Книга: Мозг во сне. Что происходит с мозгом, пока мы спим
Назад: Глава 4 Уроки колючего муравьеда
Дальше: Глава 6 Ночная психотерапия

Глава 5
Бег в лабиринте

Сон – это сама память, изменяющаяся прямо на глазах.
Берт Стейтс
У себя в Массачусетском технологическом институте Мэтью Уилсон целыми днями наблюдает за тем, как спят крысы: «Меня спрашивают, что интересного в крысиных снах, а я отвечаю, что меня интересуют не крысы сами по себе, а то, как в снах выражается память и как это соотносится с нашим субъективным опытом». Студентом он изучал искусственный интеллект, но когда понял, что невозможно построить по-настоящему интеллектуального робота без понимания того, как функционирует мозг, то переключился с инженерной науки на нейробиологию. «Нам надо было разобраться, каким образом то, чем мы занимались днем, влияет на наши сны, как это в них проникает и что это дает нам – кроме возможности сделать очередную запись в “сонном дневнике”. Теперь мы понимаем, что такое влияние существует, что ночная активность мозга – это основополагающая часть обучения и формирования долговременной памяти», – говорит он.
Усмехаясь, Уилсон показывает на горы бумаг, которые громоздятся на всех возможных поверхностях в его кабинете: «Навести здесь порядок – задача невероятной сложности, перед мозгом стоит приблизительно такая же задача. В течение дня я могу урывками сортировать всю эту информацию, отбирать то, что стоит сохранить, раскладывать записи по файлам так, чтобы до них было удобно добраться, но все-таки куда эффективнее было бы заниматься этим после работы, когда меня никто не отвлекает». Он считает, что, когда разум засыпает, у мозга появляется замечательная возможность отфильтровать дневной опыт, оценить его относительную значимость, а затем отправить нужное в огромное хранилище предыдущего опыта – в долговременную память. Потому что в это время у нас нет необходимости вступать в отношения с внешним миром.
Убежденность Уилсона основана на эксперименте, в ходе которого ему привалила редчайшая удача воскликнуть «Эврика!» – такое восклицание можно считать высшей точкой карьеры любого ученого. Задавшись вопросом о том, как работает память, Уилсон решил, что куда удобнее проводить эксперименты на крысах, чем на людях, потому что крыс легче контролировать во время тех испытаний, которым он собирался их подвергать. К тому же он мог точнее анализировать как дневные, так и ночные реакции, поместив микроэлектроды в выбранные им клетки мозга.
Уилсон и его сотрудники натренировали крыс бегать по лабиринту в поисках аппетитно пахнувших шоколадом кусочков пищи. С помощью имплантированных в мозг животных сенсорных датчиков они постоянно регистрировали паттерн импульсов скоплений нейронов, отвечающих за ориентацию животных в пространстве. Нейроны, которые интересовали ученых, находились в гиппокампе – том участке мозга, который изначально задействован в консолидации памяти как у крыс, так и у людей.
Но они также фиксировали, что происходило в этих клетках, когда крысы спали, – и таким образом открыли то, что оказалось потрясающим ментальным воспроизведением полученного опыта. Когда спящие крысы входили в фазу REM и, как принято считать, видели сны, импульсы возникали в тех же скоплениях нейронов, что и при дневной беготне по лабиринту, – такая картина наблюдалась почти в половине из 45 зарегистрированных ими REM-фаз. А это, в свою очередь, подтверждало мысль Джонатана Уинсона о том, что биологическое назначение сновидений состоит в тренировке навыков выживания. Повторы импульсов были настолько точными, что Уилсон мог даже показать, какому именно месту в лабиринте соответствовал тот или иной импульс – где находилась крыса во время дневного своего путешествия и двигалась ли она в этот момент или стояла на месте. При этом путешествие крысы по лабиринту во сне занимало столько же времени, сколько занимало и путешествие наяву. «Это было потрясающее переживание – наблюдать, как животные в течение двух минут снова бегали по лабиринту. Но то был “бег в уме”, во время сна. Вряд ли когда-либо на мою долю выпадет переживание столь же волнующее! То, что я наблюдал, было не рассказом о памяти или моими догадками по поводу памяти: это была память в действии, зримая работа памяти. Чудо науки не в том, что она подтверждает гипотезу, – чудо происходит, когда получаешь данные, на которые и не рассчитывал», – говорит Уилсон.
Результаты этого исследования, опубликованного в 2001 году, стали ключевым компонентом постоянно растущего массива научных данных, указывающих на то, что активность мозга во время фазы быстрого сна необходима для консолидации памяти. Современные исследования, однако, указывают на то, что это происходит не только в стадии REM, но и в других стадиях сна. Засыпание, медленный сон, фаза быстрого сна – все они играют различные роли в образовании специфических типов воспоминаний, они также могут взаимодействовать в сложной хореографии, необходимой для кодирования информации ради длительного ее хранения. Время, которое мы проводим во сне, – это время, необходимое для включения в ткань памяти новых воспоминаний, и не только потому, что мозг свободен от насущных задач, например решения того, как увернуться от мчащегося на тебя грузовика, но потому что в это время изменяется уровень химических веществ, циркулирующих в мозгу, и происходят физиологические изменения, создающие идеальные условия для реорганизации и укрепления памяти.
Чтобы понять, как влияет на поведение человека та информация, которая обрабатывается мозгом во время сна, нам следует внимательнее присмотреться к тому, как вообще работает память. Прежде всего отбросьте всяческие представления о том, что воспоминания – это нечто вроде ментальных видеозаписей всего, что вам пришлось пережить, хранящихся в центральной файловой системе мозга. Любой наш новый опыт – изучение новой компьютерной программы, велосипедная прогулка в лесу, разговор за обедом с друзьями – сначала хранится в гиппокампе, похожей на подкову структуре в центре мозга, которая повернута наружу и связана с миндалевидным телом, которое, в свою очередь, отвечает как за нашу первичную эмоциональную реакцию, так и за то, какими эмоциями окрашены наши воспоминания. Гиппокамп принимает от органов чувств и от этих эмоциональных цепей всю информацию, касающуюся нашего опыта, и служит своего рода центром обмена информацией, необходимой для построения памяти.
Чтобы опыт закрепился в памяти, информация из гиппокампа должна быть обработана высокоуровневой процессинговой системой неокортекса, где ее сравнивают с ранее закодированным опытом и оценивают. В процесс консолидации также входит отбрасывание того, что мозг считает несущественным. Нобелевский лауреат Фрэнсис Крик и его коллега Грэм Митчисон выступили с теорией о том, что на самом деле мы «видим сны, чтобы забывать». После получения в 1962 году Нобелевской премии за открытие структуры ДНК Крик заинтересовался природой сознания. В сферу его интересов, естественно, попал и процесс сновидения, и в 1983 году он предположил, что во время сна память действительно консолидируется и реорганизуется. Согласно выдвинутой Криком и Митчисоном теории «обратного обучения», этот процесс реорганизации памяти включается с помощью хаотичной стимуляции переднего мозга стволом головного мозга. Лишняя информация и не имеющие большого значения мысленные ассоциации, которые подцепили нейронные сети, уходя прочь, появляются в сновидениях, и этим объясняется их причудливый, странный характер. «Ради оптимизации хранения и извлечения воспоминаний мозг должен проделать работу, которая в компьютерном мире называется сборкой мусора, очисткой жесткого диска. Избавление от несущественных фактов и неверных ассоциаций помогает консолидировать те факты, которые важны для будущего поведения. Вот почему эта теория обратного обучения представляется одним из вариантов объяснения того, что фаза быстрого сна необходима для консолидации памяти», – объясняет Кристоф Кох, сотрудник Крика.
