Законы в относительно простых и сложных системах
Всякий закон представляет собой определенный порядок необходимой устойчивой связи между явлениями или свойствами материальных объектов. Закон выражает повторяющиеся существенные отношения, при которых изменение одних явлений вызывает вполне определенное изменение других. Знание закона изменения системы является необходимым условием для научного предвидения.
Научное предвидение представляет собой некоторое вероятностное суждение или систему положений о ненаблюдаемых явлениях, недоступных, в данный момент экспериментальному исследованию. Эти явления могут существовать в настоящем, будущем и прошлом, в соответствии с чем возможны три различные формы предвидения. Прежде всего возможны предвидения тех явлений (объектов, свойств, событий, состояний и т. п.), которые объективно существуют в действительности, но недоступны экспериментальному воздействию и изучению в данный момент для науки и практики. Таким, например, было предвидение Леверье существования Нептуна, предвидение Д. И. Менделеевым существования и свойств элементов галлия, скандия и германия на основе периодической системы, предсказание Дираком возможности существования позитронов и т. п. Все эти явления существовали до их предсказания и познания наукой, они продолжают существовать и дальше.
Второй важнейшей формой является предвидение будущих событий, которые еще не возникли, не обладают бытием, но появятся со временем при определенных условиях. Таково, например, было предвидение Марксом и Энгельсом неизбежности гибели капитализма и победы социализма как более высокого общественного строя, многие современные планы и прогнозы на будущее.
Наконец, возможно научное предвидение свойств таких явлений, которые существовали в прошлом и уже исчезли как таковые, но знания о которых являются неполными или искаженными. Суждения о них выносят на основе анализа других, тесно связанных с ними явлений и восстанавливают таким образом общую картину. В развитии таких наук, как история, палеонтология, историческая география, геохронология и т. п., постоянно выдвигались различные гипотезы о существовавших в прошлом видах живых организмов, изменениях Земли и ее поверхности, исторических событиях в жизни общества, и многие из этих гипотез впоследствии подтверждались. Они как раз являлись научными предвидениями, объектами которых были события прошлого.
Всякое научное предвидение представляет собой экстраполяцию (распространение) известных законов, материальных условий или типов взаимодействия на область рассматриваемых явлений, недоступных по какой-либо причине экспериментальному изучению. Такое предвидение может быть распространено на явления настоящего, будущего и прошлого, в соответствии с чем возможны указанные выше три его формы.
Точность предвидения во многом зависит от того, какой закон подвергается экстраполяции и насколько правильно и полно он познан (наряду со всеми условиями его действия). В материальном мире существуют три основные группы законов: 1) специфические или частные, выражающие отношения между конкретными свойствами материи, существующими в локальных масштабах; 2) общие для больших групп качественно разнородных явлений; 3) всеобщие или универсальные, действующие во всех сферах материального мира. К первой группе можно отнести многие законы физики, химии, биологии и других наук, выражающих порядок устойчивой связи между конкретными свойствами тел. Ко второй группе относятся, например, законы сохранения энергии, массы, электрического заряда и некоторых других общих свойств. В третью входят закон причинности, единства и борьбы противоположностей, взаимного перехода количественных и качественных изменений и другие, изучаемые диалектико-материалистической философией.
Все эти законы неразрывно связаны между собой. Законы третьей группы выражают то общее, что содержится во множестве конкретных законов. Если придать всеобщим диалектическим законам конкретную количественную форму, ограничить их определенными условиями действия, параметрами и константами, то они перейдут в частные законы природы. Так, всеобщий закон сохранения материи и движения проявляется через множество частных законов сохранения отдельных свойств материи. Закон единства и борьбы противоположностей проявляется через множество законов, выражающих отношение противоположных свойств и тенденций изменения в любых системах. Его конкретными проявлениями будут закон взаимодействия противоположно заряженных частиц, закон ассоциации и диссоциации атомов в химии, взаимодействия притяжения и отталкивания, закон обратной связи в самоорганизующихся кибернетических устройствах и в живых организмах, закон естественного отбора в биологии, классовой борьбы в антагонистических общественных формациях и др.
