Книга: Никола Тесла — повелитель молний. Научное расследование удивительных фактов
Назад: Глава третья Завещание гения
Дальше: Глава пятая Радиоволновой гиперболоид

Глава четвертая
Чудеса янтарной субстанции

Рассказ начинается задолго до начала нашей эры, в те времена, когда Фалес, Теофраст и Плиний говорили о чудесных свойствах «электрона» (янтаря) — этого удивительного вещества, возникшего из слез Гелиад, сестер несчастного юноши Фаэтона, который пытался овладеть колесницей Феба и едва не сжег всю Землю.
Никола Тесла. Сказка об электричестве
На ранних этапах человеческой истории такие явления, как гроза, приписывались действию богов. У восточных славян богом грома и молнии был Перун.
По воззрениям древних славян Перун приносил весной тепло и дождь и был олицетворением оплодотворяющего и карающего божества. После крещения Руси роль бога грома и молнии перешла к пророку Илье. Боги грома и молнии известны в религиозных представлениях и других народов. Например, у многих первобытных племен существовало представление о грозе как об огромной птице, создававшей гром хлопаньем крыльев и молнии сверканием глаз.
Развитие науки привело к первым представлениям о сущности грозы (рис. 32). Греческие ученые Анаксимен и Анаксагор рассматривали явление грозы как результат сгущения воздуха в облаках. Сократ видел основную причину возникновения гроз в столкновении облаков, Демокрит — в их соединении. Эти представления были обобщены и развиты далее Аристотелем, считавшим, что молния и гром образуются благодаря воспламенению в облаках разнообразных горючих испарений и завихрению их между облаками. В эпоху средневековья представления о природе грозовых процессов не получили существенного развития.

 

Рис. 32. Молнии

 

Грозой называется процесс развития в атмосфере мощных электрических разрядов — молний, обычно сопровождаемых громом и связанных в большинстве случаев с укрупнением облаков и ливнеобразным выпадением осадков. Прохождение грозы над местностью как правило, сопровождается довольно значительными изменениями метеорологических параметров приземного слоя воздуха (падение температуры и повышение влажности воздуха, резкое изменение атмосферного давления, силы и направления ветра).
 Первые попытки ученых объяснить грозу как процесс электрического разряда относятся к началу XVIII века. Одну из научных теорий грозы, в основных чертах соответствующую природе явления, дал на основании ряда экспериментальных исследований великий русский ученый М. В. Ломоносов. Согласно его представлениям электризация облаков происходит за счет «трения мерзлых паров о воздух», при этом под «мерзлыми парами» Ломоносов имел в виду лед, а «воздух» понимался им как смесь воздуха, водяного пара и мельчайших водяных капелек. Ломоносов особо подчеркивал, что разделение электрических зарядов и образование сильного электрического поля происходит только при интенсивных вертикальных восходящих и нисходящих течениях (рис. 33).

 

Рис. 33. Грозовые облака

 

В настоящее время не решен окончательно вопрос, за счет чего получают заряд капельки воды и кристаллики льда в грозовых облаках. Одна группа ученых считает, что они захватывают заряд из воздуха, другая — что они заряжаются за счет обмена зарядом при контакте между собой. В результате экспериментальных исследований установлено, что от нижней кромки грозового облака и до слоя с температурой 0 °C простирается водная часть облака. В области с температурой от 0 °C до -15 °C сосуществуют вода и лед, и при температуре ниже -15 °C облако обычно состоит только из ледяных кристаллов. Капельная часть облака в основном имеет отрицательный заряд, ледяная — положительный. В средних широтах центр отрицательного заряда грозового облака располагается на высоте около трех километров, а центр положительного — на высоте примерно 6 км.
 Молния — это природный разряд больших скоплений электрического заряда в нижних слоях атмосферы. Одним из первых это установил знаменитый американский государственный деятель и ученый Бенджамин Франклин. В 1752 году он провел опыт с бумажным змеем, к шнуру которого был прикреплен металлический ключ, и получил от ключа искры во время грозы. С тех пор молния интенсивно изучалась как интересное явление природы. Кроме того, ее изучали, чтобы предотвратить серьезные повреждения линий электропередач, домов и других строений, вызываемые прямым ударом молнии или наведенным ею напряжением.
Грозовой процесс невозможен без разделения зарядов в облаке путем конвекции (переноса зарядов воздушными потоками). Поле конвекции в облаках распадается на несколько своеобразных ячеек (рис. 34).

