Книга: 13,8. В поисках истинного возраста Вселенной и теории всего
Назад: Глава 2 0,008 В самом сердце Солнца
Дальше: Глава 4 13,2 Возраст звезд

Глава 3
7,65
Как образовались «металлы»

В 1928 году самое точное, что физики могли сказать о строении ядра атома гелия (альфа-частице), – это что она состоит из четырех протонов и двух электронов, удерживаемых вместе сильным притяжением. Четыре протона были нужны, чтобы объяснить массу альфа-частицы, но в таком случае ядро выходило бы положительно заряженным в два раза сильнее, чем на самом деле. Чтобы сбалансировать уровень заряда, нужны были два легких, но отрицательно заряженных электрона. И только в 1932 году Джеймс Чедвик, работавший в Кавендишской лаборатории, открыл незаряженные частицы, известные в наши дни как нейтроны, обладавшие несколько большей массой, чем протоны. Тогда сразу стало ясно, что ядра гелия на самом деле состоят из двух протонов и двух нейтронов, удерживаемых вместе тем же притяжением, а вот чтобы дополнить ядро гелия до целого атома, необходимо добавить два электрона, которые будут находиться относительно далеко от ядра, удерживаемые электрическими силами, ограниченными принципами квантовой физики. Но первые шаги к пониманию слияния ядер – точнее, процессов, удерживающих протоны вместе и обеспечивающих образование гелия и более тяжелых элементов, – были сделаны еще до прорыва Чедвика.
Открытие Гамовым туннелирования вдохновило физиков Роберта Аткинсона и Фридриха (Фрица) Хоутерманса. В работе, опубликованной в 1929 году, они писали: «Не так давно Гамов продемонстрировал, что положительно заряженные частицы способны проникать в атомное ядро, даже несмотря на то что традиционные представления считают их энергию недостаточной для этого». Далее они математически рассчитывают, как тяжелое ядро может таким способом вобрать в себя поочередно четыре протона, а затем испустить целую альфа-частицу. Их ошибка, если так можно выразиться, крылась в представлении, что состав Солнца аналогичен составу Земли: что вокруг множество тяжелых ядер, в которых мог происходить аналогичный процесс. Они, как и все ученые того времени, не знали, что ключ к разгадке в непосредственном взаимодействии протонов друг с другом. Но этот пробел в их концепции гораздо менее важен, чем то, что им удалось представить расчеты. С их помощью можно было выяснить, какого количества взаимодействий ядер в секунду было бы достаточно для поддержания сияния Солнца. Число оказалось на удивление небольшим, что, соответственно, делает очень значительным потенциальный возраст такой звезды, как Солнце.
Развивая далее их идею, можно просчитать, что даже в условиях, существующих внутри Солнца (по современным оценкам, температура там составляет около 15 млн К), электрический барьер преодолеют только самые быстрые протоны. При любой температуре частицы в среде, подобной солнечной материи, движутся с разными скоростями, но с ростом температуры их средняя скорость растет. Скорости отдельных частиц могут быть больше или меньше средней в соответствии с хорошо известными законами статистики. Поэтому можно подсчитать, какая их часть движется, например, на 10 %, 20 % или в два раза быстрее среднего и так далее.
Это следствие из расчетов Аткинсона и Хоутерманса показывает, насколько мало ядерных слияний необходимо для того, чтобы Солнце светило. Чтобы внутри Солнца соединились два протона, им нужно столкнуться почти точно «лоб в лоб», при этом один из них должен двигаться впятеро быстрее, чем в среднем. Лишь один протон из 100 миллионов обладает нужной скоростью, и лишь одно столкновение из 10 септиллионов (10 триллионов триллионов, или 1025) приводит к слиянию. В среднем каждый протон летает внутри Солнца, сталкиваясь раз за разом с другими, подобно шарику в безумном космическом пинбольном автомате, 14 млрд лет, прежде чем соединится с другим протоном и примет участие в последующей реакции образования гелия. Слияние ядер – чрезвычайно редкий процесс даже внутри Солнца. Однако там столько протонов, что каждую секунду 616 млн тонн ядер водорода (протонов) превращаются в 611 тонн ядер гелия (альфа-частиц), причем остальные пять миллионов тонн массы превращаются в энергию в соответствии с уравнением Эйнштейна. И в Солнце все еще остается столько водорода, что за 5 млрд лет в гелий преобразуется всего 4 % исходного вещества. Проблема временной шкалы геологов и эволюционистов решилась одним махом.
В 1930-х годах Аткинсон (уже один, поскольку Хоутерманс занялся другой темой) доказал, что слияние двух протонов с образованием ядра дейтерия (дейтрона), состоящего из прочно связанных одного протона и одного нейтрона, действительно наиболее вероятная первая стадия в образовании гелия и источник энергии Солнца. Он выдвинул идею, что в процессе задействованы и более тяжелые ядра, но к 1936 году было очевидно, что Солнце содержит огромное количество водорода и что ключевой момент слияния ядер внутри Солнца – взаимодействие протонов. Несложно понять, отчего это так. Более тяжелые ядра содержат больше протонов, поэтому их положительный заряд больше и электрические силы отталкивания усложняют процесс туннелирования в них для пролетающих мимо протонов. Как оказалось, тяжелые ядра действительно задействованы в процессе слияния, предсказанном Аткинсоном и Хоутермансом, в некоторых других звездах, где условия еще более экстремальны. Но даже в 1936 году все еще было непонятно, сколько же водорода на Солнце.