Рабочая память состоит из информации, которая присутствует в сознании в данный момент, – это либо только что обретенные знания, либо то, что мы на какой-то срок извлекли из долговременной памяти. Однако наша способность сознательно удерживать информацию в этом недолговечном буфере обмена удивительно ограничена. Если кто-то назовет вам произвольную серию чисел и тут же попросит вас их повторить, вы вряд ли способны удержать их все в памяти и, словно попугай, сможете повторить не более семи цифр за раз – столько, сколько обычно содержится в телефонном номере.
Когда мы удерживаем информацию в памяти, происходит следующее: в группе связанных между собой нейронов возникает определенный паттерн импульсов, который объединяет все элементы именно этого специфического воспоминания. Когда это воспоминание «проигрывается» заново, оно реактивирует паттерн импульсов тех же самых нейронов, и это приводит к анатомическому изменению, благодаря чему связи между нейронами укрепляются, и с каждым новым «проигрыванием» воспоминания они становятся все сильнее. И, закрепившись таким образом, эти поначалу кратковременные воспоминания переходят в долговременную память. Больные, чья память пострадала из-за повреждений мозга, говорят, что самыми хрупкими оказываются недавние воспоминания – то, что они узнали или пережили за дни, недели или месяцы до того, как мозг был поврежден. А вот более давние воспоминания почти не страдают, потому что у них было больше возможностей для консолидации. Чем чаще реактивируются воспоминания, тем глубже они впечатываются. И спустя какое-то время – а оно может занимать и несколько дней, и годы – воспоминания становятся закодированными в неокортексе, и для того, чтобы вызвать их к жизни, гиппокамп уже не нужен.
Мы формируем два основных типа памяти. В процедурной (ее еще называют имплицитной) памяти хранятся знания о том, как что-либо делать, например, как ездить на велосипеде. То, что содержится в такой памяти, и сохраняется в ней, и может быть из нее извлечено без нашего сознательного участия. Например, нам не надо напрягаться и вспоминать, как следует ставить одну ногу перед другой для того, чтобы ходить, или сознательно обдумывать, каким пальцем нажимать определенную клавишу на клавиатуре компьютера, раз мы уже научились набирать текст. То есть мы консолидировали в памяти эти умения и навыки. Точно так же, учась говорить, мы бессознательно впитываем правила грамматики.
Многие психологи считают, что какие-то события могут активировать ранние детские воспоминания как воспоминания процедурные и повлиять на наше поведение, даже если эта активация произошла без нашего сознательного участия. Предположим такую ситуацию: родители уехали на чью-то свадьбу и оставили малыша с тетушкой Агатой. Так уж случилось – самолеты не летали или произошло еще что-то непредвиденное с транспортом, – но им пришлось задержаться на пару дней. Маленький мальчик впервые расстался с родителями, и неудивительно, что он испытывал горе и беспокойство. Осознанных воспоминаний о тех днях у него не сохранилось, но потом, когда к ним являлась с визитом тетя Агата, он испытывал необъяснимую дрожь в коленках при ее виде: эта реакция была основана на процедурных воспоминаниях, связанных с тетей Агатой.
Как считает нейробиолог из Университета Нью-Йорка Джозеф Леду, та система мозга человека, которая отвечает за процедурное обучение, возникла еще с появлением первых млекопитающих и работает независимо от нашего сознания, но не потому, что подчиняется какому-то грандиозному плану, призванному скрывать от нас самих аспекты нашей ментальной жизни – как мог бы трактовать это Фрейд, – а просто потому, что сознательный мозг не может напрямую воздействовать на эту систему. Известный своими исследованиями биологической основы эмоций и памяти, Леду указывает на то, что процедурное обучение формирует наши основные характеристики: походку, манеру разговора, то, на что мы обращаем внимание и что игнорируем, как мы эмоционально реагируем на неудачи или неблагоприятные обстоятельства. «Память – это то, что делает нас такими, какие мы есть, – пишет Леду в своей книге “Синаптическое Я”. – Однако имейте в виду, что воспоминания распределены по многим системам мозга и не всегда, и даже далеко не всегда, мы можем сознательно их извлечь».
Вторая категория памяти (а именно она приходит на ум, когда люди говорят о памяти) доступна нашему сознанию и называется памятью декларативной, или эксплицитной: это когда мы знаем «что», но не «как». В свою очередь, декларативные воспоминания существуют в двух вариантах. Семантическая, или фактическая, память – это общие знания о мире, как, например, знание того, что Джон Кеннеди был убит 22 ноября 1963 года или что «фольксваген» – это автомобиль определенной формы и размера. И есть так называемая эпизодическая, или автобиографическая, память, в ней хранится то, что происходило лично с вами: то, чем вы занимались в тот роковой ноябрьский день 1963 года, или как в одно прекрасное давнее лето вы ехали в разбитом красном «фольксвагене» со своим лучшим другом по колледжу. Декларативные воспоминания обычно вызываются эксплицитно, то есть явным образом: мы знаем характер информации и намеренно вызываем ее в сознании, даже если порою попытки эти бывают безуспешными – как, например, попытки вспомнить чье-то имя или название навязчивой песенки. Поражение гиппокампа приводит к амнезии. Страдающие амнезией сохраняют доступ к процедурной памяти и к некоторым моментам в фактической памяти: они, как правило, помнят, как говорить, как обращаться с чашкой, как открывать дверь или даже как водить автомобиль, но утрачивают автобиографическую память.
Автобиографическая память человека представляет собою более сложную и продвинутую версию той системы памяти, которой пользовались крысы Мэтью Уилсона, когда воспроизводили во сне свое путешествие по лабиринту. В гиппокампе крыс есть клетки, которые называют «нейронами места»: они инициируются, когда крыса находится в определенном месте в пространстве, и затем снова инициируются, когда крысу опять помещают в то же место – или, как показало исследование Уилсона, когда они во сне мысленно воспроизводят пребывание в этом месте. Людская память привязана к местоположению таким же образом. Исследование лондонских таксистов с помощью визуализации мозга показало, что, когда таксистам просто показывали на карте маршруты, по которым они ездили чаще всего, в мозгу активировались те же самые участки, которые были задействованы, когда они действительно ездили по этим маршрутам. Но поскольку человеческий мозг развивался комплексно, гиппокамп стал играть более существенную роль и стал ключевым элементом системы отслеживания эмоционально окрашенной автобиографической памяти.