 

Рис. 34. Грозовой фронт

 

При прохождении гроз через острые выступы скал и остроконечные детали сооружений на земной поверхности в воздух стекает преимущественно положительный заряд. Потеря земной поверхностью положительного заряда превышает потерю отрицательного в несколько раз. В высокогорных условиях вследствие разреженности воздуха разряд с острий значительно интенсивнее, чем в равнинной местности.
Каждая конвективная ячейка проходит стадию зарождения, зрелости и затухания. В стадии зарождения во всей конвективной ячейке преобладают восходящие течения. Зрелая конвективная ячейка характеризуется развитием восходящих и нисходящих потоков, электрической активностью, выраженной в разрядах молний и выпадением осадков. Такая ячейка имеет горизонтальный диаметр в несколько километров и простирается в высоту до уровня с температурой -40 °C.
В стадии затухания во всей конвективной ячейке преобладают слабые нисходящие течения с уменьшением электрической активности и количества выпадающих в единицу времени осадков. Полный цикл жизни конвективной ячейки составляет около часа, длительность стадии зрелости равна 15–30 минутам, стадии затухания — около 30 минут. Гроза, продолжающаяся несколько часов, является результатом деятельности нескольких конвективных ячеек.
Большинство молний приносит к Земле отрицательный заряд, но иногда встречаются разряды и противоположной полярности. В первом случае грозы значительно богаче молниями, чем во втором. Отношение количества молний отрицательной полярности к молниям положительной полярности для зон умеренного климата составляет примерно 4:1, для тропиков — 17:1. Отношение отрицательных разрядов к положительным для молний, поражающих высокие здания, больше, чем для разрядов в равнинной местности.
Установлено, что во время многих гроз, особенно осенью и зимой, электрическое поле атмосферы приобретает необычное строение. Большинство молний, возникающих на «переднем крае» бури (по направлению ветра), обладают положительным зарядом, то есть ток течет с облака к поверхности Земли. Однако всего в 100 километрах, в «тылу» грозы, большинство молний несут к Земле отрицательный заряд (рис. 35).

 

Рис. 35. Многократные молнии

 

Такое биполярное строение грозы было обнаружено, когда несколько локальных сетей, измеряющих атмосферное электричество, объединили в единую систему. В качестве предполагаемой причины биполярности гроз называют горизонтальные ветры. Обычно грозовое облако имеет вертикальное строение: верхняя часть несет положительный заряд, а нижняя — отрицательный. Однако наблюдения показывают, что при горизонтальном ветре на уровне верхней части облака оно начинает клониться к Земле — и положительный заряд смещается в направлении ветра. Со временем такое смещение приводит к появлению в «передней» части грозы центра с положительным зарядом (рис. 36).

 

Рис. 36. Положительный молниевый разряд

 