Эти сомнения порождены неудачным совпадением, которое в начале 1930-х годов повело астрофизиков по тупиковому пути. Начатые Артуром Эддингтоном расчеты, описывающие базовую структуру звезды, подобной Солнцу, в физических терминах шара из раскаленной материи и определяющие температуру в ее центре, зависят от состава звезды. В каждой из них уравновешены сжимающая ее сила притяжения и стремящееся разорвать ее давление, в том числе давление электромагнитного излучения (света и других волн). Давление волн очень важно, поскольку электромагнитное излучение активно взаимодействует внутри звезды с заряженными частицами – отрицательными электронами и положительными ядрами. Если заряженных частиц слишком много, они задерживают излучение внутри звезды и она начинает расширяться. Если их мало, излучение свободно покидает звезду и она сдувается, словно воздушный шарик. Сжимаясь, она разогревается изнутри, производя больше электромагнитного излучения, которое останавливает процесс сжатия; расширяясь, она внутри остывает, излучения становится меньше и расширение прекращается. Но Эддингтона и его современников больше всего интересовало именно состояние равновесия, баланса.
На него влияет еще один фактор – не только число заряженных частиц, но и их расположение. Например, ядро атома самой распространенной формы железа содержит 26 протонов и 30 нейтронов. Если все протоны звезды были бы упакованы в ядра железа, баланс с электромагнитным излучением оказался бы совсем не таким, как если бы все протоны были свободны, хотя в любом случае на каждый протон приходится один электрон (свободно летающий и способный взаимодействовать с электромагнитным излучением).
Важнейший фактор, который стало возможным принимать во внимание только после открытия нейтронов, – это количество электронов на нуклон (это общее название протонов и нейтронов). Если бы звезда полностью состояла из водорода, все нуклоны были бы протонами, и на каждый протон приходился бы один электрон, и коэффициент электронов на нуклон равнялся бы единице. Если бы звезда состояла только из гелия, этот коэффициент снизился бы до 0,5, поскольку в ядре гелия четыре нуклона, но лишь два из них – положительно заряженные протоны, и для поддержания баланса им нужны два электрона. Если бы звезда состояла из железа, коэффициент оказался бы равен 20: 56 ≈ 0,36. Когда астрофизики поняли, что внутри Солнца очень много водорода, они пересмотрели расчеты Эддингтона с учетом данного факта.
Но тут обнаружилась любопытная вещь. Расчеты показали, что в шаре размером с Солнце, имеющем все наблюдаемые извне характеристики (например, температуру поверхности) нашего светила, возможны лишь два стабильных состояния. Либо 35 % его внешнего слоя составляет водород, либо минимум 95 % всего вещества состоит из водорода и гелия с очень низким содержанием всех прочих элементов. Астрофизики, ранее уверенные, что состав Солнца более или менее близок к составу Земли, были вынуждены принять тот факт, что как минимум треть нашего светила – это водород. Но дальше они не пошли: принять, что водород и гелий могут составлять 95 % Солнца (и, следовательно, других звезд), было для них уж слишком. Такое заблуждение, а это было именно оно, определяло ход научной мысли вплоть до 1950-х годов. Однако это не помешало ученым выяснить с точностью, как именно звезды выделяют энергию, превращая водород в гелий, и перейти к первым верным оценкам их возраста.

Циклы слияний

Здесь на сцену вновь вышел Георгий Гамов. В 1938 году он организовал конференцию в Вашингтоне, собрав астрономов и физиков для обсуждения проблемы образования энергии внутри звезд. Одним из участников встречи был тридцатиоднолетний Ганс Бете – один из множества немецких физиков, эмигрировавших в Америку после прихода к власти Гитлера. На конференции обсуждался такой основной вопрос: какие именно процессы слияния ядер могут производить количество тепла, необходимое для поддержания стабильного потока энергии от Солнца при предполагаемой наукой температуре внутри светила. К 1938 году ученые уже могли опираться на достаточно большой свод данных, описывающих скорости различных типов реакций. Так, если бы внутри Солнца было, скажем, много лития, то путем взаимодействия с ядрами водорода он быстро превращался бы в гелий, производя столько энергии, что Солнце бы взорвалось. Напротив, если Солнце преимущественно состояло бы из кислорода и водорода, реакция между ядрами кислорода и протонами происходила бы настолько медленно, что звезда сжималась бы до уровня достаточного разогрева ее внутренней части для активизации взаимодействия ядер. Задачей исследователей было найти комбинацию элементов, которая оказалась бы самой подходящей.
На той встрече никому не удалось решить поставленную задачу, но в написанной буквально через несколько месяцев книге «Рождение и смерть Солнца» Гамов рассказывает, что Бете нашел разгадку в поезде, возвращаясь из Вашингтона к себе в Корнелльский университет. Это характерное для Гамова преувеличение: Бете закончил расчеты уже по возвращении. Чуть раньше в том же году другой немецкий физик, работавший в Берлине Карл фон Вайцзеккер, пришел к тому же заключению. Бете, однако, продолжил исследования ядерного слияния внутри звезд и в итоге в 1967 году получил Нобелевскую премию «за весомый вклад в теорию ядерной реакции, в частности за открытия, которые касаются источников энергии звезд». Фон Вайцзеккер во время Второй мировой войны пошел по другому пути и углубился в разработку ядерного оружия вместе с научным коллективом Вернера Гейзенберга.