В зависимости от типа закона, подвергающегося экстраполяции, и полноты учета конкретных условий предвидение может обладать большей или меньшей степенью точности. Всеобщие диалектические законы правильно раскрывают общую картину развития всех явлений, но конкретная дата осуществления события или особенности его протекания не могут быть на основе их полностью раскрыты, если не будут заданы дополнительные ограничивающие условия. Так, из закона перехода количественных изменений в качественные следует, что на определенном этапе количественные изменения в состоянии и свойствах материальных объектов и явлений неизбежно приводят к коренным качественным изменениям. Но чтобы точно установить, когда произойдет скачок и в какой форме он будет протекать, необходимо иметь дополнительные сведения о характере развивающегося явления, его внешних условиях, о границах меры, в рамках которой может существовать данное качество. Установление всех этих параметров создает предпосылки для раскрытия конкретного, специфичного закона развития явления, который позволяет сделать предсказание с гораздо большей степенью точности. Но и в последнем случае много зависит от того, какая система рассматривается — относительно простая или очень сложная, а также, какому закону развития она подчиняется — однозначно детерминирующему ее состояние или вероятностному закону. Последние законы в литературе часто называются динамическими и статистическими. На их содержании важно остановиться, так как знание их сущности имеет большое значение для определения возможностей предвидения будущих событий.
Динамический закон выражает такую форму причинной связи, при которой каждое предшествующее состояние системы однозначно предопределяет все ее последующие состояния, так что, зная прошлое системы, можно точно предсказать ее будущее. Именно эти законы, абсолютизировались в рамках механического детерминизма. В отличие от этого статистическая закономерность представляет такую упорядоченную причинную связь, при которой предшествующие состояния систем определяют последующие не однозначно, а лишь с некоторой вероятностью, и эта, вероятность является объективной мерой возможности осуществления состояний.
Динамические законы действуют в относительно простых системах, состояние которых мало зависит от внешних воздействий и определяется главным образом внутренними связями, структурой системы. Статистические законы проявляются в сложных системах с большим количеством составных элементов. Состояние данных систем зависит от постоянно меняющихся внутренних связей и внешних условий. Оба данных типа законов тесно связаны между собой и могут проявляться одновременно в различных областях. В большинстве случаев динамический закон реализуется как основная тенденция на фоне статистических процессов, в которых необходимая причинная связь пробивается через массу случайностей.
Преимущественное действие динамических законов можно видеть в таких системах, как различные машины и механизмы, кибернетические устройства с заранее заданной программой действия, солнечная система, двойные звезды и т. п. Поскольку в каждой машине все элементы находятся во вполне определенной связи, мало меняющейся со временем, можно заранее рассчитать все ее возможные состояния в период функционирования. Точно так же солнечная система обладает высокой устойчивостью, движение планет в ней определяется их орбитальной скоростью, массой и величиной гравитационного взаимодействия с Солнцем. Влияние других звезд на планеты весьма незначительно, и это позволяет рассчитывать параметры их орбит на многие годы вперед. Наука дает точные прогнозы также и характера движения Луны вокруг Земли, хотя здесь приходится учитывать одновременно и взаимодействие Луны с Солнцем. Известно, например, что следующее полное затмение Солнца будет видно в Москве 16 октября 2126 года. Такое точное предсказание возможно потому, что законы движения тел солнечной системы хорошо изучены.
Изменения в движении этих тел происходят очень медленно. Мы со всей определенностью можем утверждать, что солнечная система имела современный свой вид на протяжении миллионов лет и сохранит его еще на многие миллионы лет.
Законы, близкие по своему содержанию к динамическим, проявляются также в развитии звезд. Характер эволюции звезды, величина выделяемой ею энергии, светимость, изменение химического состава и других свойств зависят главным образом от массы и начального состава вещества звезды, Зная эти два основных свойства, можно в общей форме предсказать другие параметры, хотя многие стороны эволюции звезд еще не выяснены.
Законы динамического типа проявляются иногда и в сложных формах движения типа биологических и общественных. Так, если рассматривать эмбриональное развитие организмов, то можно видеть, что из каждой данной оплодотворенной яйцеклетки всегда развивается вполне определенный организм со всеми биологическими признаками, подобными признакам его родителей и отдаленных предков. В генах половых клеток как бы запрограммирована наследственная информация, которая в ходе эмбриогенеза развертывается в индивидуальные признаки организма.