Чаще всего молния представляет собой многократный разряд.
Многократные молнии — обычное явление, они могут насчитывать до нескольких десятков электрических разрядов. Паузы между отдельными разрядами составляют несколько секунд. Средняя длительность полного разряда молнии измеряется десятыми долями секунды, отклонения от среднего значения в обе стороны возможны на порядок величины.
Обычно разряд развивается лавинообразно, сначала в виде ионизованного канала, получившего название лидера молнии, который ступенчато продвигается от облака к земле: Скорость ступенчатого движения лидера к земле равна приблизительно 50x106 м/с, причем интервал между ступенями составляет около 100 мкс. Длина каждой ступени лидера составляет около 45 м, так что полное время движения до земли может достигать 0,02 с. Затем по этому ионизированному каналу от земли к облаку движется основной разряд со скоростью около 10x107 м/с. Он обычно глубоко проникает вглубь облака, образуя множество разветвленных каналов. Свечение этого яркого разряда, обусловленное рекомбинацией. ионизованных атомов может продолжаться более секунды.
Противники подобного объяснения отмечают, что горизонтальные ветры обычно слишком слабы, чтобы перенести такой заряд в район грозового фронта. Для решения проблемы необходимо сопоставление спутниковых и радарных данных с данными наземных наблюдений атмосферного электричества.
В зонах умеренного климата разряды молний направляются по преимуществу к Земле, в тропиках же большинство разрядов происходит между облаками или внутри облака.
Разряды молний могут происходить между соседними наэлектризованными облаками или между наэлектризованным облаком и землей. Разряду предшествует возникновение значительной разности электрических потенциалов между соседними облаками или между облаком и землей вследствие разделения и накопления атмосферного электричества в результате таких природных процессов, как дождь, снегопад и т. д. Возникшая таким образом разность потенциалов может достигать миллиарда вольт, а последующий разряд накопленной электрической энергии через атмосферу может создавать кратковременные токи от 3 до 200 кА. Для объяснения электризации грозовых облаков было разработано множество теорий, например модель дробления дождевых капель потоками воздуха. В результате дробления падающие более крупные капли заряжаются положительно, а остающиеся в верхней части облака более мелкие — отрицательно.
Существует также конкурирующая индукционная теория. Она строится на предположении о том, что электрические заряды разделяются электрическим полем Земли, имеющим отрицательный знак. В основе данного механизма лежит явление электростатической индукции, заключающееся в появлении противоположного заряда вблизи заряженной поверхности. Воздушные массы, насыщенные атмосферным электричеством, в целом электронейтральны, но нижняя кромка тучи получает положительный заряд, а верхняя — отрицательный. Горизонтальные молнии происходят между противоположными зарядами самого облака, а вертикальные — между его нижней частью и земной поверхностью.
В теории свободной ионизации предполагается, что электризация возникает как результат избирательного накопления ионов находящимися в атмосфере капельками разных размеров. Возможно, что электризация грозовых облаков осуществляется совместным действием всех этих механизмов, а основным из них является падение достаточно крупных частиц, электризуемых трением об атмосферный воздух.
Площадь земной поверхности, на которой проявляются связанные с отдельной грозой электрические явления, простирается на десятки квадратных километров. Благодаря проводимости воздуха к земной поверхности на этой площади от облака поступает ток силой около 1 А.
Учитывая, что на Земле ежесекундно наблюдается в среднем около 100 разрядов линейной молнии, можно подсчитать среднюю мощность, которая затрачивается в масштабе всей Земли на образование гроз; она равняется 1018 эрг/с. В связи с этим следует отметить, что энергия конденсации, выделяющаяся в грозовом облаке средних размеров с площадью основания около 30 км2 при дожде средней интенсивности, составляет около 1021 эрг. Таким образом, энергия, выделяющаяся при выпадении осадков из грозового облака, значительно превышает его электрическую энергию.
При разряде молнии на всем протяжении ее извилистого пути происходит очень быстрое нагревание столба воздуха до нескольких десятков тысяч градусов. И основной канал молнии, и все его многочисленные разветвления становятся источниками ударных волн (рис. 37). Резкий фронт ударной волны по мере удаления от места разряда все более сглаживается, и на некотором расстоянии от источника ударная волна превращается в акустическую (звуковую) волну небольшой амплитуды. В ходе этого превращения происходит постепенное уменьшение скорости распространения ударной волны вплоть до скорости звука в конечном итоге.