Им обоим пришла в голову идея, связанная с протонами и ядрами углерода, азота и кислорода. Это очень типично для 1930-х годов – эпохи, когда все еще считалось, будто примерно две трети Солнца составляют элементы тяжелее водорода и гелия. Новая модель известна как углеродно-азотно-кислородный цикл, или CNO-цикл (C – углерод, N – азот, O – кислород). Наше представление об этом механизме лишь немного уточнено с 1938 года; ниже я кратко опишу его современное понимание.
Чтобы понять суть CNO-цикла, вам следует знать несколько дополнительных фактов. Во-первых, химические свойства элемента определяются количеством протонов в ядре его атома, которое равно числу электронов, вращающихся вокруг ядра и представляющих собой своеобразное «лицо» атома. Однако разные варианты (изотопы) одного и того же элемента могут иметь различное количество нейтронов в ядре. Самый простой пример – водород, который может существовать с ядром, состоящим только из протона, а может – с дополнительным нейтроном (это так называемый тяжелый водород, или дейтерий). Углерод существует в нескольких изотопах, каждый с шестью протонами и шестью электронами. У одного (самый частый изотоп) в ядре шесть нейтронов (его называют углерод-12, поскольку в его ядре в общей сложности 12 нуклонов). У другого – семь нейтронов (углерод-13); есть и другие варианты. Во-вторых, нейтрон может превратиться в протон и вылетающий на большой скорости электрон. Однако нельзя сказать, что в нейтроне уже в какой-то форме «содержится» готовый электрон: преобразование происходит в рамках процесса, известного как слабое взаимодействие. Можете сравнить его с превращением гусеницы в бабочку: до окукливания бабочка никоим образом не находится внутри гусеницы. Аналогичным же образом протон может превратиться обратно в нейтрон, как бы вобрав в себя электрон или испустив положительно заряженную частицу под названием позитрон, представляющий собой своеобразный антипод электрона (пример антивещества). Позитроны удалось открыть лишь в 1932 году, и это одна из причин, почему понимание процессов ядерного слияния внутри звезд долго не развивалось. В-третьих и в-последних (на сегодняшний день), существует еще один вид частиц, значимый в наших рассуждениях, – это нейтрино. Он играет важную роль в слабом взаимодействии, превращающем протоны в нейтроны и обратно. Но у нейтрино очень маленькая масса, и они незначительно взаимодействуют с другими формами материи, поэтому, хотя существование этих частиц было теоретически предсказано еще в 1930 году, обнаружить их удалось лишь в 1956-м. Такое подтверждение теоретических выкладок ученых стало настоящим триумфом науки.
Итак, теперь мы лучше сможем понять открытие Бете 1938 года. В его основе – ядро атома углерода-12 внутри звезды. Оно поглощает протон с помощью туннелирования и становится ядром азота-13. Но такое ядро нестабильно: оно испускает позитрон и нейтрино, трансформируясь в другой изотоп углерода – углерод-13 (один из протонов ядра преобразуется в нейтрон). Далее углерод-13 поглощает еще один протон и становится ядром азота-14, затем процесс повторяется и появляется ядро кислорода-15. Как и азот-13, кислород-15 нестабилен и распадается, испуская электрон и нейтрино и становясь ядром азота-15 (с превращением одного протона в нейтрон). Наконец, в завершающей стадии процесса ядро азота-15 снова поглощает протон, но тут же испускает альфа-частицу – два протона и два нейтрона, ядро гелия-4. Остается ядро углерода-12, которое служит катализатором для последующего повторения того же цикла. Это означает, что, какого бы мнения о строении звезды астрономы ни придерживались в 1930-х годах, для CNO-цикла «металлы» нужны лишь в самом небольшом количестве: углерод как таковой при нем не расходуется. И конечно, одновременно в подобных циклах занято очень много ядер углерода-12. В результате каждый раз четыре протона трансформируются в два протона и два нейтрона (четыре ядра водорода – в одно ядро гелия) плюс пару электронов и нейтрино и энергию.
У этого процесса, однако, есть любопытный побочный эффект. Как я сказал, углерод при нем не расходуется, но это верно только при сбалансированности цикла. Некоторые реакции в нем происходят быстрее других, и медленные взаимодействия служат своеобразным шлюзом: ядра определенного типа формируются перед ними в большом количестве и «ждут», пока просочившиеся сквозь этот шлюз ядра пройдут очередное преобразование и сбалансируют ситуацию. Из-за такого несовпадения скоростей реакции равновесие достигается тогда, когда относительные пропорции вовлеченных в цикл элементов составляют 5,5 % углерода-12, 0,9 % углерода-13, 93,6 % азота-14 и 0,004 % кислорода-15. Иными словами, даже если изначально в звезде вообще не содержится азота, он быстро сформируется и сможет стать главным участником CNO-цикла (по массе), поскольку скорость конвертации азота-14 в азот-15 намного медленнее, чем его образование из кислорода-15. Таким образом, CNO-цикл представляет собой важнейший источник азота во Вселенной, включая, как мы еще увидим, азот в воздухе, которым мы дышим. Когда-то этот газ образовался в рамках CNO-цикла внутри давно умерших звезд.