Все эти виды памяти хранятся в нейронных сетях, разбросанных по разным участкам мозга. Невролог Антонио Дамасио пишет в своей книге «Чувство происходящего» (The Feeling of What Happens): «В мозгу нет какого-то одного конкретного места, куда можно заявиться, например, со словом “молоток” и получить точное словарное определение того, что есть молоток». На самом деле в мозгу содержится какое-то количество различной информации по поводу молотка, соответствующей нашим прошлым взаимодействиям с молотками: их форма, движения руки при работе молотком, результаты этой работы, а также слово, обозначающее этот предмет в нашем родном языке. И когда мы вызываем в воображении образ молотка, возникают и все эти составляющие, при этом мы не замечаем никаких «стыков» между ними: они появляются все разом.
Так же сохраняются и всплывают автобиографические воспоминания о событиях, происходивших в нашей жизни. Звуки, виды, эмоции, ассоциирующиеся с определенным опытом, – все они закодированы в различных нейронных сетях. Когда мы вспоминаем день свадьбы или праздник по случаю собственного десятилетия, перед нашим мысленным взором всплывает не какой-то моментальный снимок, застывший кадр: мы скорее мгновенно составляем мозаику из ярких кусочков, извлеченных из разных хранилищ (аромат цветов и звуки музыки в церкви; вкус шоколадного торта, радость, которую вы испытали, увидев главный подарок – щенка с праздничным бантиком на шее).
Какое-то нынешнее переживание может вызвать к жизни лишь один из кусочков этой мозаики, но может включить всю сеть взаимосвязанных клеток мозга, и воспоминание всплывает в его целостном виде. В своем знаменитом цикле из семи романов «В поисках утраченного времени» Марсель Пруст блестяще иллюстрирует этот процесс, когда описывает ощущение невероятной радости, «беспричинного восторга», охватившего рассказчика, когда он попробовал размоченное в чае печенье «мадлен». Затем он понимает, что ощущение счастья вызвано именно этим вкусом – такую же радость он испытывал ребенком, когда по воскресеньям навещал любимую тетушку и она угощала его размоченным в чае печеньем. С тех пор он уже больше никогда не ел этого печенья, но вкуса его было достаточно, чтобы автоматически вызвать в памяти эмоционально окрашенные картинки давних воскресных чаепитий. «Пруст, более чем на полстолетия опередив ученых, добился невероятного понимания того, как возникает воспоминание – оно возникает как результат тонкого взаимодействия между прошлым и настоящим», – пишет в своей книге «В поисках памяти» (Searching for Memory) декан факультета психологии Гарвардского университета Дэниел Шактер.
Опыт, окрашенный сильными эмоциями, запоминается лучше именно благодаря связанным с ним чувствам. Однако существует исключение из этого правила. Острое эмоциональное переживание, в особенности стресс, повышает концентрацию гормона кортизола, который нарушает деятельность гиппокампа и может ослабить способность сформировать автобиографическую память относительно этого тревожащего опыта, хотя процедурные воспоминания могут сохраниться, – феномен, часто встречающийся у людей, страдающих посттравматическим стрессовым расстройством. На воспоминания, связанные с сильными эмоциями, также влияет наше эмоциональное состояние в тот момент, когда они к нам возвращаются. Например, ученые выяснили, что, когда мы переживаем какие-то неприятности, в памяти всплывают воспоминания о других нерадостных событиях. Но каждый раз, когда мы возвращаемся к эмоциональным воспоминаниям, их могут в какой-то степени окрашивать и изменять то, о чем мы думаем и что чувствуем в тот момент, когда они вновь всплывают в нашем сознании. Как считает Джозеф Леду, воспоминания – это «конструкции, которые мы складываем в момент их извлечения», а информация, сохраненная при первичном получении опыта, – лишь один из строительных блоков, используемых при сооружении воспоминания.
То, что мы видели или слышали после того, как произошло само событие, также может формировать наше воспоминание – такое часто случается во время дачи показаний свидетелями преступления: их показания по определению не могут быть точными, поскольку на них влияют рассказы других очевидцев. Вот яркий пример: в 2002 году Вашингтон терроризировали два снайпера, отстреливавших жертв на стоянках, автозаправках и в других людных местах. Свидетели первого происшествия говорили о белом фургоне, на большой скорости скрывшемся с места преступления, после чего очевидцы следующих преступлений рассказывали о том, что видели такой же белый автомобиль. На самом деле, как потом выяснилось, снайперы разъезжали на старом голубом «шевроле», но такова была сила первого предположения, повлиявшего на последующие показания, что полиция целенаправленно искала белую машину.
Наша память о прошлом в значительной мере влияет на то, как мы воспринимаем настоящее и формируем новые воспоминания, и в чисто физиологическом плане. «Опыт закодирован в сетях мозга, а их соединения уже были сформированы предыдущими столкновениями с миром, – говорит Дэниел Шактер. – Уже существующие знания в значительной мере влияют на то, как мы кодируем и сохраняем новые воспоминания, таким образом придавая характер, текстуру и качество тому, что мы будем вспоминать потом». Мы помним только то, что мы закодировали, и то, что мозг решил закодировать на основании нашего прошлого опыта, знаний и потребностей.
В период бодрствования мы определенно консолидируем память и перекраиваем наши ментальные модели, однако, как указывают многие исследования, значительная часть этой работы происходит, когда мы спим и видим сны, и это напрямую влияет на наше дальнейшее поведение. «Мозг постоянно оценивает новый опыт, чтобы понять, насколько он соответствует ментальной модели, построенной предыдущими воспоминаниями, и проверить, до какой степени эта модель способна предвидеть новые события и руководить решениями. И бо́льшая часть этой переоценки, судя по всему, происходит во сне», – указывает Мэтью Уилсон из Массачусетского технологического института.
О том, каким образом память влияет на сны, говорится в рассказах о сновидениях нейрофилософа Оуэна Фланагана, которые он опубликовал в своей книге «Спящая душа». Первый сон он помнит с пятилетнего возраста, второй записал в 48 лет:
Сон 1955 года: «За мной гналась стая волков. Я был до такой степени испуган, что не мог быстро бежать. Я проснулся, задыхаясь от ужаса, и даже не мог закричать».
Сон 1997 года: «Я участвовал в военных маневрах, которые проводило ЦРУ. Мое подразделение было крайне неудачно расположено по отношению к позициям противника, и мы были плохо вооружены. Мне было очень страшно. Я пытался объяснить своим товарищам – при этом все время прерывался на то, чтобы сходить посмотреть на свой автомобиль, в котором как раз ремонтировали сцепление, – что наши полуавтоматические ружья, нечто среднее между мушкетом и карабином М1, но без магазина, никуда не годятся. После этого я произнес антивоенную речь, в которой призывал не слушаться приказов правительства. Кто-то меня поддерживал, кто-то надо мной смеялся. Затем вдруг появился командир нашего подразделения, на нем была шляпа с пером и клетчатый шотландский килт, он держал оружие так, как будто не знал, как с ним управляться. Но он явно был нашим лидером. Я был удивлен и напуган. Я забрал у автомехаников свою машину, и они поздравляли меня с победой».