В период XVIII–XIX вв. в концепции преформизма данный факт рассматривался упрощенно. Здесь полагали, что в сперматозоиде или яйцеклетке уже заключается готовый организм в сильно уменьшенном виде. В дальнейшем, по мере исследования микроструктуры половых клеток, от этих представлений отказались, поскольку они совершенно не соответствовали наблюдениям. При сильных увеличениях в половых клетках не удается обнаружить ничего, напоминающего организм или отдельные его органы. Различные органы, нервная система и другие элементы формируются в течение первых недель эмбрионального развития. Но само это развитие протекает по некоторому единому плану, закодированному в первичной оплодотворенной клетке.
Современная генетика связывает наследственность с генами в хромосомах и комбинациями мужских и женских хромосом в первичной клетке. По их соотношению в настоящее время удается прогнозировать пол развивающегося эмбриона, степень отклонения от нормы в развитии, некоторые наследственные заболевания.
Но было бы упрощением считать законы наследственности только динамическими. Развитие животного эмбриона или семени растения всегда происходит в определенной среде, которая формирует его. Изменения в среде, сопровождающиеся сильным радиационным, химическим или тепловым воздействием, могут вызвать мутации генов в хромосомах, что приведет к отклонению от нормального хода развития, возникновению различных уродств. Внешние воздействия на зародыш необычайно многообразны и различны по качеству, вследствие чего Эмбриональное развитие и наследование определенных свойств подчиняется также статистическим законам. Последние словно составляют тот фон, на котором действует и развертывается во времени динамический закон эмбрионального развития как преимущественная тенденция.
Законы однозначной детерминации действуют также в развитии некоторых общественных явлений. Такая связь, например, существует между производством и потреблением.
Производство существует для удовлетворения потребностей общества и степень его развития определяет уровень потребления масс. Недостаточное производство определенных материальных продуктов, имеющих широкий спрос, сразу же вызывает возникновение очередей, изменение в настроении и психологии масс, затруднения в торговой сети и т. п.
Следует, однако, иметь в виду, что чем сложнее материальная система, тем в большей степени законы ее развития отличаются от динамических и выдвигаются на первый план вероятностные, статистические законы. Последние всегда проявляются в множестве массовых однородных явлений, постоянно подвергающихся случайным воздействиям. В массе случайностей, даже совершенно независимых друг от друга, всегда имеется некоторая регулярность и повторяемость, которая и выступает как статистическая закономерность. Так, в радиоактивном веществе каждое атомное ядро распадается независимо от других, но в общей массе в единицу времени всегда распадается более или менее постоянное количество ядер. Рождение ребенка определенного пола — мальчика, или девочки — в каждой семье считается случайным явлением, так как возможен как тот, так и другой пол. В некоторых же семьях рождаются по преимуществу мальчики, в других — девочки. Но в масштабах большого города всегда рождается 51 % мальчиков и 49 % девочек.
Статистические законы действуют при стрельбе орудия в одну точку, когда снаряды ложатся по так называемому эллипсу рассеяния, при рассеянии электронов и других частиц через кристалл или дифракционную решетку. Они проявляются также в атмосферных явлениях, в наследовании живыми организмами свойств своих родителей, в обществе — на транспорте, производстве, в торговой сети и т. п. Каждая достаточно сложная система с постоянно меняющимися внутренними и внешними связями функционирует по этим законам. В этом случае одно определенное следствие может быть обусловлено большим количеством причин, проследить которые зачастую бывает необычайно трудно. Общий закон проявляется здесь через взаимодействие огромного количества, случайностей.
Ф. Энгельс говорил, что случайность представляет собой форму проявления и дополнения необходимости. Эта необходимость при большом количестве случайностей будет иметь как раз характер статистической закономерности. Для массовых повторяющихся случайных событий в природе и обществе справедливо правило: явление, случайное в П-системе, будет проявлением и дополнением необходимости в более общей системе П + К, включающей в себя первую систему в качестве составного элемента. Закон системы П + К будет статистическим.