В удивительном прорыве Бете была лишь одна проблема. Хотя вычисления показали, что эти взаимодействия могут осуществляться при температуре, существующей внутри Солнца, они все равно были бы довольно редкими (поскольку для них нужны экстремально быстро движущиеся частицы), поэтому не смогли бы породить много энергии. CNO-цикл действует достаточно эффективно как основной источник энергии внутри очень массивных и жарких звезд – но не таких, как Солнце. Этот недостаток CNO-цикла в приложении к Солнцу еще не был очевиден в 1938 году и в течение более чем десяти последующих лет, но в том же году Ганс Бете и его коллега Чарльз Критчфилд разработали теорию альтернативного источника энергии, который впоследствии оказался для Солнца основным. Они отталкивались от открытия Аткинсона, что слияние двух протонов – наиболее вероятный процесс ядерного слияния внутри Солнца. Этот процесс получил название протон-протонного цикла.
Цикл начинается с лобового столкновения двух быстро движущихся протонов и их соединения путем туннелирования, преодолевающего электрическое отталкивание. В итоге один из протонов превращается в нейтрон и образовавшееся ядро дейтерия испускает позитрон и нейтрино. Далее в ядро дейтерия туннелируется еще один протон, формируя ядро гелия-3 (два протона и один нейтрон). Наконец, два ядра гелия-3 сталкиваются и сливаются, почти сразу же отделяя два протона и образуя ядро гелия-4 (два протона и два нейтрона). Как и в CNO-цикле, в итоге четыре протона превращаются в одно ядро гелия-4, высвобождая энергию. Однако важнее всего то, что протон-протонный цикл может успешно осуществляться при температуре внутри Солнца и порождать нужное количество энергии. Оба процесса превращения водорода в гелий известны астрономам как примеры «горения» водорода. Это не горение в традиционном понимании, не химическое соединение веществ с кислородом (в этом смысле водород горит в кислородной среде, образуя воду). Ядерное «горение» высвобождает намного больше энергии, чем химическое. CNO-цикл представляет собой основного поставщика энергии для звезд с внутренней температурой свыше 20 млн К и массой в полтора и более раз большей, чем у Солнца. Протон-протонный цикл относительно эффективен уже при температуре 15 млн К, но именно относительно. Как уже упоминалось, внутри Солнца лишь один из ста миллионов протонов движется с достаточной скоростью для запуска этого цикла, и даже у этих частиц не каждое столкновение приводит к слиянию. По мере того как ученые все больше сходились во мнении, что Солнце действительно в основном состоит из водорода, астрономы вынуждены были рассматривать значительно расширенную временную шкалу Вселенной, а геологи получили возможность сказать: «Ну вот, мы же говорили!»

Каменный век

С точки зрения современного понимания состава Солнца, скорость высвобождения энергии с помощью протон-протонного цикла подсказывает нам, как долго такая звезда, изначально состоящая преимущественно из водорода, способна светить более или менее стабильно, прежде чем большая часть водорода превратится в гелий и изменит ее структуру и вид. Можно подсчитать, что Солнце в его привычном для нас виде способно существовать примерно 10 млрд лет. Да, проблема временной шкалы отпала. Но на каком отрезке этих десяти миллиардов мы находимся сегодня? Здесь в игру вступают геологи и радиохимики.
Эрнест Резерфорд и Фредерик Содди сделали два ключевых открытия относительно радиоактивности: что она заставляет один элемент превращаться в другой и что для каждого радиоактивного элемента существует свой период полураспада. При распаде каждого радиоактивного элемента образуется специфический набор других элементов, известных как продукты распада. Некоторые из них тоже радиоактивны и продолжают распадаться. Когда в лабораторных условиях было изучено достаточное количество радиоактивных процессов, ученые научились анализировать природные материалы, например камни, измеряя соотношения присутствующих в них продуктов распада и определяя, какие радиоактивные элементы содержались в них когда-то (даже если все они уже давно распались). Сегодня возможно при определенных условиях узнать, когда именно в камне присутствовали эти исходные радиоактивные элементы, то есть сколько ему лет.
У некоторых радиоактивных элементов период полураспада очень короткий, и в природном виде их на Земле уже не осталось. У других, например урана и тория, он настолько длинный, что их осталось еще довольно много, несмотря на то что они распадаются с момента образования Земли, сформировавшейся, как мы теперь знаем, из остатков предыдущих поколений звезд, внутри которых эти элементы и были созданы. Если в каменной породе присутствует, например, уран и его соединение с продуктами распада, скажем радием, то по количеству каждого из элементов можно оценить возраст камня. Важно понять отношение каждого вещества к радиоактивному – допустим, свинца к урану. Изящество этого приема заключается в том, что он не зависит от реального количества наличествующих веществ, лишь бы их было достаточно для проведения измерений; важны лишь их пропорции. Получившийся возраст определяется разнообразными факторами, например способом формирования породы (вулканическим и другими); но, разумеется, Земля древнее самого древнего камня, который можно так проанализировать.
Первым этот анализ применил в начале XX века сам Резерфорд, а также американский химик Бертрам Болтвуд. Уже в 1904 году Содди, тогда работавший в Лондоне с Уильямом Рамзаем, измерил скорость образования гелия при распаде урана. Резерфорд, находившийся в Канаде, понял, что это пример альфа-распада, если в процессе распада образуются альфа-частицы (ядра гелия) и каждая притягивает из окружающей среды пару электронов, формируя атомы гелия. Он взял образец урановой руды и измерил количество содержавшегося в нем остаточного урана и гелия. Предположив, что с момента образования породы гелий из нее не уходил, он смог оценить возраст конкретного камня в 40 млн лет. Однако Резерфорд хорошо знал, что на самом деле гелий за эти годы наверняка частично улетучился из руды, поэтому получившаяся величина – это минимальный возможный возраст этой породы (а значит, и нашей Земли). Тем не менее это был важный момент для понимания возможностей радиоактивного анализа.
