Глава 6
Одна Вселенная или множество?
В начале 1998 года мир космологии потрясло открытие, что мы живем в мире ускорения, в котором Вселенная не только постоянно расширяется, но и делает это все быстрее и быстрее. Тогда были объявлены первые результаты наблюдений за сверхновыми звездами, которые и помогли ученым прийти к заключению о расширении Вселенной. Сегодня, когда эта идея также окончательно заручилась поддержкой исследователей реликтового излучения (а у космологов было достаточно лет для того, чтобы пропустить через себя мысль о постоянно ускоряющемся космическом расширении), возникают два серьезных вопроса, и в поиске ответов на них космологи проводят дни и ночи: почему скорость расширения Вселенной растет, почему у этого ускорения именно такое значение и как оно характеризует Вселенную?
Простой ответ на первый вопрос перекладывает всю ответственность за ускорение расширения Вселенной на сам факт существования темной энергии же, что равнозначно, на наличие ненулевой космологической постоянной. Сама степень ускорения напрямую зависит от количества темной энергии на каждый кубический сантиметр пустого пространства: чем больше энергии, тем быстрее ускорение. Так, если бы ученые смогли объяснить, откуда берется эта самая темная энергия и почему сегодня во Вселенной ее именно столько, сколько есть, они могли бы с чистой совестью заявить, что разгадали фундаментальную загадку Вселенной: происхождение той энергии в пустом пространстве, которая неуклонно провоцирует космос на дальнейшее и все более стремительное расширение — вперед в будущее, в котором нас ждет поистине необъятное космическое пространство, не менее гигантские запасы темной энергии в нем и почти никакого вещества на один кубический световой год.
Откуда берется и что представляет собой темная энергия? Нащупать ответ космологи могут в глубинных пластах своих знаний о физике частиц: темная энергия — это продукт каких-то событий, происходящих в пустом пространстве (если не терять надежды на то, что квантовая теория достоверно описывает суть вещества и энергии). Вся физика частиц основана на данной теории, состоятельность которой столь многократно и очень точно была подтверждена в микроскопических условиях, что почти все физики не видят повода сомневаться в ней. Неотъемлемая часть квантовой теории подразумевает, что так называемое пустое пространство на самом деле гудит и дрожит от «виртуальных частиц», которые появляются в нем и исчезают быстрее, чем мы успеваем их заметить, однако позволяют нам отследить эффект своего существования (темную энергию). Собственно, возникает она в результате этого постоянного мельтешения — появления и исчезновения — виртуальных частиц, которое мы называем квантовыми флуктуациями вакуума (это специально для тех, кому нравится звонкая терминология физиков, остальные могут использовать слово «колебания»). Далее исследователи частиц могут без особых трудностей вычислить точное количество энергии, заполняющей каждый кубический сантиметр вакуума. Непосредственное применение квантовой теории к так называемому вакууму напрямую предполагает, что такие квантовые колебания должны производить темную энергию. Со стороны эта история звучит весьма непринужденно, и возникает резонный вопрос: почему же космологам понадобилось так много времени на то, чтобы обнаружить существование этой энергии?
К сожалению, в силу особенностей реального расклада вещей нам следует иначе сформулировать вопрос: как могли физики, изучающие частицы, так радикально ошибиться? Подсчеты количества темной энергии на каждый кубический сантиметр вакуума указывают на число примерно в 10120 раз большее, чем значение, экспериментально найденное космологами в процессе наблюдения за сверхновыми звездами и реликтовым излучением. В абстрактных астрономических ситуациях расчеты, которые оказываются приблизительно верными, демонстрируя ошибочность в десять или менее раз, зачастую воспринимаются как «временно удовлетворительные». Однако ошибку в 10120 раз под диван не спрячешь, даже если вы неисправимый оптимист в огромных очках с толстыми розовыми стеклами. Если бы в реальном вакууме темной энергии было столько, сколько следует из квантовых законов физики, Вселенная уже давно бы распухла до таких размеров, которых нам с вами никогда даже близко не вообразить, причем крошечной доли секунды хватило бы на то, чтобы разнести вещество по всему космосу в невероятно разреженном виде. Теория и наблюдения единодушны в своих выводах о том, что в пустом пространстве содержится темная энергия, однако в вопросах того, сколько именно такой энергии там можно обнаружить, они расходятся в миллиард в десятой степени раз. Чтобы наглядно проиллюстрировать это колоссальное расхождение, не получается придумать ни одного «земного» примера, да и космический тоже не приходит в голову. Расстояние от Земли до самой далекой известной нам галактики превышает размер одного протона в 1040 раз. Даже это гигантское число — всего лишь кубический корень из того, во сколько раз расходятся теория и практика относительно значения нашей космологической постоянной.