На основе статистических Законов также возможны точные предсказания, когда рассматриваются большие совокупности однородных явлений или когда одно явление берется в течение достаточно большого отрезка времени. Например, если сразу в воздух бросается 1000 монет, то можно смело ручаться, что примерно 500 из них упадет гербом, а 500 — «решкой». Но тот же результат можно предсказать, если одну монету последовательно бросать 1000 раз. Аналогично этому в более сложных биологических и общественных явлениях устанавливается количество определенных событий в течение некоторого конечного времени, (проверяется их повторяемость при (последовательном осуществлении опытов, на основе чего находится значение вероятности возникновения события в единицу времени. Например, дерево ежегодно производит, дог пустим, 100 000 семян. Из них почти все гибнут и крепкие ростки дают только 10. Значит, вероятность взойти и превратиться в молодое деревцо для каждого данного семени равна 1/10000. Но и на более поздних стадиях развития происходит отбор в результате естественной борьбы и вымирания менее жизнеспособных особей. Регулярно повторяются различные неполадки в работе предприятий, аварии транспорта, несчастные случаи на производстве и т. п., на основе чего можно заранее вычислить вероятность возникновения определенного события, учитывая все порождающие его условия.
На основе применения вероятностно-статистических методов, электронно-вычислительных машин в настоящее время достигнуты существенные успехи в области экономического планирования, прогнозов погоды на длительное время, теории обслуживания населения на транспорте, в торговой сети. За последние годы получили значительное развитие математическая статистика, применение математических методов в экономике, теория игр, исследующая конфликтные ситуации в природе и обществе, теория операций (в процессе промышленного производства и торговли), теория массового обслуживания, тесно связанная с теорией операций.
Вместо господствовавших ранее интуитивных, и зачастую ошибочных прогнозов, зависевших от субъективных качеств исследователя, в настоящее время все более внедряется точный расчет, основанный на учете и анализе законов массовых повторяющихся событий. Предсказание для отдельного события здесь может и не произойти, но для всей массы ожидаемых событий оно в среднем выполняется с большой точностью, если, конечно, верны были исходные данные и правильно сформулирован закон, управляющий событиями. В электронно-вычислительных машинах в настоящее время удается хорошо моделировать взаимоотношение производства и потребления, конкурентные отношения между предприятиями, связь спроса и предложения. На основе этого рассчитывается перспективная модель экономики на много месяцев вперед.
Но во всех случаях статистических прогнозов дается лишь вероятностная оценка возникновения определенного события, которая содержит в себе значительный элемент неопределенности. В связи с этим возникает вопрос о том, можно ли в принципе устранить эту неопределенность и превратить вероятностное предсказание в совершенно достоверное? Это равносильно вопросу о возможности сведения статистических законов к динамическим.
В истории науки неоднократно предпринимались попытки дать обоснование положительного ответа на этот вопрос. Первой теорией такого рода был механический детерминизм?. В дальнейшем аналогичная идея лежала в основе попыток свести статистические законы термодинамики к законам классической механики. За последние десятилетия некоторые известные физики предпринимали усилия свести вероятностные законы квантовой механики к однозначно детерминированным законам. В работах де Бройля, Бома и некоторых других физиков высказывалась точка зрения о том, что вероятностные функции в квантовой механике являются следствием несовершенства данной теории, а также нашего незнания всех причин поведения микрочастиц. Они полагают, что в действительности поведение частиц однозначно детерминировано, все их свойства, в том числе координаты и импульсы, имеют строго определенное значение, но они выступают как скрытые параметры. Познание всех этих параметров позволило бы дать вполне однозначное предсказание поведения микрочастиц, исключающее вероятностные функции, которые рассматриваются как результат неполноты знаний. По мнению Д. Бома, статистические законы квантовой теории детерминируются некоторыми динамическими законами, господствующими на уровне субструктуры элементарных частиц.
Несомненно, что картина микроявлений, даваемая квантовой механикой, является неполной и что в поведении микрочастиц имеется много непознанного, «скрытых параметров», которые со временем будут раскрыты силами науки и практики. Вычисляемые в теории вероятностные функции, по-видимому, существенно отличаются от тех объективных вероятностных законов, которые управляют поведением микрочастиц. Несомненно также и то, что материя неисчерпаема, в своей структуре и на каждом новом уровне структурной организации она подчиняется качественно новым закономерностям. Однако из этого еще не следует, что вероятностно-статистические законы не являются объективными и что в мире существуют только однозначно-детерминированные, динамические законы, а случайность и вероятность есть лишь следствие нашего незнания всех причин явлений. В таком случае все вероятностные законы имели бы чисто субъективное основание в несовершенстве наших знаний о мире, между тем как практика доказывает обратное. Все расчеты природных и общественных явлений, основывающиеся на точно сформулированных вероятностных законах, в основном подтверждаются на практике, и это говорит об их объективности. Основание для существования вероятностно-статистических законов как раз заключается в структурной неисчерпаемости материи на разных уровнях, а также в объективном взаимоотношении возможности и действительности в развитии.