Болтвуд вдохновился этой темой в том же 1904 году, прослушав лекцию Резерфорда в Йельском университете. Болтвуд знал, что при распаде урана образуется не только гелий, но и радий, а в 1905 году открыл, что распад радия в итоге порождает свинец. Измерив соотношение элементов в этой цепочке распада, он смог оценить возраст различных образцов породы. Его первые оценки, сделанные в том же году, простирались от 92 до 570 млн лет. К сожалению, все они оказались неверны, поскольку основывались на неточных измерениях и неверной оценке периода полураспада радия. Но к 1907 году эти болезни роста были преодолены и удалось более точно указать возраст образцов, которым оказалось от 400 млн до, только представьте себе, двух миллиардов лет! Это превышало указанный Кельвином возраст Земли (все еще уважаемый в астрономической среде, несмотря на противоречие с идеями Дарвина) более чем в десять раз. Но, как часто бывает с подобными открытиями, геологи отнеслись к полученным числам с недоверием, и, поскольку в дальнейшем Резерфорд и Болтвуд перешли к другим исследованиям, радиоактивный анализ так и не воспринимался всерьез до тех пор, пока титанический труд британца Артура Холмса не доказал убедительно его точность.
Холмс поступил в Лондонский королевский научный колледж в 1907 году. На последнем курсе он в рамках выпускного проекта провел оценку породы девонского периода, привезенной из Норвегии, и получил возраст, равный 370 млн лет. Закончив обучение, Холмс устроился на полгода геологом в Мозамбик, желая раздать студенческие долги, а затем вернулся в Королевский колледж (сегодня он называется Имперским) и в 1917 году защитил там докторскую диссертацию. До 1924 года он работал геологом в Бирме, а затем вновь вернулся к научной деятельности, вначале как преподаватель геологии в университете Дарема, потом в Эдинбургском университете. Автор авторитетного учебника «Основы физической геологии» и один из первооткрывателей дрейфа материков, Холмс был одним из самых влиятельных геологов XX века.
Работая в Имперском колледже, Холмс датировал множество образцов камней с помощью описанного приема и обнаружил, что самому старому около 1,6 млрд лет. Кроме того, еще в 1913 году он стал первым, кто применил радиоактивную датировку к окаменелостям и смог оценить абсолютный возраст останков древних животных и растений. Постепенно у него сформировался впечатляющий объем исследований, производимых с большим трудом и тщанием (благодаря его знаниям и с большой точностью), и геологическое сообщество наконец-то согласилось с его оценкой возраста Земли как очень значительного. В 1921 году в рамках дискуссии на ежегодной встрече Британской ассоциации содействия развитию науки геологи, ботаники, зоологи и физики смогли прийти к единому пониманию возраста Земли как исчисляемого несколькими миллиардами лет и признанию радиоактивного анализа дающим наиболее надежные оценки. Пять лет спустя в отчете Национального исследовательского совета Национальной академии наук США этот метод и его результаты были официально одобрены – началась эра радиометрической шкалы времени. С тех пор благодаря уточнениям методов анализа возраст самого древнего из известных земных образцов (сегодня это небольшие кристаллы циркона из Западной Австралии) был отодвинут до 4,4 млрд лет. Эти числа удивительным образом согласуются с возрастом самой старой материи, найденной в метеоритах (каменных образованиях, упавших на Землю из космоса), – 4,5 млрд лет. Поскольку предполагается, что метеориты – это остатки материи, не вошедшие в Солнце и Солнечную систему, все указывает на то, что Солнце и окружающие его планеты, включая Землю, сформировались примерно 4,5 млрд лет назад. В таком случае наше светило находится примерно на середине своего жизненного пути как звезда с горением водорода. В таком случае откуда же взялись исходные радиоактивные элементы, задавшие нам эту шкалу? Как я уже намекал, они создавались внутри звезд. Как именно это происходило, ученым не было ясно вплоть до 1950-х годов.

Через бомбы к звездам

Первое понимание CNO– и протон-протонного циклов появилось в конце 1930-х годов, непосредственно перед Второй мировой войной. Хотя затем чисто научные изыскания временно уступили лидерство прикладному поиску решений для военных целей, сразу после установления мира астрономы сделали скачок вперед в области интерпретации ядерных процессов внутри звезд, не в последнюю очередь благодаря научным данным, накопленным при разработке атомной бомбы. Ключевой фигурой в этих исследованиях был Фред Хойл, еще совсем молодой сотрудник Кембриджского университета, работавший во время войны над созданием радаров для Британского адмиралтейства. Чтобы понять его характер, достаточно вспомнить, что в 1936 году двадцатиоднолетний выпускник выполнил все академические требования для получения докторской степени, но не позаботился о заполнении документов и потому не получил ее. В 1945 году он стал преподавать в Кембридже математику, но до 1958 года, когда его официально назначили профессором, так и работал без чинов и званий. Сейчас это даже трудно представить!