Специалисты по физике частиц и космологи давно знают, что квантовая теория задает неприемлемо высокое значение объема мировой темной энергии. Но в те дни, когда считалось, что значение космологической постоянной равно нулю, они надеялись обнаружить какое-либо еще объяснение своим наблюдениям — такое, которое, по сути, свело бы на нет сам вопрос к устройству Вселенной с помощью взаимного исключения положительных и отрицательных величин теории. Подобное взаимоисключение когда-то решило проблему того, каким количеством энергии виртуальные частицы наделяют обычные — видимые нам — частицы. Теперь же, когда мы знаем, что космологическая постоянная не равна нулю, надежды на то, что подобное решение методом «взаимоисключения» найдется, довольно призрачны. Однако, если такое решение существует, оно каким-то образом должно будет обесценить практически все те теоретические знания, которыми мы обладаем на сегодняшний день. Сейчас, из-за отсутствия объяснения размера космологической постоянной, ученым остается лишь продолжать плотное сотрудничество в областях космологии и физики частиц, стремясь найти способ привести в соответствие теорию о том, как в космосе рождается темная энергия с ее невероятно высокой концентрацией из расчета на один кубический сантиметр вакуума.
Светила современной физики частиц и космологии тратят немало сил на то, чтобы объяснить значение космологической постоянной — и безрезультатно. Отсюда и жаркий гнев бессилия в рядах ученых-теоретиков, не в последнюю очередь потому, что тот, кто сможет объяснить, как природа смогла создать именно такое космическое пространство, каким мы его наблюдаем, получит и Нобелевскую премию, и невообразимую радость открытия и научного прорыва. Но объяснение требуется еще многим вещам, и одна из них имеет самое прямое отношение к нашей теме обсуждения: почему количество темной энергии, выраженное в ее массовом эквиваленте, примерно равно количеству энергии, производимой всем веществом во Вселенной?
Этот вопрос можно задать и иллюстративно, с помощью двух Ω, представляющих собой плотность вещества и плотность массового эквивалента темной энергии: почему значения ΩΜ и ΩΛ приблизительно равны? Почему одно из них не больше другого в разы? В первый миллиард лет после Большого взрыва ΩΜ была практически равна единице, в то время как ΩΛ — нулю. В те далекие времена ΩΜ сначала была в миллионы, затем в тысячи и потом уже в сотни раз больше ΩΛ. Сегодня же, когда ΩΜ = 0,27 и ΩΛ = 0,73, эти два значения можно считать примерно равными друг другу, хотя ΩΛ и явно выше. В далеком будущем, более 50 миллиардов лет спустя, ΩΛ будет сначала в сотни, потом в тысячи и даже в миллионы, а потом и в миллиарды раз больше ΩΜ. Только в течение периода космической истории примерно от 3 до 50 миллиардов лет после Большого взрыва эти два значения более или менее соответствуют друг другу.