Анализируя составляющие сновидений, связанные с памятью, Фланаган указывает на то, что сон пятилетнего ребенка куда проще взрослой версии отчасти потому, что набор воспоминаний ребенка ограничен его небольшим опытом. Это типичный сон преследования, а в качестве преследователей его мозг выбрал волков потому, что как раз в этом возрасте он не раз слушал сказки о трех поросятах и Красной Шапочке. Сон же, который он видел в 48 лет, опирается на куда более богатые воспоминания, и в нем нашел воплощение опыт, полученный в разные периоды жизни. Его юность пришлась на период войны во Вьетнаме, и ему довелось и поучаствовать в антивоенных демонстрациях, и послужить в армии. Приходилось ему и ремонтировать автомобили, и, хотя в то время, когда он видел этот сон, он уже был университетским профессором, воспоминания о работе автомехаником также нашли воплощение в сюжете сна. «В обоих сновидениях мой разум соткал из воспоминаний, из прошлого опыта свои истории, – пишет Фланаган. – Но каким образом это произошло и почему разум сложил именно такие пазлы – вот что интересно». Фланаган добавляет, что эмоции, которыми были наполнены сны, в особенности страх, были активизированы миндалевидным телом, отвечающим за реакцию борьбы или бегства.
Наша ночная автономная обработка дневных событий включает в себя и элементы автобиографической памяти, которая в значительной мере влияет на нашу личность. То, что мы закладываем в автобиографическую память и как мы объединяем это с тем, что заложили в нее ранее, вносит свои коррективы в развитие того, что невролог Антонио Дамасио называет автобиографическим «я». Это ощущение «я» основано на прошлом опыте, но оно также позволяет нам представлять и планировать будущее. «Автобиографическое “я” всецело зависит от постоянной реактивации избранных блоков автобиографических воспоминаний, – говорит Дамасио. – Идея о том, что все мы постепенно создаем самих себя, свой имидж, то, что мы представляем собой физически и духовно, то, чему мы социально соответствуем, зиждется на автобиографической памяти, накопленной годами опыта и подвергающейся постоянной коррекции. Я считаю, что это самосозидание происходит по большей части неосознанно, как неосознанно происходит и коррекция».
Бо́льшая часть этой постоянной коррекции, перестройки автобиографической памяти и на самом деле может происходить во сне, за пределами нашего осознанного понимания, хотя наша «дневная» жизнь в огромной мере влияет на то, какие блоки воспоминаний выбираются для повторного проигрывания в качестве материала сновидений. «Похоже, что, когда мы спим, наш мозг отчаянно трудится, чтобы сохранить тот опыт, который мы пронесем с собою через всю нашу жизнь, – говорит Дэниел Шактер. – Важные события, о которых мы часто вспоминаем наяву, могут так же часто “проигрываться заново” во сне. Тот опыт, о котором мы наяву почти не вспоминаем, вполне возможно, и по ночам воспроизводится редко, а это тот путь, по которому события из памяти уходят».
Если память – это тот материал, из которого ткутся сновидения, то каковы правила, которыми руководствуется мозг, выбирая то, что следует подвергнуть «обработке сном», и каким образом эти события интегрируются в уже существующие воспоминания? В 1978 году Говард Роффварг и его коллеги по Медицинскому колледжу Альберта Эйнштейна провели эксперимент, целью которого было выяснить, каким образом и когда дневной опыт проявляется в сновидениях. Девятерым студентам выдали очки, отфильтровывавшие голубой и зеленый цвета спектра, поэтому все, что они видели, было окрашено в красноватые тона. Они носили очки не снимая от пяти до восьми дней подряд и постепенно привыкали к этому измененному миру.
Спали они в лаборатории, где у них снимали электроэнцефалограмму. Исследователи надеялись, что, окрасив все видимое в определенный цвет, они смогут проследить, каким образом мозг перерабатывает происходящее в сновидения, если испытуемые расскажут, когда и каким образом эта красноватая окраска возникнет в их сновидениях. Студентов будили в фазе быстрого сна, и примерно половина первых сновидений ночи действительно была окрашена в красное, но последующие сновидения были разноцветными. В следующие ночи окраска появлялась уже в более поздних фазах быстрого сна – также примерно в половине случаев, а сновидения, случившиеся в течение первого быстрого сна, уже были окрашены более чем на 80 процентов.
Исследователи предположили, что материал, из которого строились неокрашенные сны, был извлечен из воспоминаний, сохраненных до того, как студенты надели очки, но в некоторых случаях студенты рассказывали о появившихся в их снах событиях, которые происходили с ними до эксперимента, но которые все равно виделись в красном. Некоторые сны носили комбинированный характер: например, комната, в которой во сне находился студент, была обычной, а вот пейзаж за окном был красноватого оттенка. И всего лишь через день после того, как очки забрали и студенты вернулись к нормальному восприятию действительности, красный оттенок исчез из их сновидений. Все, чего добились этим экспериментом исследователи, – это вывод о том, что дневной опыт быстро проникает в сновидения в процессе, в который вовлечено сложное взаимодействие между недавним опытом и памятью. В общем, хореография этого танца так и осталась тайной.
Одним из тех, кто пытался проникнуть в эту тайну, был Роберт Стикголд, доцент кафедры психиатрии в Гарварде. Стикголд разработал новый подход к мозгу, чтобы убедить его открыть свои законы: он исследовал те стадии сна, которые прежде мало интересовали ученых. В период засыпания мы обычно видим то, что называют гипнагогическими образами, – галлюцинаторные визуальные образы и ощущения, которые, в отличие от большинства сновидений, не связаны каким-то сюжетом. Стикголд заинтересовался этим феноменом более десяти лет назад, когда проводил отпуск в Вермонте. «Я целый день шагал по тропам и взбирался на скалы, – вспоминает Стикголд, – а когда лег спать, то увидел, будто я снова на горе, в одном особенно опасном месте, где мне пришлось буквально приклеиться к скале. Я пару раз встряхивался, отгоняя от себя этот сон, но каждый раз, начиная клевать носом, снова чувствовал, как руки мои вцепляются в скалу. Поздно ночью я опять проснулся и попытался, засыпая, вернуть те образы и ощущения, но не смог. А вот в самом начале ночи не мог от них избавиться». Он начал делать записи того, что наблюдал при засыпании – в тех случаях, когда у него были такие же четкие спонтанные повторы случившегося днем, и обнаружил, что это происходит, когда его дневная жизнь полна какими-то необычными событиями, например, когда он сплавлялся на плотах по горной реке или ходил под парусом в бурных водах.