Осенью 1944 года Фред Хойл посетил Соединенные Штаты Америки и Канаду в составе делегации от Адмиралтейства в связи с проектом по радарам. Ему удалось предпринять дополнительную поездку в Маунт-Вилсоновскую обсерваторию в Калифорнии и познакомиться с последними астрономическими данными, а также с разработчиками атомной бомбы. Хотя им было запрещено рассказывать ему подробности их работы, научный опыт и острый ум Хойла позволили ему многое понять из того, что они говорили и о чем умалчивали. Вернувшись в Англию, ученый провел рождественские каникулы в размышлениях об увиденном и услышанном. От калифорнийского астронома Вальтера Бааде он узнал последние соображения относительно самых мощных взрывов звезд, известных в то время, – сверхновых. А из встреч с физиками-ядерщиками, догадываясь о недоговоренном ими, извлек идею, что плутониевую бомбу можно взорвать лишь резким сжатием, так называемым имплозивным способом. Проще говоря, критическая масса плутония окружается взрывчаткой, и та посылает ударную волну внутрь, сжимая плутоний и приводя к неудержимому расщеплению ядер и высвобождению энергии.
Хойл задумался, не происходит ли аналогичный процесс в суперновых: горение водорода останавливается, массивная звезда сжимается под собственным весом, запуская волну ядерных взаимодействий, которые затем взрывают ее изнутри. Он смог просчитать, сколько ядерной энергии при этом высвободится, и примерно представить соотношения различных элементов, которые образовались бы при таком взрыве при разных температурах. Следующим шагом должно было стать сравнение расчетов с реальностью.
В марте 1945 года Хойл под каким-то предлогом изучил кембриджские данные о наличии на Земле различных элементов. Он полагал, что состав нашей планеты должен соотноситься с составом Вселенной как таковой за исключением громадных запасов водорода и гелия в звездах. Он обнаружил, что, если свести данные в единую схему, в среднем чем элемент тяжелее, тем его меньше, за исключением железа и других черных металлов, которых непропорционально больше. Это в точности соответствовало его подсчетам, учитывая, что температура внутри взрывающихся звезд достигала не миллионов, а миллиардов градусов. Война затормозила публикацию этого открытия, но в 1946 году оно появилось в статье под названием «Образование элементов из водорода». К тому времени Хойл доказал, что звезды в основном состоят из водорода, и стал одним из первых астрономов, признавших этот факт. До полного понимания картины Вселенной было еще далеко, но люди уже начинали осознавать, откуда взялись элементы, из которых мы состоим, что, по сути, все вокруг сделано из «звездной пыли». Когда Хойл прочел лекцию на эту тему в британском Королевском астрономическом обществе, среди слушателей была Маргарет Бербидж (тогда Пичи), о которой речь пойдет ниже. Впоследствии она вспоминала:
Я сидела в аудитории, слушая рассказ Фреда, словно завороженная, и переживала чудесное ощущение, как будто завеса невежества приподнимается и обнажает сияющий свет великого открытия.
И хотя на завершение исследования ушло более десяти лет, 1946 год стал важной вехой: с этого момента Хойл начал разрабатывать так называемую стационарную модель Вселенной. Хотя в конце сороковых эту версию рассматривали всерьез (преимущественно из-за того, что Большой взрыв не мог создать тяжелые элементы), работа Хойла по ядерному синтезу в звездах появилась раньше создания стационарной модели и независимо от нее.

И последние станут первыми

Идея Хойла не сразу встретила понимание среди ученых, более того, она осталась почти незамеченной. После войны он и сам сосредоточился на преподавании в Кембридже и не сразу стал развивать свою концепцию. Когда же он нашел на это время и пришел к мысли, ставшей ключом к пониманию работы ядерного синтеза в обычных звездах до их взрыва или менее эффектного уничтожения, ему помешал случай. Преподавая в университете, он должен был руководить студентами докторантуры (хотя сам не имел докторской степени!). Среди прочего, в его обязанности входила помощь студентам в формулировании тем диссертации, и в 1949 году Хойл предложил одному из них развить идею Бете о превращении водорода в гелий и найти способ преобразования гелия в углерод внутри обычных звезд при температурах намного ниже тех, которые сам Хойл использовал при изучении физики сверхновых.
Это была многообещающая задача, поскольку уже было известно, что изотопы, число нуклонов в ядрах которых кратно четырем, относительно распространены. Среди таких изотопов можно вспомнить углерод-12 и кислород-16. Создается впечатление, что их ядра формируются из ядер гелия-4. Так и хочется попробовать воспроизвести этот процесс: соединить два ядра гелия-4 и получить бериллий-8, затем добавить еще один гелий-4 и получить углерод-12 и так далее. Такое горение гелия привело бы к высвобождению энергии, как при ядерном горении водорода, только в меньших объемах. Столкнувшись с необходимостью просчета скорости всех реакций по этой цепочке вплоть до кислорода-16, студент вскоре отчаялся и бросил работу. Однако формально он не отказался от докторантуры, и, пока официальные требования учебного заведения не вынудили его признать, что он не станет продолжать работу над темой, академическая этика не позволяла Хойлу самому попробовать решить проблему или передать ее другому исследователю. К 1952 году за эту загадку независимо от Хойла взялись астрономы из других университетов (в частности, Эдвин Солпитер из Корнелля).