 

Рис. 37. Древовидный канал разряда

 

Канал молнии определяется электрическим полем на конце движущегося лидера и локальной ионизацией. Вблизи земля его движение определяется земными стримерами или коронным разрядом, возникающим над заостренными проводящими предметами, выступающими над поверхностью земли. Молния с большой вероятностью повторно ударяет в ту же самую точку, если только объект не разрушен предыдущим ударом. Диаметр ядра светящегося разряда — от 1 до 2 см, а наэлектризованная зона вокруг ядра составляет, по-видимому, несколько метров в диаметре. Разветвленность разряда молнии между облаками обусловлена ступенчатым характером движения лидера, направление каждого шага которого определяется локальными условиями ионизации и потому носит в значительной мере случайный характер.
Звуки, следующие после главного удара грома, создают впечатление удаляющегося от места наблюдения и постепенно затухающего рокочущего шума. Это раскаты грома. Они наблюдаются в местности с любым рельефом и образуются ветвящимся и удаляющимся от места наблюдения разрядом молнии (рис. 38). Длительность раскатов грома определяется особенностями развития молнии. В среднем раскаты длятся половину минуты, а крайние отклонения от среднего значения составляют около 50 %. Характер звучания грома является существенной особенностью уже начавшейся грозы. Народные приметы утверждают, что длительные раскаты грома являются признаком приближения протяженного массива грозовых облаков. Глухой продолжительный и умножающийся со временем гром с медленными раскатами характерен для длительной грозы, в то время как короткие и резкие удары с возрастающими по времени промежутками между ними характеризуют кратковременную грозу.

 

Рис. 38. Схема развития наземной молнии: а, б — две ступени лидера; 1 — облако; 2 — стримеры; 3 — канал ступенчатого лидера; 4 — корона канала; 5 — импульсная корона на головке канала; в — образование главного канала молнии (К)

 