Интерес у Стикголда был и личным, и научным. Он начинал свою карьеру как биохимик, но, учась в аспирантуре Гарварда, увлекся нейрофизиологией. Там он прослушал курс, который вел Аллан Хобсон, и в 1990 году начал работать в его лаборатории. «Мне хотелось привнести в изучение сновидений, которое представлялось мне методом проникновения в работу мозга, строгие научные принципы биохимии», – вспоминает Стикголд.
Пытаясь узнать больше о том, когда мозг отбирает воспоминания и какие из них он припасает на будущее, Стикголд сосредоточился на периоде засыпания: он хотел понять, можно ли управлять содержанием возникающих в этой фазе образов. Естественно, просить испытуемых карабкаться по скалам или сплавляться на плотах он не мог – это гарантировало бы появление у них кошмаров, и Стикголд решил прибегнуть к более мягким, но запоминающимся впечатлениям. Результаты поразили даже его.
Для начала он набрал 27 добровольцев, которые согласились играть в «Тетрис» – компьютерную игру, где игрокам следовало собирать геометрические фигуры из различных падающих блоков, – по семь часов в день на протяжении трех дней. Десять из добровольцев играть умели – они и раньше играли в «Тетрис» на приставках, остальные были новичками. Стикголд включил в эту группу и пятерых больных амнезией, просто чтобы посмотреть, проникнут ли какие-либо элементы игры в образы их сновидений – он считал, что это вряд ли возможно.
В первые две ночи добровольцев будили спустя несколько минут после засыпания, и более 60 процентов участников эксперимента рассказывали, что как минимум один раз в их снах появлялся «Тетрис», при этом все рассказывали об одном и том же образе – сыплющихся сверху блоках. Большинство таких сновидений пришлось на вторую ночь. «Складывалось впечатление, что человеку требуется больше времени провести за игрой, чтобы мозг решил включить этот опыт в сновидения в период засыпания», – рассказывал Стикголд.
Как ни странно, страдающие амнезией также рассказывали о появлявшихся в снах образах «Тетриса», хотя днем они не помнили о том, что накануне играли в эту игру и как они в нее играли, и исследователям каждый раз приходилось заново объяснять ее суть. «Я был поражен, потому что мы думали, что если и есть стадия сна, которая зависит от эпизодической (автобиографической) памяти, отсутствующая у страдающих амнезией, так это период засыпания», – говорит Стикголд.
Тот факт, что больные амнезией видели при засыпании образы из «Тетриса», указывает на то, что автобиографические воспоминания, связывающие нас с определенными элементами реальности, такими как имена, время, места действия, воспоминания, которые мы можем вызвать сознательно, отнюдь не являются источником образов в сновидениях, возникающих в период засыпания. Получалось, что эти образы являются из того вида памяти, которая у больных амнезией остается нетронутой, – процедурных и фактических воспоминаний, порождаемых в высоких слоях неокортекса, куда поступает первичная информация от органов чувств и где формируются ассоциации с уже существующими автобиографическими воспоминаниями. Ученые долгое время полагали, что именно это является источником образов и воспоминаний для галлюцинаторных сновидений в фазе REM и в других более поздних фазах сна. Но поскольку для периода засыпания оказалось характерным включение очевидных отражений дневного опыта, Стикголд пришел к выводу, что его открытия указывают на кору головного мозга как на источник всех образов в сновидениях, поскольку она связывает фрагменты недавнего опыта с памятью: «У нас появились экспериментальные доказательства того, где формируются сновидения, и, поскольку процесс их формирования был одинаковым как для здоровых людей, так и для тех, кто страдает амнезией, эти доказательства соответствовали высоким научным стандартам, которые приняты в биохимии». Подтверждением его слов был и факт появления отчета об исследованиях с применением «Тетриса» в журнале Science – это была первая за тридцать лет публикация об исследованиях сновидений в журнале, известном своими жесточайшими научными требованиями.
Результаты исследования также показали, что неосознанные воспоминания о «Тетрисе» проявлялись и в дневном поведении страдающих амнезией. Во время эксперимента их приходилось каждый день обучать тому, как играть, но однажды сотрудник Стикголда заметил, что одна из больных автоматически положила пальцы на те клавиши, которыми управлялась игра: «Она не осознавала, почему это делает, но тем не менее сделала, – рассказывает Стикголд. – Воспоминания могут быть активированы в нашем мозге без нашего сознательного усилия, однако же они управляют нашим поведением».
Эксперимент также продемонстрировал, как мозг отсекает информацию, которую он считает несущественной: никто из испытуемых не видел в процессе засыпания обстановки помещения, где проводились тесты, – перед их мысленным взором представали только образы, непосредственно связанные с игрой. Мозг также создавал собственные связи: одна из испытуемых, которая задолго до эксперимента играла в «Тетрис» на игровой приставке, где блоки были разноцветными и их падение сопровождалось характерными мелодиями, видела в снах именно такой вариант игры, хотя в эксперименте игра была в черно-белом варианте и без музыки. Замена новых образов старыми продемонстрировала, что мозг не просто заново проигрывает воспоминания о дневном опыте, но путем ассоциаций их трансформирует. В следующем эксперименте Стикголд и команда заставили испытуемых играть в более активную игру аркадного типа Alpine Racer II, и образы, возникающие при засыпании, были более яркими. Четырнадцать из шестнадцати испытуемых говорили о том, что, засыпая, видели образы из игры, о том же говорили и трое испытуемых, которые сами не играли, а только наблюдали за тем, как играют другие, – то есть теория Стикголда срабатывала почти на 90 процентах испытуемых.
Я сама участвовала в эксперименте в лаборатории Стикголда и провела половину дня за игрой. Я стояла на платформе, наклонявшейся в разные стороны и имитировавшей неровности и повороты лыжной трассы, а руками держалась за «лыжные палки» – рычаги управления игрой, в ходе которой я чувствовала себя участницей соревнований по скоростному спуску. Мое внимание было приковано к экрану, на котором представали самые разные сложности, которые мне приходилось преодолевать: узкие проходы между скалами, крутые повороты. В эту ночь, стоило мне лечь в постель и закрыть глаза, как передо мной возникли образы из игры. Перед тем как выключить свет, я читала в кровати газету и полагала, что, засыпая, увижу что-то из прочитанного, однако то, что я увидела на самом деле, послужило лишь еще одним доказательством правоты Стикголда.
«Мы считаем, что наш разум принадлежит только нам, но у мозга существуют свои собственные законы, согласно которым он реактивирует наши воспоминания и предъявляет их разуму, а подобными исследованиями мы пытаемся его перехитрить и заставить продемонстрировать некоторые из этих законов, – говорит Стикголд. – Память хранится в коре, но хранится по-разному, и во время сна мозг буквально работает как веб-браузер, сортируя новый опыт по различным системам памяти, чтобы сформировать ассоциации и связи, помогающие нам видеть и понимать смысл окружающего нас мира».