Идея образования элементов внутри звезд стала набирать популярность по мере того, как астрономы начали измерять возраст светил (см. ) и оказалось, что старые звезды содержат меньше тяжелых элементов, чем молодые, выражаясь астрономическим языком, у них ниже «металличность». Напрашивается объяснение: молодые звезды напичканы «металлами», которые создавались в старых и затем каким-то образом были выброшены в межзвездное пространство. Стало казаться, что скоро Хойла обойдут другие исследователи, но он сумел сделать прорыв первым. Злосчастный студент наконец покинул университет, и Хойла пригласили провести часть 1953 года в Калифорнийском технологическом институте и Принстоне. Он собирался читать лекции о проблеме ядерного синтеза в звездах и принялся рассчитывать скорости вовлеченных в этот процесс реакций. Ученый быстро понял, что углерод и, следовательно, все элементы тяжелее него могут создаваться внутри звезд при строго определенных условиях.
Проблема заключалась в том, что бериллий-8 нестабилен и быстро распадается обратно на два ядра гелия-4 (альфа-частицы). За краткий период своего существования ядро бериллия-8, составленного из двух ядер гелия-4, может успеть соприкоснуться с еще одной альфа-частицей, но, вместо того чтобы соединиться с ней в углерод-12, бериллий разрушается от удара. Однако если бы бериллий-8 был стабилен, он мог бы порождать углерод-12 так быстро, что звезда неминуемо взорвалась бы! Оказавшись в патовой ситуации (углерод либо не образуется вообще, либо образуется в чрезмерных количествах), Хойл нашел выход. Ключ был в том, что ядро углерода-12 должно обладать свойством, именуемым резонансом, с энергией 7,65 млн электронвольт (МэВ).
Ядро атома может существовать в так называемом основном состоянии, когда оно обладает минимумом энергии, либо же может поглощать некоторое количество энергии (существующей в виде квантов, как и все в субатомном мире) и подниматься на новые энергетические уровни. Придя в такое возбужденное состояние, ядро рано или поздно избавляется от лишней энергии (обычно испуская гамма-квант) и возвращается в основное состояние. Энергетические уровни похожи на ступени лестницы, по которым перепрыгивает возбужденное ядро: вверх, затем вниз. Хойл предположил, что возбужденное ядро углерода-12 может формироваться от соединения ядер гелия-4 и бериллия-8 только при условии, что на лестнице углерода-12 есть энергетическая ступень, соответствующая сумме энергий этих ядер. Представьте себе, что вы бросили мячик вверх, он преодолел всю лестницу и задержался на верхней ступеньке (а затем мягко скатился вниз). Хойл предсказал, что резонанс ядра составляет 7,65 МэВ. Если он существует, то взаимодействие бериллия и гелия способно создавать возбужденные ядра углерода, которые затем избавятся от лишней энергии и перейдут в основное состояние. Но если резонанса не существует, углерод создать нельзя и нельзя создать нас, ведь мы представляем собой углеродную форму жизни.
Хойл убедил себя в том, что хотя доказательств существования такого возбужденного состояния ядер углерода-12 у него не было, оно реально. Работая в Калифорнии, он показал свои расчеты американскому физику-экспериментатору Уильяму Фаулеру и спросил, может ли тот провести эксперимент и проверить, действительно ли такой энергетический уровень имеется. Сначала Фаулер решил, что это безумие, но Хойл настаивал, пока тот не согласился, – как Фаулер рассказывал мне позднее, «чтобы Фред уже заткнулся и отвязался». Хойл говорил, что Фаулеру и его команде (в частности, Уорду Уэйлингу) потребовалось десять дней, чтобы, вопреки ожиданиям, понять, что он прав, однако более точные измерения заняли три месяца. В любом случае, его правота была доказана.
Это было сенсационное открытие, важность которого невозможно переоценить. Зная, что углерод существует – что существуем мы! – Хойл предсказал одну из его важнейших характеристик и открыл путь к полному пониманию возникновения элементов внутри звезд. Хойл сделал огромный шаг вперед еще до того, как уехал из Калифорнии весной 1953 года: уже тогда он написал первый вариант работы, опубликованной в 1954 году под названием «I. Синтез элементов от углерода до никеля». Но работа под номером II так и не появилась, вместо нее в 1957 году Фред Хойл издал революционный по своей сути труд в соавторстве с Фаулером и Бербиджами – Джеффри и Маргарет, где также использовались независимые исследования канадца Аластера Кэмерона. Авторы перечислялись в алфавитном порядке: Бербидж, Бербидж, Фаулер и Хойл, и эта выдающаяся работа до сих пор известна как B²FH. В 1983 году Фаулер получил Нобелевскую премию в основном именно за нее. Впрочем, сам он в приватных беседах отмечал, что награда по праву принадлежала Хойлу: возможно, тому просто отомстили за открытую критику предыдущих решений Нобелевского комитета. Трудно вспомнить более яркий пример того, как в науке последние становятся первыми. Однако все это мелочи. Важен вклад всех этих ученых в понимание нами сущности звезд.

Звездная пыль

Не буду вдаваться здесь в подробности, но хотя бы общую картину обрисовать очень хочется. Все начинается со звезд чуть побольше Солнца – у нашего светила не хватает массы, чтобы создавать элементы тяжелее углерода. Звезды, которые, подобно Солнцу, поддерживают производство энергии путем горения водорода, соответствуют соотношению массы и светимости, которая обсуждалась в главе 1, и находятся на главной последовательности. Когда звезда истощает внутренний запас водорода, она уже не может сопротивляться силе притяжения, раскаляющей ее центр, и, когда температура доходит примерно до 100 млн К, запускается превращение ядер гелия в углерод, вновь стабилизируя звезду до момента истощения запасов гелия. Когда кончается гелий, она снова сжимается. Для Солнца и звезд меньшей массы это конец истории: звезда заканчивает свое существование в виде охлаждающегося шара из ядер углерода (и отчасти кислорода, поскольку при горении гелия образуется и кислород), окруженных слоем ядер гелия и тонкой атмосферой из водорода. Теперь это белый карлик: звезда размером примерно с Землю и с несколько меньшей, чем у Солнца сейчас, массой.