Средняя дальность слышимости грома для летних гроз на континенте составляет полтора десятка километров. Разница во времени между вспышками молнии и восприятием грома может достигать полутора минут. Гром от близкого разряда молнии производит такое же действие на слух, как выстрел зенитного орудия в нескольких метрах от наблюдателя.
Глобальная карта активности молний показывает, что Центральная Африка, Гималаи и часть Южной Америки оказались наиболее подверженными огненным вспышкам точками планеты: в среднем 81 молния приходится в год на каждый километр территории, расположенной вокруг Конго, а реже всего эти явления природы были замечены над морем и полюсами Земли.
С давних времен в процессе познания грозы человек стремился подчинить ее своей власти. Об этом говорит, например, легенда о Прометее. Овладение грозами было предметом мечтаний ученых и философов Средневековья. В последние годы были сделаны попытки «засева» грозовых облаков кристаллами таких веществ, как йодистое серебро, йодистый свинец и твердая углекислота. Предполагается, что каждое из этих веществ может способствовать затуханию и даже полному прекращению грозового процесса за счет резкого усиления конденсации водяного пара. Опыты в этом направлении уже позволили накопить обширный экспериментальный материал, позволяющий сделать множество практических выводов. На их основе были разработаны методики, позволяющие эффективно бороться с локальными очагами непогоды при важных спортивных и государственных мероприятиях на открытом воздухе.
Другой вариант основан на вычислении точной структуры и силы подогрева атмосферы, необходимого для снижения интенсивности урагана и изменения его курса. Несомненно, практическая реализация такого проекта потребует огромного количества энергии, но ее можно получить с помощью орбитальных солнечных электростанций. Вырабатывающие энергию спутники следует оснастить гигантскими зеркалами, фокусирующими солнечное излучение на элементах солнечной батареи. Собранную энергию затем можно будет переправить на микроволновые приемники на Земле. Современные конструкции космических солнечных станций способны распространять микроволны, не нагревающие атмосферу и поэтому не теряющие энергию. Для управления погодой важно направить из космоса микроволны тех частот, при которых они лучше поглощаются водяным паром. Различные слои атмосферы можно будет нагреть согласно заранее продуманному плану, а области внутри урагана и ниже дождевых облаков будут защищены от нагрева, так как дождевые капли хорошо поглощают СВЧ-излучение.
Существует замечательное художественное произведение знаменитого писателя Даниила Гранина «Иду на грозу». В нем рассказывается о самоотверженных исследованиях молодых ученых, которые проводили опасную авиаразведку бушующих гроз с борта плохо приспособленного транспортного самолета с целью найти критические параметры для управления погодой. В романе подобные попытки заканчиваются трагически, но сама идея воздействия на грозовые процессы непосредственно с борта летательного аппарата, находящегося в центре («глазе») урагана, была очень популярна во второй половине прошлого века. Дальнейшее развитие идея управления штормами и ураганами получила в увлекательнейшем научно-фантастическом романе «Властелины погоды» известного американского популяризатора научно-технических достижений Бен Бова.
В романе удивительно точно с научной точки зрения представлены картины формирования погоды:
«Солнце поднялось над Западным полушарием, согревая своим теплом моря, континенты и покрывающий их словно мантией беспокойный, давящий своей тяжестью на земную поверхность воздушный океан. Атмосфера, получающая энергию от Солнца, закрученная вращением Земли, двигалась словно живое теплокровное существо. В ней пульсировали ветры. Гигантские столбы воздуха вздымались вверх, впитывали влагу и вновь обрушивались вниз, освобождаясь от нее; они собирали тепло тропиков и несли его к полюсам — а вместе с теплом несли жизнь. Над этим не знающим покоя взвихренным слоем атмосферы воздушный океан становился спокойнее, и в нем лишь продолжали стремительно мчаться струйные течения. А еще выше, в потемневшем небе, где вспыхивали метеоры и разреженный воздух становился совершенно непригодным для дыхания, но все же прикрывал Землю от жесткой, мощной солнечной радиации, — в атмосфере зарождались электрические заряды. Постоянно колеблемый солнечными и лунными приливами и отливами, терзаемый магнитными бурями и невидимым межпланетным ветром, воздушный океан исчезает в темных глубинах космоса…
Росла гора. Протяженностью как Альпы, выше Гималаев, гигантская, невидимая гора воздуха формировалась над Атлантическим океаном в районе между Бермудами и Американским континентом. Холодный, плотный воздух опускался с высоты под влиянием низкой температуры и скапливался над поверхностью океана. Гора росла и ширилась, настоящая гора, увенчанная вершиной. Но она двигалась. Она вращалась по часовой стрелке, закручиваясь в спираль над океаном, ветры из-под ее основания устремлялись вдоль моря и его берегов. Высокое давление придавливало ее, выталкивало ее западные отроги чуть ли не на сотню миль внутрь Американского континента. Теплый субтропический воздух с Карибского моря и Мексиканского залива поднимался на север вдоль восточного побережья, неся с собой тепло и влагу. Часть теплого воздуха, более подвижного и легкого, чем сжатая высоким давлением гора, поднялась над холодной, плотной воздушной массой. Вверху она охладилась, водяные пары сконденсировались и облачным душем пролились на землю…
Даже в эти солнечные дни уходящего апреля воздух в Арктике был пронизан холодом. Он висел над макушкой вращающейся Земли, запертый в стенах западных ветров, образующих Арктическое кольцо. Но стоило континентам Азии и Северной Америки прогреться под лучами весеннего солнца, как в подвижной, динамической атмосфере началась сложная перестройка. В западном потоке образовался прорыв — ненадолго, но достаточно для того, чтобы огромная масса полярного воздуха сумела выскользнуть из своей арктической тюрьмы и понеслась к югу. За этим последовала целая цепь событий, захвативших полмира. Холодная воздушная масса столкнула недостаточно устойчивую область высокого давления вниз, вдоль берегов Северной Канады. На всем континенте погода то и дело менялась, пока огромные слои воздуха сталкивались, перемешивались в поисках нового равновесия. Зона высокого давления на Бермудах рушилась под напором новых плотных воздушных масс.
Крохотные островки низкого давления — всего несколько скоплений облаков над побережьем Веракрус — втягивались в узкую щель, зажатую, как в сандвиче, между двумя западными потоками воздуха с высоким давлением. В северо-восточном направлении двигался небольшой шторм, по мере своего продвижения набирая силу и влагу из моря…
К теплым воздушным массам над Новой Англией приблизился сильный холодный воздушный поток из Канады. За вторжением началась битва. Линия фронта растянулась на сотни миль, в нем смешались чернота туч, блеск молний и грохот грома, на землю обрушились дождь и град. Подобно большинству битв, эта кипела насилием. Пики-наковальни грозовых туч ревели на высоте восьми миль, черные и страшные, каждая — сложное сооружение из турбулентных возмущенных потоков. Черные грозовые тучи были обиталищем диких ветров, яростно носившихся вверх-вниз, — окажись там случайный самолет, его сломало бы как соломинку. Тучи с грохотом наступали, забрасывая землю градинами и ослепляя дождем, раскалывая воздух молниями, взмывая даже в стратосферу, где вершины туч сглаживались постоянными сильными ветрами в плоскогорья. Холодный северный поток наступал, вынуждая теплые массы воздуха расставаться со своей влагой, отдавать свою энергию передовому рубежу воздушной массы — линии шквалов. Но, отступив, теплый воздух смягчил холодные потоки, согрел их, и порывы ветра наконец не выдержали, сдались и исчезли, оставив после себя разрозненные грозовые тучи изредка громыхать в небе, пока и они не растаяли под мощными лучами солнца…» (рис. 39).