Стикголд предполагает, что доступ к автобиографической памяти заблокирован во время всех сновидений, а не только тех, которые возникают в период засыпания. Не получая никакой информации от окружающего мира или не имея доступа к системе памяти, которая обычно организует наш мир во время бодрствования, мозг вынужден искать творческие пути для связи данных, полученных в результате нового опыта, с уже существующими воспоминаниями. Укладываясь в более сложные повествовательные сновидения, которые посещают нас на поздних стадиях сна, новый опыт проникает в них какими-то странным образом связанными обрывками, а не настоящим повтором автобиографических воспоминаний, как показало проведенное в 2003 году исследование Магдалены и Роура Фосси – коллег Стикголда по гарвардской лаборатории нейрофизиологии. По их просьбе 29 человек в течение двух недель скрупулезно записывали все, чем они занимались, с чем сталкивались и по поводу чего переживали в течение дня, плюс к этому они записывали все сны, которые только могли вспомнить. Когда записи сновидений сравнили с записями дневного существования, то стало видно, что 65 процентов сновидений включали в себя какие-то аспекты дневного опыта и только два процента сновидений содержали воспоминания из автобиографической памяти; включения реального опыта содержали как минимум три его составляющих: место действия и какой-либо из персонажей, объектов или действий.
Не во всех сновидениях присутствовали элементы дневных переживаний – на самом деле некоторые исследования показывают, что то, что Фрейд назвал бы «дневными остатками», проявляется лишь в почти половине из них. Судя по экспериментам, которые еще с конца 1980-х ведет Тор Нильсен, руководитель Центра изучения сна в монреальской больнице Сакре-Кёр, когда мозг вплетает эти элементы в сновидения, он следует определенной модели: дневные переживания появляются сначала на ранней стадии и в некоторых случаях снова возникают спустя неделю. Эту модель он назвал «эффектом запаздывания сновидения». То есть это вполне типично, чтобы что-то из дневного переживания появлялось в сновидениях в последующую ночь в виде персонажа, места действия или другого присущего этому переживанию элемента, извлеченного из расположенных в коре сетей, которые первыми получают информацию об опыте. На следующую ночь вероятность того, что в сновидении возникнет элемент опыта, полученного в позавчерашний день, снижается наполовину. Если опыт этот возникает в сновидении, то не раньше чем через неделю. В ходе дальнейших исследований Нильсен обнаружил, что «эффект запаздывания сновидения» более характерен для женщин (у мужчин он встречается редко – их опыт проявляется в первую или вторую ночь) и что материал, который заново проигрывается через неделю, чаще всего бывает эмоционально значимым. «Бывают сновидения, о которых говорят, что они задают настроение на весь последующий день или что в результате их люди становятся чувствительными по отношению к вещам, которые обычно игнорируют, – говорит Нильсен. – Такие сновидения обычно пропитаны чувством печали, гневом – но не страхом. Это сновидения-озарения, а не кошмары».
Нильсен также обнаружил, что «эффект запаздывания сновидения» после особенно тревожащего или способного вызвать страх опыта проявляется несколько позже. Когда он продемонстрировал группе добровольцев крайне неприятный фильм о том, как индонезийские крестьяне в ритуальных целях убивают буйвола, самые отталкивающие моменты проявились в сновидениях спустя три дня после просмотра, а повторное их появление случилось еще через неделю, то есть на десятый день. Эта модель соответствует рассказам тех, кто совершил свой первый прыжок с парашютом: этот опыт возник в сновидениях через три дня, а потом – на десятый день после прыжка.
«Эффект запаздывания сновидения», возможно, соответствует тому времени, который необходим гиппокампу для переработки информации и постепенной загрузки ее в неокортекс, где она вновь становится доступной в качестве пищи для сновидений, и Нильсен считает, что особо стрессовые события впервые проявляются в сновидениях с отсрочкой потому, что мозгу требуется больше времени для обработки связанных с этим событием негативных эмоций. Таким образом, роль сновидения в консолидации памяти эволюционировала у людей – благодаря нашему дару, или проклятию, быть существами эмоциональными – от первоначальной тренировки навыков выживания в нечто куда более сложное.
Процесс обучения – один из вариантов консолидации памяти, и не важно, что именно вы учите: это может быть первым уроком игры на фортепиано или зубрежкой дат перед экзаменом по истории. Исследователи собрали множество доказательств того, что сновидения вкупе со сложной комбинацией ментальной активности во время других стадий сна играют значительную роль в усвоении новой информации и навыков. «Многие мои коллеги-ученые занимаются музыкой, и они рассказывали о том, как, разучивая какие-то новые музыкальные пьесы, долго и безуспешно бились над особенно трудными местами, а потом, после пары дней, точнее ночей, у них все вдруг получалось само собой, – рассказывает Дэн Марголиаш, профессор биологии Чикагского университета. – Почему так, что это может означать? Мы просто обязаны задавать такого рода вопросы и изучать их столь же усердно, как изучаем другие поведенческие аспекты».
Подобно Мэтью Уилсону, Марголиаш искал ответы, изучая поведение животных, и обнаружил, что птицы во сне заново проигрывают и усовершенствуют брачные песни своего вида – совсем как крысы, которые во сне повторяли путь по лабиринту. Марголиаш изучал зебровых амадин, крохотных птичек, которые учат свои песни, имитируя пение взрослых особей. «Постоянно повторять свою песню и слушать себя нужно не только молодым особям, тем, кто только ее разучивает, – взрослые особи также ее повторяют, чтобы поддерживать правильное исполнение. Людям тоже необходимо регулярно слышать звучание собственного голоса, иначе качество их речи понижается, подобно тому как изменяется звучание речи у тех, кто во взрослом возрасте потерял слух», – объясняет Марголиаш.
Прежде ученые считали, что обратная слуховая связь, необходимая птицам для того, чтобы поддерживать свое пение в форме, происходит, когда птица по-настоящему поет, в период бодрствования, но, когда Марголиаш записал сигналы от нейронов, ответственных за пение, поступающие и в период бодрствования, и во сне, он обнаружил нечто совершенно неожиданное: и в период бодрствования, когда птица действительно пела, и во сне был задействован один и тот же паттерн импульсов. Поначалу исследователи обнаружили, что этот паттерн импульсов воспроизводился, когда спящей птице проигрывалась запись ее пения, но потом они увидели этот же паттерн импульсов и когда запись не звучала, а это означало, что во сне, особенно в стадии медленного сна, птица повторяла и повторяла свою песню.
Однако же если во время сна птицы звуковые сигналы, ассоциирующиеся с повторными исполнениями песни, свободно перетекали между областями мозга, ответственными за пение, то по пробуждении эта слуховая обратная связь прерывалась, как будто опускался какой-то барьер. Основываясь на этих данных, Марголиаш высказал гипотезу, что зебровые амадины подстраивают, совершенствуют исполнение своей песни не тогда, когда они ее действительно поют, а накапливая обратные слуховые сигналы в том участке птичьего мозга, который эквивалентен гиппокампу, чтобы проигрывать их во сне, – таким образом как бы автономно настраивая сети ответственных за пение нейронов. То есть он предположил, что нервным системам и людей, и животных трудно модифицировать себя в то время, когда они поют на самом деле или, в случае с людьми, например, разучивают новый гимнастический элемент.