Для беспечного ума обывателя промежуток времени от 3 до 50 миллиардов лет — это очень много. С астрономической точки зрения это совсем мало. В астрономии популярен логарифмический подход к времени, когда рассматриваемый промежуток для удобства делят на интервалы так, чтобы каждый последующий был больше предыдущего в десять раз. Сначала Вселенной было столько-то лет, потом она стала в десять раз старше, потом еще в десять раз старше и так до бесконечности — бесконечное количество умножений на десять. Предположим, мы начхали отсчитывать время в тот самый миг, который с точки зрения квантовой теории имеет хотя бы какое-то значение — в 10–43 секунд после Большого взрыва. Так как в каждом году примерно 30 миллионов секунд (если точнее, то их 3 х 107), нам нужно примерно 60 степеней десяти (1060), чтобы пройти путь от 10-43 секунд после Большого взрыва до 3 миллиардов лет спустя. Но нам требуется всего лишь чуть больше, чем умножить имеющееся на этот момент число еще на десять, чтобы проскочить отрезок от 3 до 50 миллиардов лет — а именно в этот промежуток времени ΩΜ и ΩΛ приблизительно равны. Еще дальше — и бесконечное количество степеней десяти открывают дорогу в бесконечное будущее. С такой логарифмической точки зрения вероятность того, что мы будем жить в космических условиях приблизительного равенства ΩΜ и ΩΛ ничтожно мала. Майкл Тернер, ведущий американский космолог, даже дал этому парадоксальному явлению — вопросу о том, почему нам довелось жить в эпоху приблизительного равенства ΩΜ и ΩΛ, — шуточное название «загадка Нэнси Керриган» в честь олимпийской чемпионки США по фигурному катанию, которая, получив удар по коленке перед выходом на лед на этапе чемпионата США., в слезах вопрошала: «Почему я? Почему сейчас?»
Несмотря на то что космологам не удается вычислить такое значение космологической постоянной, которое хотя бы приблизительно походило на правду, у них есть ответ на загадку Нэнси Керриган. Правда, мнения о важности этого ответа и возможных из него выводах сильно расходятся. Одни принимают предлагаемые объяснения; другие внимают им весьма неохотно; третьи гарцуют вокруг да около; а четвертые отвергают полностью. Это объяснение связывает значение космологической постоянной с тем фактом, что вот они мы — живем именно на этой планете, вращающейся вокруг средней звезды в средней галактике именно сейчас. Аргумент следующий: раз мы существуем, значит, параметры, описывающие Вселенную, — и особенно величина космологической постоянной — обладают такими значениями, которые допускают наше существование.
Представьте, какой была бы Вселенная, в которой космологическая постоянная существенно превышала бы свое реальное значение. В разы большее количество темной энергии существенно увеличило бы значение ΩΛ по сравнению с ΩΜ, и на это не понадобилось бы 50 миллиардов лет — хватило бы всего нескольких миллионов. К этому времени в космосе, в котором преобладало бы ускорение — продукт темной энергии, — вещество разлетелось бы в разные стороны так быстро, что ни галактики, ни звезды, ни планеты просто не успели бы сформироваться. Если предположить, что от начала формирования первых небольших скоплений вещества до зарождения на Земле жизни прошло не менее одного миллиарда лет, мы можем достаточно уверенно заключить, что само наше существование ограничивает значение космологической постоянной до некой величины в промежутке от нуля до числа, в несколько раз превышающего ее реальное значение. Бесконечно большие значения она явно принимать не может.
Аргумент начинает выглядеть более весомо, если предположить вместе со многими космологами, что все, что мы с вами называем Вселенной, является частью гораздо более огромной мультивселенной (ее еще называют «мультиверс» — от англ. multiverse). Мультивселенная состоит из бесконечного множества вселенных, никаким образом друг с другом не взаимодействующих. Согласно концепции Мультивселенной, все устройство каждой отдельной вселенной — это высокая материя и некие высшие измерения, вследствие чего пространство нашей Вселенной недоступно ни какой другой вселенной — и наоборот. Это отсутствие даже гипотетического взаимодействия между ними ставит теорию Мультивселенной в число непроверяемых, а значит, неподтверждаемых (но и неопровергаемых!) гипотез, как минимум пока какие-нибудь мудрецы не найдут способа ее протестировать. В Мультивселенной новые вселенные зарождаются в произвольном порядке и с произвольной частотой, набухая за счет инфляции до гигантских размеров, но никак при этом не взаимодействуя с бесконечным количеством других вселенных.
