь все больше и больше, и все это происходило внутри блинообразного облака газа и пыли. Внутри этой плоской вращающейся массы вещества, окружавшей Солнце, начали формироваться отдельные скопления материала — сначала в произвольном порядке, а затем уже на основе этих самых первичных формирований, которые за счет своей плотности же обладали большей суммарной гравитацией по сравнению с другими разбросанными по облаку независимыми частицами. На финальных стадиях этого процесса Земля и другие планеты пережили активную бомбардировку оставшимися не у дел крупными кусками материала.
Пока разворачивался этот процесс всеобщего объединения, начало сиять Солнце, испаряя самые легкие элементы, такие как водород и гелий, в своем ближайшем окружении и оставляя в составе четырех своих ближайших планет (Меркурия, Венеры, Земли и Марса) практически сплошь тяжелые элементы: углерод, кислород, алюминий и железо. В то же время все сгустки вещества, которые сформировались на расстоянии от Солнца, многократно превышающем расстояние от него до Земли — от 5 до 30 раз, — оставались в относительной прохладе, что позволило им сохранить основательные запасы водорода и гелия в своем окружении. Так как два этих самых легких химических элемента еще и самые распространенные во Вселенной, в итоге в этих регионах Солнечной системы образовались четыре гигантские планеты, во много раз превышающие по массе Землю каждая.
Плутон не принадлежит ни к классу каменистых внутренних планет, ни к категории внешних газовых гигантов. Вместо этого он, все еще не изученный ни одним земным космическим кораблем, напоминает огромную комету, сделанную из камня и льда. Кометы обычно насчитывают в диаметре от 5 до 50 миль, в то время как в Плутоне все 2000 миль от края до края. Кометы считаются одними из первых «существенных» с точки зрения размера объектов, сформировавшихся в ранние эпохи становления Солнечной системы. По возрасту тягаться с ними могут разве что самые старые метеориты — осколки камня, металла сплавов камня и металла, которые когда-то падали на поверхность Земли и были рассекречены теми, кто умеет отличать космический метеорит от обычного садового булыжника.
Таким образом, планеты образовались из вещества, как и кометы с метеоритами, причем газовые гиганты воспользовались своими твердыми ядрами для того, чтобы притянуть и удержать около себя этот самый газ. Датирование радиоизотопами содержащихся в метеоритах минералов показало, что наиболее старым из них может быть до 4,55 миллиарда лет — а это гораздо больше, чем самым древним камням из найденных на Луне (4,2 миллиарда лет) на Земле (чуть меньше 4 миллиардов лет). Рождение Солнечной системы, которое состоялось примерно за 4,55 миллиарда лет до н. э., в самом буквальном смысле привело к сегрегации планетных миров на две группы: относительно малых и твердых внутренних планет и гораздо более крупных и по большей части газовых планет-гигантов. Четыре внутренние планеты вращаются вокруг Солнца на расстоянии, составляющем от 0,37 до 1,52 астрономической единицы, в то время как четыре гиганта расположились на гораздо более серьезных расстояниях от нашей звезды: оно составляет от 5,2 до 30 астрономических единиц. Именно это и позволило им разрастись до своих гигантских размеров.
Это описание того, как образовались планеты Солнечной системы, выглядит довольно стройным — впору испытать раздражение от того, что нам удалось обнаружить столько примеров объектов, по массе сопоставимых с Юпитером и при этом расположенных намного ближе к своим звездам, чем расстояние от Меркурия до Солнца. Действительно, из-за того, что все наиболее рано обнаруженные экзопланеты оказались на столь малых расстояниях от своих звезд, какое-то время принято было считать, что наша Солнечная система скорее исключение из вселенских правил, чем образцовый пример планетообразования, как предполагали теоретики в те далекие дни, когда у них не на чем больше было основывать свои догадки и теории. Осознав погрешность, заложенную в той относительной легкости, с которой им удавалось обнаруживать расположенные близко к звездам планеты, они ободрились и в скором времени нашли (с немалой точностью) еще ряд газовых гигантов на гораздо больших расстояниях от их звезд.