Марголиаш – а он из тех людей, кто не склонен принимать себя слишком уж серьезно, что видно уже по тому, что его электронный адрес начинается словом bigbird, – говорит, что поначалу сам скептически отнесся к собственной гипотезе о том, что птичья песня воспроизводится и настраивается именно во сне, потому что она показалась ему «несколько странноватой». Но теперь и он поверил растущему количеству свидетельств того, что и богатый сновидениями период быстрого сна, и период медленного сна играют незаменимую роль в процессе обучения. И данные эти получены не только в его лаборатории, но и в других исследовательских центрах во всем мире.
Научное предположение о том, что хороший сон улучшает человеческую способность к обучению, впервые появилось в докладе, опубликованном в 1924 году, но результаты экспериментов, проводившихся после того, как в 1950-х была открыта фаза REM, подвергли это предположение большим сомнениям. Экспериментаторы требовали, чтобы испытуемые учили разного рода факты, вроде запоминания пар слов, не имеющих между собой никакой явной связи, типа «корова – лестница». После чего мешали людям спать и проверяли, влияет ли отсутствие сна на результаты. Никакого влияния не было, и поэтому исследователи пришли к ошибочному выводу, что связи между сном и обучением тоже не существует.
Но потом ученые все-таки обнаружили, что различные стадии сна предназначены для различных типов обучения, – об этом мне рассказал Карлайл Смит, который еще в 1970-х начал изучать связь между обучением и сном. Карлайл Смит принадлежит к тому поколению американских исследователей сновидений, которые отправились во Францию работать в лаборатории пионера этой области науки Мишеля Жуве. «Мы целый месяц выпиливали брусочки, из которых строили лабиринт для мышей, а потом в течение десяти дней круглосуточно записывали их мозговую деятельность. Те мыши, которые проявляли бо́льшую сообразительность в беге по лабиринту, демонстрировали и бо́льшую мозговую активность в фазе REM, – вспоминает Смит, ныне профессор психологии Университета Трент в канадском городе Питерборо. – Сам-то я никогда не сомневался в том, что сон и обучение связаны между собой, но теперь накопилось достаточно данных, чтобы этим вопросом заинтересовались и другие».
Постоянно накапливаемые данные исследований Смита и других помогли объяснить, как именно влияют на обучение сновидения и другие когнитивные процессы на разных стадиях сна. Вскоре после засыпания мы входим в стадию легкого сна, известную как стадия II, и, похоже, именно эта фаза ответственна за совершенствование новых навыков у музыкантов, спортсменов и танцоров, причем это наступает через день или два после первого знакомства и тренировки этого навыка.
В 2002 году ученый из Гарварда Мэтью Уокер провел исследование, в результате которого обнаружил, что 20 процентов улучшения моторных навыков усваиваются в том случае, если испытуемые входили в стадию II в последние два часа перед утренним пробуждением. «Чтобы получить максимальную пользу от тренировки или упражнений, когда вы осваиваете что-то новое в избранном виде спорта или в игре на музыкальном инструменте, вы должны хорошенько выспаться хотя бы в первую ночь после первоначального освоения этого нового навыка, чтобы не пропустить финальный период стадии II, наступающий незадолго до пробуждения», – считает Смит.
Вслед за стадией II наступает стадия глубокого медленного сна, предшествующая быстрому сну. Медленный сон занимает 80 процентов первой половины всего времени ночного отдыха. Во время второй половины ночного сна доля REM резко возрастает, чередуясь со стадией II. Медленный сон важен для освоения задач, связанных с фактической памятью, например с зазубриванием дат для экзамена по истории. А вот насыщенный сновидениями быстрый сон, напротив, необходим для освоения того, что связано с процедурной памятью – с тем, каким образом что-то делается, в том числе и с освоением новых поведенческих стратегий. Исследования показали, что доля REM в первую ночь после тренировки таких задач возрастает, и если испытуемого в эту ночь намеренно лишить фазы REM, то на следующий день качество выполнения этих задач резко падает.
В 1994 году группа израильских ученых под руководством Ави Карни и Дова Саги провела ставшее широко известным исследование по выполнению задач, связанных с визуальным различением: испытуемые должны были определить форму заполненной полосами области, вспыхивающей на экране компьютера на определенном тестовом фоне. Они обнаружили, что скорость выполнения этой задачи по процедурному обучению возрастала не во время тренировки, но через восемь часов после ее завершения. Если при этом испытуемых будили во время фазы REM, у них не получалось освоить эту задачу, а вот если их будили во время медленного сна, выполнение ее никоим образом не ухудшалось.
После этого другие ученые не раз использовали эту израильскую методику и пришли к выводу, что для оптимального обучения необходима комбинация обоих типов сна, не только REM. Одно из исследований указывает на то, что выполнение новых задач в значительной мере улучшается, если мы получаем достаточную долю медленного сна в первую четверть ночи и достаточную долю сна быстрого – в последнюю четверть. Мэтью Уилсон обнаружил, что это же касается и крыс, и предположил, что во время медленного сна следы памяти удерживаются в гиппокампе для того, чтобы пройти необходимую обработку позднее, во время сна со сновидениями, в особенности во время фаз REM, наступающих во вторую половину ночи. Во время этих поздних стадий REM гиппокамп и соответствующие структуры лимбической системы, такие как миндалевидное тело (которое обрабатывает эмоциональную информацию), обмениваются данными с высокоуровневыми центрами в неокортексе, таким образом усиливая память и закрепляя усвоение.
Теория о том, что мозг во время фазы быстрого сна не только производит сновидения, но и осваивает новые знания, получила подтверждение и с помощью молекулярной биологии. В клетке содержится набор генов, каждый из которых выполняет в организме свои определенные функции. Когда гену надо выполнять предначертанную ему ДНК роль, он активируется, и теперь эту активность можно измерить. Эта измеряемая активность называется генной экспрессией, проявлением гена. Исследование, проведенное в 2002 году, обнаружило, что специфический ген, который проявляется у крыс, когда они в период бодрствования чему-то учатся, снова и очень сильно проявляется во время поздних фаз REM, а это указывает на то, что изменения на молекулярном уровне, связанные с обучением, происходят как раз в фазе быстрого сна. А если гиппокамп ввести в состояние бездействия, например с помощью анестезии, в неокортексе не наблюдается и связанной с обучением генной экспрессии.
«Существует гипотеза о том, что следы памяти из гиппокампа переходят в неокортекс для длительного хранения, и наше исследование показывает, что это может происходить во время фазы быстрого сна. Особенно во время поздних фаз REM – именно тогда гиппокамп и беседует с неокортексом», – говорит Константин Павлидес, нейрофизиолог из Рокфеллеровского университета. Он один из авторов исследования и протеже Джонатана Уинсона, чьи теории о биологических функциях REM, высказанные еще в 1970-х годах, подкрепляются ныне данными молекулярной биологии.