В Мультивселенной каждая новая вселенная зарождается и существует по своим законам физики, обладая своими характерными космическими параметрами — включая те, что определяют такой вселенной значение космологической постоянной. У большого количества таких вселенных космологическая постоянная в разы превышает нашу — и они быстро разгоняются и разбегаются до состояния почти нулевой плотности вещества; жизни в таких вселенных просто не из чего появиться. Только в крошечной доле всех вселенных, составляющих Мультивселенную, комплекс условий складывается так, чтобы допустить возможность зарождения и существования жизни, потому что только эти несколько комплексов параметров позволяют веществу формировать галактики, звезды и планеты и дают возможность всем этим объектам существовать миллиарды лет.
Космологи называют такой подход к объяснению величины космологической постоянной антропным принципом, хотя термин «антропный подход» был бы, пожалуй, более уместен. У такого подхода к объяснению одного из ключевых вопросов в космологии есть одна несомненно привлекательная особенность: его любят ненавидят, но редко кто относится к нему равнодушно. Как и многие другие увлекательные идеи, антропный подход можно подгонять под разные теологические и телеологические системы мышления или делать вид, что он удачно «подгоняется». Некоторые религиозные фундаменталисты отмечают, что антропный принцип устройства Вселенной перекликается с их верованиями, потому что отводит человечеству центральную роль: если бы космос — по меньшей мере известный нам космос — некому было изучать и наблюдать, его бы не могло и не должно было «быть». Значит, некие высшие силы создали его таким, чтобы и нам нашлось в нем уютное местечко. Противник подобного хода мысли может сказать, что антропный принцип подразумевает совсем не это и на теологическом уровне этот вроде как аргумент в пользу существования Всевышнего указывает на невероятно нехозяйственного и расточительного Создателя, который зачем-то мастерит бесчисленное множество вселенных, из которых лишь крохотная часть способна создать условия зарождения жизни. Почему бы не избавиться от этого неловкого посредника и не следовать мифам и легендам о мироздании, которые сразу ставят человека во главу угла?
С другой стороны, если вы предпочитаете видеть Божественное провидение во всем, что вас окружает (как Спиноза, например), вы не устанете восхищаться Мультивселенной, в которой вселенные расцветают одна за другой, словно цветы. Как и большинство новостей с переднего края науки, концепцию Мультивселенной и антропного принципа можно с легкостью «склонять» по-своему, так, чтобы привести в соответствие с конкретной системой устоев и убеждений. Стивен Хокинг, обладатель почетной должности Лукасовского профессора Кембриджского университета по астрономии (как и когда-то Исаак Ньютон до него), считает антропный подход превосходным решением загадки Нэнси Керриган. Стивен Вайнберг, лауреат Нобелевской премии по физике за свои исследования и открытия в области физики элементарных частиц, недолюбливает этот подход, но тем не менее относит себя к его последователям, по крайней мере «пока» не будет предложено что-то более разумное.
Возможно, когда-нибудь история рассудит нас, показав космологам, что они занимались не той задачей в том смысле, что не до конца понимали, какая именно задача перед ними стоит. Вайнбергу нравится проводить аналогию с попыткой Иоганна Кеплера объяснить, почему у Солнца шесть планет (как тогда считали астрономы) и почему они вращаются именно на таких орбитах. С тех пор прошло 400 лет, а астрономы до сих пор знают слишком мало о происхождении планет, чтобы дать объяснение их числу в Солнечной системе. Мы знаем, что гипотеза Кеплера о том, что расстояния между планетами, вращающимися вокруг Солнца, можно объяснить возможностью вписать между соседними орбитами одно из пяти платоновых тел (или правильных многогранников), в корне неверна и не имеет ничего общего с реальным устройством Вселенной. Правильные многогранники вписываются меж орбит не так уж хорошо, и, что важно, у нас нет никакого повода считать, что орбиты планет должны следовать такому принципу формирования. Так что вполне возможно, что будущие поколения ученых будут видеть в космологах сегодняшнего дня этаких Кеплеров, старающихся изо всех сил объяснить пока необъяснимое с помощью тех инструментов для изучения и понимания Вселенной, что им уже доступны.