Как отмечалось выше, динамические законы действуют в несложных автономных системах, т. е. таких системах, развитие которых определяется главным образом внутренними связями. Но понятия большей или меньшей сложности и автономности являются относительными. Солнечная система будет простой, если нас интересует только движение и взаимодействие планет как целостных образований. Но если мы поставим вопрос о внутреннем строении Солнца и планет и перемещении гравитационных масс в них, о влиянии всех окружающих звезд, учтем множество астероидов и метеоритов, изменение массы Солнца в результате излучения, то та же солнечная система предстанет перед нами как весьма сложное образование, претерпевающее постоянное развитие.
Материя неисчерпаема в своей структуре, и каждая система заключает в себе другие виды материи, обладает бесконечно многообразными внутренними и внешними связями. А там, где имеется большое множество внутренних и внешних связей, состояний материи, вступают в действие статистические законы. Следовательно, динамический закон развития системы будет обусловлен статистическими процессами в области микроструктуры данной системы. Это положение справедливо для всех законов взаимодействия тел. Например, гравитационное взаимодействие тел и электрическое взаимодействие зарядов подчиняются законам Ньютона и Кулона, согласно которым сила взаимодействия равна произведению масс (или зарядов), деленному на квадрат расстояния между телами. Но эти динамические законы обусловлены огромным количеством цикличных процессов в микроструктуре вещества.
Согласно квантовой теории поля, взаимодействие между телами обусловлено обменом между ними квантов электромагнитного и гравитационного поля. Одно из тел излучает кванты, другое — поглощает, и наоборот, благодаря чему между ними возникает сила связи. Множество обменных процессов подчиняется статистическим законам, а их усреднение приводит на макроскопическом уровне к закону динамического типа. Отсюда следует, что закон, динамический для системы П-порядка, может быть статистическим для системы П-К-порядка, (входящую в данную систему в виде ее составного элемента. Динамическая закономерность по существу представляет собой статистическую с вероятностью осуществления событий, близкой к 1. Правда, когда мы в практических целях используем динамические законы, то мы отбрасываем все несущественные факторы и принимаем во внимание лишь основную тенденцию, благодаря чему и достигается, казалось бы, совершенно достоверное предсказание с вероятностью осуществления события, близкой к 1, Однако если рассуждать строго и делать расчеты на большие периоды времени, то необходимо учитывать и эти факторы, признавать действие вероятностных законов в любых явлениях. Фактически мы живем в вероятностной Вселенной, в которой ожидаемая нами достоверность наступления событий обусловлена тем, что их вероятность близка к 1.
Все это позволяет понять сущность ошибок механического детерминизма, в теории предсказания. Абсолютизация динамических законов была тесно связана с метафизическими воззрениями на строение материи, допущением последних бесструктурных элементов, подчиняющихся в конечном счете динамическим законам. С современной точки зрения, эти взгляды уже никак не могут быть признаны верными. Во-первых, между законами микромира и макроявлений существует качественное различие и первые не сводятся ко вторым. Во-вторых, законы самого микромира не являются динамическими. Каждый атом, как сложное образование, заключает в себе неисчерпаемое множество элементов материи, взаимодействие которых подчиняется статистическим законам. Благодаря связи частиц с различными полями, поглощению и излучению квантов полей, внутренним превращениям основные свойства частиц являются статистически средними по времени. В силу неисчерпаемости материи вглубь, по мере проникновения в ее микроструктуру должно происходить расширение сферы вероятностных процессов, а соответственно и статистических закономерностей. Таким образом, бесконечное множество различных состояний в структуре материи исключает однозначную детерминированность в структуре систем, необходимо вносит в нее элемент неопределенности..
Другой важнейшей причиной несводимости статистических законов к динамическим является объективное взаимоотношение возможности к действительности, тот факт, что далеко не все возможности реализуются с течением времени. Этот вопрос также имеет принципиальное значение для теории предсказания, в связи с чем необходимо остановиться на нем подробнее.