Исследование, демонстрирующее, что процесс обучения наступает, когда мы отплываем в страну снов, придает новый смысл пословице «Утро вечера мудренее». «Я предполагаю, что, хотя поздние периоды REM особенно благоприятны, для обучения важен полный цикл сна», – считает Смит. Имеется смысл и в «тихом часе». В недавнем исследовании, проведенном в Гарварде группой Роберта Стикголда, испытуемых учили выполнять на компьютере определенную визуальную задачу, и их результаты к концу четвертого за день практического занятия из-за умственной усталости понижались. Но если они после завершения второго занятия полчаса дремали, результаты оставались на том же уровне, а если «тихий час» длился все шестьдесят минут, то на третьем и четвертом занятиях результаты становились выше.
Но есть и скептики, которые сомневаются в том, что быстрый сон играет важную роль в процессе обучения. Они указывают на два примера, которые, по их мнению, противоречат всей теории. Первый случай – это история одного израильтянина, у которого в двадцать лет в результате ранения был поврежден ствол головного мозга. Он не только выжил, но и выздоровел, но, когда спустя тринадцать лет ученые исследовали его сон, выяснилось, что у него вообще почти не было фазы REM, а в те ночи, когда она все-таки бывала, на эту фазу приходилось лишь три процента всего времени сна. Однако же память его повреждена не была, потому что после ранения он окончил не только колледж, но и юридическую школу. «Совершенно очевидно, что можно убрать фазу REM и при этом не лишиться памяти, потому что нет никакой другой профессии, которая требует больше бездумной зубрежки, чем профессия законника», – ехидничает Джером Сигел, профессор психологии и биобихевиористики Калифорнийского университета в Лос-Анджелесе. Сигел относится к тем скептикам, которые указывают и на еще одну причину усомниться в важности сна в процессе запоминания: существует целый класс антидепрессантов, которые называются ингибиторами моноаминоксидазы и которые имеют четко выраженный побочный эффект: в результате их приема значительно сокращается или вообще исчезает фаза быстрого сна. И хотя эти препараты широко применяются уже в течение нескольких лет, побочные эффекты в виде поражения памяти не отмечены.
Карлайл Смит на это возражает, что требования, предъявляемые к студентам-юристам, и тесты, выполнявшиеся тем израильтянином в ходе обследования, относились в основном к декларативной памяти, а изменения в ней происходят, как правило, при нарушениях медленного сна, а не в результате потери фазы REM. Подобным же образом и обследование пациентов, принимающих антидепрессанты, было сосредоточено на выполнении задач, связанных с декларативной памятью, а люди, у которых нет фазы быстрого сна, без проблем запоминают имена, географические названия и факты. Поскольку обучение не происходит исключительно во время сна, они способны осваивать и процедурные задачи, но не так эффективно, как те, кого быстрый сон посещает столько раз, сколько положено. Различия в результатах обучения могут стать заметными после достаточно продолжительного периода – через сколько-то дней или недель, а таких сравнительных исследований, говорит Смит, еще не проводилось.
Возможно, самые убедительные доказательства того, что мы на самом деле учимся во сне, были получены с помощью технологии визуализации мозга. С людьми проделать те же опыты, которые Мэтью Уилсон проделывал с бегущими по лабиринту крысами – когда он записывал активность отдельных клеток мозга, – невозможно, однако ученые могут использовать визуализацию мозга для определения того, какие участки мозга человека активируются в процессе освоения новых навыков. Они могут также получить изображение мозга во время сна, чтобы посмотреть, активируются ли заново эти же участки, указывая на ментальное воспроизведение опыта.
Именно этим занимался Пьер Маке в 2002 году в своей лаборатории в бельгийском городе Льеже. Испытуемые сидели перед компьютерным монитором, на котором было изображение шести зафиксированных меток, каждой из которых соответствовала своя клавиша на клавиатуре. Под одной из меток появлялся сигнал, он быстро исчезал и появлялся под другой меткой. При появлении сигнала испытуемый должен был быстро нажать соответствующую клавишу. Перед одной группой испытуемых сигналы возникали хаотично, так что выучить их последовательность и тем самым улучшить свои результаты они не могли. А вот в работе со второй группой был использован трюк, о котором испытуемые не знали. В появлении сигналов была определенная последовательность – своего рода искусственная грамматика, которую мозг начинал распознавать и неосознанно осваивать, подобно тому как маленький ребенок неосознанно осваивает грамматику родного языка. «Испытуемые не знали, что они чему-то учатся и чему именно они учатся, а мы, измеряя время их реакции, получили возможность точно определить, научились ли они чему-нибудь», – объясняет Маке.
Участники обеих групп работали за компьютером одинаковое время, причем происходило это во второй половине дня. Ночью же, когда они спали, Маке следил за их мозговой деятельностью с помощью ПЭТ. Некоторых из членов той группы, которая неосознанно обучалась искусственной грамматике, сканировали и во время работы за компьютером, чтобы определить, какие именно участки мозга были задействованы в процессе обучения. (Чтобы сократить время воздействия радиации, применяемой при ПЭТ, испытуемых сканировали либо во время бодрствования, либо во время сна, но никогда не обследовали одного и того же человека в обоих состояниях.)
Маке обнаружил, что у участников второй группы во время фазы REM реактивировались те же участки мозга, что и во время работы на компьютере. В той группе, которой сигналы подавались в хаотичном порядке, подобной реактивации не происходило. То есть мозг решил, что ответы на хаотичные сигналы не стоят ментального повторения.
«Обе группы выполняли, казалось бы, одинаковые задачи в течение одинакового периода – нажимали кнопки в ответ на появлявшиеся сигналы, с одной только разницей, что участникам одной группы было чему учиться, а участникам другой учиться было нечему», – поясняет Маке. Это указывает на то, что мозг реактивируется во время фазы REM только тогда, когда ему есть чему учиться. Дальнейшее исследование показало, что те участники «обучающейся» группы, которые быстрее всех нажимали на нужные клавиши, демонстрировали и самый высокий уровень реактивации во время фазы REM. Короче говоря, это и другие исследования указывают на то, что консолидация памяти в весьма значительной степени происходит именно тогда, когда нас посещают сновидения, да и во время других стадий сна.
А учитывая тот факт, что эмоциональные центры мозга в большей степени задействованы в те периоды, когда мы видим наиболее яркие сны, можно также предположить, что для переработки во время сновидений выбирается особый вид памяти. «Я подозреваю, – говорит Тор Нильсен, – что, когда во время фазы REM мы видим сны, мозг нацеливается на те воспоминания, которые окрашены эмоционально».
Это подозрение возникло благодаря предположению, что сновидение может служить своего рода психотерапевтом, помогающим пережить полученный днем эмоциональный опыт. И хотя эти сеансы терапии происходят по большей части за пределами нашего сознательного понимания, они могут значительно влиять на наше эмоциональное состояние во время бодрствования. Как выразился Роберт Стикголд, «ночная миссия мозга не в том, чтобы просто регистрировать события, а в том, чтобы понять их значение».
Назад: Глава 4 Уроки колючего муравьеда
Дальше: Глава 6 Ночная психотерапия