Сегодня список из более сотни экзопланет, систематизированных в порядке возрастания их расстояний от своих звезд, начинается с уже упомянутой выше планеты — той, у которой уходит всего 2,5 дня на то, чтобы совершить вокруг своей звезды полный оборот; завершается этот список звездой 55 Рака (55 Cancri) — вокруг нее вращается планета, по массе своей не менее чем в четыре раза превышающая Юпитер, и одно обращение вокруг своей звезды у нее занимает 13,7 года. Исходя из периода обращения этой планеты, астрофизики могут определить, что она находится от своей звезды на расстоянии, в 5,9 раза превышающем расстояние от Земли до Солнца или в 1,14 — расстояние от Солнца до Юпитера. Это первая планета в списке всех обнаруженных экзопланет, что расположена от своей звезды на большем расстоянии, чем Юпитер от Солнца, за счет чего она производит впечатление планетарной системы, в широком смысле сопоставимой с нашей собственной Солнечной, по крайней мере с точки зрения тандема «звезда плюс ее самая крупная планета».
Однако это все же не совсем так. Планета, вращающаяся вокруг звезды 55 Рака в 5,9 раза дальше, чем расстояние от Земли до Солнца, является не первой, но третьей из обнаруженных на орбите этой звезды. На сегодняшний момент астрономы собрали уже достаточно данных и обрели столь внушительную сноровку по интерпретации доплеровских смещений, что им удается распутывать сложную хореографию звезд, образованную при гравитационном воздействии на них двух более планет. Каждая из стремится задать «Танцу» свой собственный ритм с периодом повтора, равным охвату орбиты планеты, описываемой ею вокруг звезды. Наблюдая за звездой в течение достаточно продолжительного времени и подключая к работе компьютерные программы, которые не боятся никаких вычислений и расчетов, охотники за планетами способны выделить из замысловатых танцев отдельные шаги, которые задают звезде отдельные планеты. В случае с 55 Рака, скромной звездой из созвездия Краба, сначала были обнаружены две другие более близкие к ней звезды с периодами обращения в 42 и 89 дней и минимальными массами в размере 0,84 и 0,21 массы Юпитера соответственно. Планета с минимальной массой, равной «всего» 0,21 массы Юпитера (это как 67 планет Земля), входит в число экзопланет с наименьшими массами из обнаруженных на сегодня. Рекорд пока принадлежит одной экзопланете, чья масса составляет 35 масс Земли, — и это все еще настолько крупнее нашей голубой планеты, что есть некоторая вероятность, что скорее тот самый рак на горе свистнет, чем астрономы смогут найти в нашей Галактике хотя бы одного двойника Земли.
Можно ходить вокруг да около, но проблема от этого не исчезнет. Изучив, помимо прочего, планеты, вращающиеся вокруг звезды 55 Рака, нам все еще необходимо объяснить, как могут экзопланеты с массами, сопоставимыми с Юпитером, вращаться столь близко от своих звезд? Сколько таких планет вообще? Любой эксперт скажет вам, что планета, сравнимая по массе с Юпитером, не может сформироваться на расстоянии от солнцеобразной звезды, которое было бы меньше, чем три-четыре расстояния от Земли до Солнца. Если допустить, что экзопланеты подчиняются этому правилу, то остается только предположить, что они переместились существенно ближе к своим звездам уже после того, как закончили формироваться. Подобное заключение, если принять его как приемлемое, приводит к трем новым вопросам.
1. Что заставило эти планеты разменять свои орбиты на более скромные после того, как они сформировались?
2. Что помешало им приблизиться к своим звездам вплотную и в итоге погибнуть, упав прямо на звезду?
3. Почему это произошло в множестве других планетных систем, но не в нашей Солнечной системе?
На эти вопросы у нас есть ответы, предоставленные теми светлыми умами, для которых обнаружение экзопланет послужило отличным стимулом к дальнейшим исследованиям. Можем подытожить самую популярную на сегодня версию экспертов ниже.
1. Планетная миграция произошла потому, что существенный объем материалов, оставшихся после процессов формирования планет, продолжал вращаться вокруг звезды в рамках орбит новообразованных планет-гигантов. Этот материал систематически отбрасывается гравитацией большой планеты на более далекие орбиты, что, в свою очередь, заставляет саму большую планету подбираться все ближе к звезде.