Не все однозначно одобряют антропный подход. Некоторые космологи критикуют его за пораженчество и антиисторичность (так как он идет вразрез с многочисленными историями успеха традиционной физики, которой не раз удавалось рано или поздно найти объяснение явлениям, до этого считавшимся мистическими); еще они называют его опасным — ведь от него попахивает креационизмом. Многие космологи также находят неприемлемым построение целой теории на предположении о том, что мы живем в Мультивселенной, состоящей из бесчисленного множества других вселенных, с которыми мы никак и ни при каких обстоятельствах не можем взаимодействовать, даже теоретически.
Дебаты, которые разворачиваются на фоне антропного принципа, лишний раз подчеркивают тот скептицизм, что лежит в основе научного подхода к пониманию Вселенной. Теория, которая нравится одному ученому (как правило, тому, кто ее придумал), может показаться абсурдной — да и просто в корне неверной — другому. При этом и тот и другой знают, что теории выживают и расцветают пышным цветом только тогда, когда ученые находят их наиболее эффективными в объяснении большей части полученных с помощью наблюдений данных. Как однажды сказал один известный ученый, «опасайтесь теории, которая способна объяснить все данные — ведь с немалой долей вероятности какие-то из них потом окажутся неверными».
Данное противоречие может так и остаться неразрешенным еще долгое время, но оно обязательно спровоцирует и другие попытки объяснить устройство Вселенной. Например, Пол Штайнхардт из Принстонского университета при поддержке Нила Тюрока из Кембриджского университета создал теоретическую экпиротическую модель Вселенной. Воодушевленный теорией струн (одним из весьма интересных разделов физики элементарных частиц), Штайнхардт предлагает нам Вселенную с 11 измерениями, большинство из которых «компактифицированы» — свернуты в пространстве, как носки в ящике, благодаря чему они занимают в нем не так уж много места. Но некоторые из таких измерений обладают реальными размерами и значением — мы просто не можем их обнаружить и оценить, потому что заточены в своем четырехмерном мире. Попробуйте представить, что все пространство нашей Вселенной представляет собой бесконечную и бесконечно тонкую плоскую поверхность (в данной модели сетка измерений насчитывает всего два, а не три измерения), а затем представьте еще одну такую листообразную поверхность — и то, как она приближается и сталкивается с первой. В момент самого столкновения происходит Большой взрыв, и пока эти плоскости удаляются друг от друга вследствие удара, история каждой из них идет своим чередом, давая жизнь галактикам и звездам. В какой-то момент эти две плоскости прекращают удаляться друг от друга и начинают снова двигаться друг другу навстречу — и рано или поздно мы получаем новое столкновение и новый Большой взрыв в каждой из них. Получается, что Вселенная циклична — она повторяется, пусть и в огромных временных масштабах, каждые несколько сотен миллиардов лет. С греческого языка слово «экпирозис» означает «возгорание» (однокоренное ему слово «пиротехника» вам наверняка знакомо), и поэтому фраза «экпиротическая Вселенная» напоминает каждому из нас, обладающему тайным знанием греческого, о том великом огне и той космически жаркой печи, в которой родилась в свое время та Вселенная, которую мы знаем сегодня.
У экпиротической модели Вселенной есть определенная эмоциональная и интеллектуальная привлекательность, которой, однако, оказалось недостаточно, чтобы завоевать умы и сердца многих коллег Штайнхардта из области космологии. Пока недостаточно, во всяком случае. Что-то отдаленно напоминающее такую экпиротическую модель может когда-нибудь оказаться тем самым прорывом в понимании происхождения и природы темной энергии, которого космологи, затаив дыхание, ждут уже столько лет. Даже те, кто поддерживает антропный подход к ее трактовке, вряд ли будут упрямиться, если появится новая теория, способная предложить хорошее объяснение тому, откуда и как берется космологическая постоянная, не прибегая к бесконечной веренице бесконечных вселенных, среди которых наша — просто особо удачливая. Как сказал как-то один из персонажей мультипликатора и художника Роберта Крама, «в каком же чудесном и безумном мире мы живем! Ура!».