 

Рис. 39. Гроза над морем

 

На открытой местности и водной поверхности разряды положительной и отрицательной полярности наблюдаются одинаково часто, но около 95 % ударов в линии электропередачи… и антенны исходят из отрицательно заряженных облаков. Разряд молнии характеризуется чрезвычайно быстрым, нарастанием тока до пикового значения, как правило, достигаемого за время от 1 до 80 миллионных долей секунды с последующим резким падением тока.
К сожалению, практического воплощения «генератор» погодных условий не получил и до сих пор еще не построен. Тем не менее в США даже были сконструированы специальные самолеты — исследователи штормов на базе печально известного военного разведчика У-2 и современного варианта ЭР-2 (рис. 40). Актуальность проведения поиска в данном направлении не вызывает ни малейшего сомнения, и исследования даже переместились в космос.

 

Рис. 40. Разведчик бурь и ураганов (США)

 

Кроме проблемы управления погодными условиями, существует не менее увлекательная задача получения энергии грозового электричества. В 1930-х годах на одной из горных вершин швейцарских Альп на высоте 80 метров над земной поверхностью подвешивалась металлическая решетка. Во время гроз эта решетка собирала достаточный заряд для поддержания в течение 0,01 секунды электрической дуги длиной в 4,5 метра, что соответствовало силе тока в несколько десятков тысяч ампер и разности потенциалов порядка 1 миллиона вольт.
Сначала предполагалось использовать получаемое на этой установке напряжение для ускорения заряженных частиц в ускорителях.
Однако от этой мысли пришлось отказаться ввиду сильной изменчивости электрического состояния грозовых облаков и невозможности его регулировать. Попытки использовать электрический ток, протекающий во время гроз в поднятых высоко над земной поверхностью антеннах, для питания ламп накаливания также пока не дали экономически выгодного эффекта.
Однако каждую минуту на Земле происходит около 6000 ударов молний между облаками и земной поверхностью; естественно, что это совершенно фантастическое количество электроэнергии, расходуемое «впустую» планетными грозами, давно не дает покоя многим поколениям изобретателей. В научно-популярных журналах можно найти самые разнообразные проекты различных вертикальных электролиний-громоотводов, прикрепленных к аккумуляторам и поддерживаемых дирижаблями, гелиостатами (воздушными шарами, нагреваемыми солнцем) и даже геостационарными (висящими над определенной точкой земной поверхности) спутниками. Вполне вероятно, что приближающийся глобальный топливно-энергетический кризис заставит научный мир пересмотреть свое отношение к подобным идеям, перейдя к детальному анализу наиболее перспективных из них.
Назад: Глава третья Завещание гения
Дальше: Глава пятая Радиоволновой гиперболоид