2. Когда планеты приблизились к своим звездам гораздо ближе, чем они были в начале своего пути, приливные силы звезды синхронизировали их и зафиксировали на новых местах. Эти силы, сопоставимые с приливными силами Солнца и Луны, способными поднимать воды земных океанов, синхронизировали периоды вращения планет с их периодами обращения, что и произошло с Луной под влиянием приливных сил Земли. Это также не дало планетам приблизиться к своим звездам еще ближе — по вполне обоснованным причинам, на которых мы тут не будем задерживаться.
3. Предположительно, это совершенно произвольная удача, что одни планетные системы образовались с большим количеством материала, что впоследствии сделало возможной планетную миграцию, а другие — как наша с вами — оказались относительно скудны на космические останки, и потому их планеты остались на тех же расстояниях от своей звезды, где они когда-то и сформировались. В случае с планетами вокруг 55 Рака вполне возможно, что все три ушли очень далеко «вперед» (то есть приблизились к звезде), и тогда самая удаленная планета вполне могла сформироваться на расстоянии от звезды в несколько раз большем, чем сейчас. А может быть и такое, что вследствие распространения материала в окружении этих трех планет первые две основательно переместились поближе к звезде, в то время как третья так и осталась где была.
Астрофизикам, мягко говоря, предстоит еще очень много работы, прежде чем они смогут с полной уверенностью заявить, что поняли досконально, как вокруг звезд образуются планетные системы. Пока охотники за экзопланетами продолжают работу в надежде когда-нибудь найти двойника Земли — планету, похожую на Землю размером, массой и расстоянием от своей звезды, на котором вращается эта планета. Когда и если они такую планету найдут, они будут стремиться изучить ее — даже с расстояния десятков световых лет — как можно точнее, чтобы определить, есть ли на такой планете атмосфера и океаны, подобные земным, и существует ли на ней жизнь, как на нашей планете.
Следуя за этой мечтой, астрофизики знают, что им понадобятся измерительные инструменты, которые будут расположены над нашей атмосферой, искажающей получаемые картинки и не дающей делать исключительно точных замеров и вычислений. В рамках одного эксперимента NASA под названием «миссия Кеплера» ученые планируют изучить сотни тысяч близлежащих звезд в поисках самых крошечных неровностей в звездном излучении (где-то с одну сотую одного процента), причиной которых была бы планета размером с Землю, расположенная на нашем луче зрения к звезде. Такой подход актуален только в ничтожно малом количестве ситуации, в которых наш обзор почти полностью соответствует плоскости орбиты планеты. Но именно в таких случаях промежуток между прохождениями планеты равен ее периоду обращения, что, в свою очередь, указывает на расстояние от этой планеты до ее звезды, и, соответственно, степень ослабления звездного излучения также указывает на размер этой планеты.
Однако, если мы хотим знать не только базовые физические характеристики планеты, нам следует изучать ее с помощью методов прямого изображения и анализа спектра света, который планета отражает в окружающий ее космос. NASA и ESA разрабатывают программы, которые позволят достигнуть таких результатов в ближайшие 20 лет. Планета земного типа, обнаруженная даже просто в качестве бледно-голубой точки рядом с гораздо более яркой звездой, сможет вдохновить еще целое поколение поэтов, физиков и политиков. Если удастся проанализировать отражаемый ею свет и таким образом определить, есть ли в атмосфере этой планеты кислород (что с большой вероятностью указывает на признаки жизни) сочетание кислорода с метаном (что почти напрямую указывает на них), это станет достижением, достойным быть воспетым бардами всего мира. Человечество, возведенное в герои, останется лицом к лицу (как писал Ф. Скотт Фитцджеральд в своем «Великом Гэтсби») с чем-то соразмерным своей человеческой любознательности. Что ж, приглашаем всех, кто мечтает обнаружить жизнь в других уголках Вселенной, перейти к последней части этой книги.
Назад: Глава 12 Межпланетные истории
Дальше: Часть V Возникновение жизни