Однако у более массивных звезд после завершения горения гелия дальнейшее сжатие и повышение температуры могут запустить следующие уровни ядерного горения. По мере вовлечения во взаимодействия более тяжелых ядер процесс усложняется и появляются ядра, состоящие не из целого числа альфа-частиц, а образующиеся путем поглощения нейтронов из окружающей среды или, наоборот, испускания позитронов. Вот почему группе B²FH потребовалась пара лет на уточнение всех деталей, и вот откуда взялись такие изотопы, как азот-14. В широком смысле горение углерода (происходящее при температуре около 500 млн К) образует неон, натрий и магний, горение кислорода (примерно при 1 млрд К) – кремний, серу и другие элементы. Самый важный из них – кремний-28, проходящий сложную серию взаимодействий и в итоге превращающийся в железо. Но на железе и похожем на него никеле процесс останавливается. Железо-56 имеет наиболее стабильное сочетание протонов и нейтронов в ядре и наименьшую энергию из расчета на нуклон.
Элементы, появляющиеся на каждом этапе процесса, не полностью разрушаются на следующем. Каждая фаза ядерного горения (после первичной фазы горения водорода) осуществляется в следующем слое, окружающем ядро, и эти слои образуют подобие луковицы (это сравнение принадлежит Хойлу). Таким образом, внутри старой массивной звезды железное ядро окружено слоем горения кремния, затем слоем горения кислорода, углерода, гелия и, наконец, водорода, а также побочными продуктами горения. Внимательные читатели уже заметили, что в этом описании чего-то не хватает. Да, верно: самых легких и самых тяжелых элементов.
Во Вселенной намного больше гелия, чем могли бы произвести звезды, и в свете работ Гамова и его коллег логично предположить, что он появился при Большом взрыве. Хотя Хойл верил в стационарную модель Вселенной, он был готов рассмотреть и другие варианты и описывал свой подход к решению научных проблем как «разделение». Он говорил мне, что ему нравилось прослеживать ход исследований без попыток оценить их или применить к ним методы другой ветви науки. Одним из результатов такого подхода стало то, что, не разочаровываясь в стационарной модели, он смог предоставить чуть ли не важнейшие данные в поддержку концепции Большого взрыва. Сначала, сотрудничая в начале 1960-х с Роджером Тайлером (работа была опубликована в 1964 году), он в подробностях выяснил, как тот процент гелия, который мы наблюдаем во Вселенной в целом, мог быть образован из водорода при условиях, порожденных Большим взрывом. Затем он обратил внимание на другие легкие элементы. Литий, бериллий и бор должны были бы разрушиться при высоких температурах внутри звезд, но их удается обнаружить в звездной атмосфере. B²FH не смогли объяснить их присутствие. Дальнейшие исследования показали, что бериллий и бор могли образовываться в межзвездных облаках, из которых формируются новые звезды, путем взаимодействия тяжелых ядер с частицами высокой энергии, известными как космические лучи (некоторые из них исходят от вспышек сверхновых). Но в 1967 году Хойл совместно с Робертом Вагонером и Вилли Фаулером доказал, помимо всего прочего, что дейтерий и литий могли образоваться в нужных соотношениях в условиях Большого взрыва. Их работа произвела на меня большое впечатление. Я тогда учился в магистратуре Университета Сассекса и приехал в Кембридж на лекцию Вагонера. Перед его выступлением мне все еще казалось, что теории Большого взрыва и стационарной Вселенной одинаково подходят для объяснения происходящего вокруг нас, но после мне не без сожаления пришлось признать стационарную модель несостоятельной.
С тяжелыми элементами уже в 1957 году было меньше сложностей. Их создание требует расходования энергии схлопывания звезд – вспышек сверхновых, которые когда-то заставили Хойла впервые задуматься о ядерном синтезе внутри звезд. Оставалось додумать некоторые детали, но общая картина была уже ясна. Элементы, образующиеся внутри звезды, во время таких взрывов разлетаются по всему космосу, а если старая звезда имеет небольшую массу и не взрывается, то она может отторгать внешние слои и разбрасывать элементы на меньшие расстояния. Получившаяся смесь элементов пронизывает межзвездные облака водорода и гелия, из которых в итоге формируются новые звезды, планеты и, по крайней мере в одном случае, люди.
«В итоге» – очень важная оговорка. Если материал, из которого сформировались Солнце и Солнечная система, создан именно таким образом, это значит, что хотя бы одно поколение звезд уже завершило свой жизненный цикл и рассыпало по космосу необходимые строительные материалы. Если Солнцу около 4,5 млрд лет, то Вселенной должно быть по меньшей мере на несколько миллиардов больше. К середине 1950-х годов измерения возраста звезд вынудили космологов изменить свои представления о том, сколько лет Вселенной. По сути, звезды давали им намного более жесткие указания на временные рамки своего существования, чем приведенное грубое предположение.
Назад: Глава 2 0,008 В самом сердце Солнца
Дальше: Глава 4 13,2 Возраст звезд