Книга: Нефть XXI. Мифы и реальность альтернативной энергетики
Назад: Глава 5. Энергетика и климат
Дальше: 5.2. Проблема парниковых газов

5.1. Тепловой баланс планеты

Одним из главных аргументов в пользу более широкого использования альтернативных источников энергии является утверждение о значительно меньшем негативном влиянии на окружающую среду и, главное, климат нашей планеты. Но прежде чем обсуждать влияние современной энергетики на климат, необходимо кратко рассмотреть факторы, определяющие его основные параметры. В наибольшей степени климат, т. е. условия на земной поверхности, определяются атмосферой и гидросферой Земли. В свою очередь, формирование атмосферы и гидросферы тесно связано с процессом дегазации земных недр, который продолжается и в настоящее время, хотя и намного менее интенсивно, чем в предыдущие геологические эпохи. Дегазация является следствием дифференциации под действием силы тяжести земного вещества и выделением гравитационной энергии в недрах планеты. Интенсивность этого процесса достигла максимума примерно 3 млрд лет назад и с тех пор непрерывно снижается. Первичная атмосфера Земли состояла в основном из паров воды, СО2, а также таких газов, как H2S, CO, H2, N2, CH4, NH3, HF, HCl, Ar, то есть была по своему химическому составу восстановительной.
После появления первичной базальтовой коры и последующего остывания поверхности ниже температуры кипения воды образовалась гидросфера планеты, а основным компонентом атмосферы стал углекислый газ. Оценки показывают, что парциальное давление углекислого газа в древнейшем геологическом периоде развития земли – архее – превышало его современное значение на четыре порядка и достигало от 4 до 4,5 атм. В результате деятельности биосферы Земли основная масса выделившегося углекислого газа была преобразована в твердые карбонатные породы и органический углерод. Сейчас в виде карбонатов в земной коре связано около 3,91 1023 г СО2. Кроме того, в коре содержится еще около 1,95 1022 г органического углерода. С этим углеродом было связано приблизительно 5,2 1022 г О2, поэтому можно полагать, что всего из мантии было дегазировано примерно 4,6 1023 г СО2. Сейчас в атмосфере содержится около 2,45 1018 г СО2, а 1,4 1020 г углекислого газа растворено в океане.
Выделяющийся из диоксида углерода в результате деятельности живых организмов свободный кислород не мог накапливаться в больших количествах в атмосфере, пока на земной поверхности имелись в огромном количестве неокисленные породы. При накоплении в коре органического углерода, первоначально входившего в состав дегазированного СО2, было выделено приблизительно 5,2 1022 г О2. На начальном этапе почти весь освобождающийся кислород связывался преимущественно с железом и серой. Сейчас в земной коре содержится примерно 6,9 1023 г Fe2О3 и 2,83 1022 г SO3. Это значит, что на окисление двухвалентного железа до трехвалентного ушло около 6,9 1022 г О2, а на окисление сульфатной серы потребовалось 1,7 1022 г О2. В современной атмосфере содержится 1,2 1021 г кислорода, поэтому общая масса О2 в земной коре и атмосфере – приблизительно 8,7 1022 г. Разница в 3,5 1022 г могла поступить за счет диссоциации воды жестким солнечным УФ излучением и других химических реакций.
В настоящее время Земля обладает атмосферой, общая масса которой равна 5,15 1021 г, т. е. составляет одну миллионную часть ее общей массы. Среднее давление атмосферы на уровне моря 1,0132 бар (760 мм рт. ст.), плотность ~1,3 10-3 г/см3, состав сухого воздуха, % об.: азот – 78,08, кислород – 20,95, Ar – 0,93 %, СО2 – 0,03 %. Находящийся в атмосфере 40Ar образовался в основном в результате радиоактивного распада 40К.
Средняя температура на поверхности, являющаяся наиболее важным климатическим параметром, определяется тепловым балансом нашей планеты, который складывается из баланса поступающей на поверхность энергии солнечного излучения и энергии, отдаваемой нагретой поверхностью Земли в космос в виде инфракрасного (теплового) излучения. Поскольку средняя температура поверхности Земли на протяжении длительного периода остается практически постоянной, это свидетельствует о тепловом балансе, при котором потоки поступающей на земную поверхность энергии и энергии, отдаваемой ею в космическое пространство, с высокой точностью одинаковы.
В свою очередь эти потоки определяются свойствами атмосферы нашей планеты. Составляющие земную атмосферу газы легко пропускают основную часть солнечного излучения, спектральная температура которого совпадает с температурой поверхности Солнца (~6000 К) и лежит в видимом диапазоне длин волн. Примерно 30 % солнечного излучения отражается обратно в космос самой атмосферой Земли, что в значительной степени определяет коэффициент отражения солнечного излучения (альбедо) нашей планеты как небесного тела, на 83 % определяемое отражением самой атмосферы и лишь на 17 % отражением поверхности Земли. Излучение, прошедшее сквозь атмосферу, частично поглощается земной поверхностью, в т. ч. зелеными растениями, и приводит к ее нагреву (рис. 64).

 

Рис. 64. Распределение потоков поглощаемой и излучаемой энергии в атмосфере и на поверхности Земли. Черные стрелки – поток солнечного излучения, белые – теплового излучения Земли (Горшков, 1995)

 

Для сохранения постоянной температуры, т. е. поддержания теплового баланса, наша планета должна излучать столько же энергии, сколько она получает в виде поглощенного солнечного излучения. Тепловое излучение Земли определяется температурой ее поверхности (~300 К) и лежит в инфракрасной области спектра. Так как энергия испускаемых фотонов пропорциональна температуре нагретой поверхности, в среднем на каждый поглощенный фотон солнечного излучения земной поверхностью испускается ≈20 тепловых фотонов, каждый из которых имеет в 20 раз меньшую энергию. Именно этот процесс деградации высокопотенциальной энергии солнечного излучения в низкопотенциальное равновесное тепловое излучение Земли является источником всех упорядоченных процессов, протекающих в биосфере. Если бы Земля получала такое же количество энергии в виде равновесного теплового излучения, жизнь на ней никогда бы не смогла возникнуть (Арутюнов, Стрекова, 2006).
Для инфракрасного излучения нагретой земной поверхности, посредством которого Земля отдает в космос избыток энергии, составляющие ее атмосферу газы значительно менее прозрачны, чем для солнечного излучения. Они поглощают заметную часть этого излучения (рис. 64), нагреваясь сами и дополнительно нагревая поверхность планеты. Благодаря присутствию в атмосфере газов, поглощающих инфракрасное излучение нагретой Земли и создающих на ее поверхности эффект парника (парниковых газов), средняя температура земной поверхности повышается на ~33°С, достигая примерно 290 К, что и создает необходимые условия для существующего на Земле многообразия жизненных форм, включая человека и созданную им цивилизацию.
Назад: Глава 5. Энергетика и климат
Дальше: 5.2. Проблема парниковых газов