Книга: Ледяные исполины
Назад: Глава 7. ЗАЧЕМ ИЗУЧАТЬ РАСТАЯВШИЙ ЛЕД?
Дальше: Глава 9. ДАЛЬНЯЯ ЭКСПЕДИЦИЯ

Глава 8. ЗНАТЬ, ЧТОБЫ ИСПОЛЬЗОВАТЬ

ПОЛЕЗНЫЕ ЛЕДНИКИ

Великие ледники очень усложнили работу нашей Солигорской экспедиции.
С точки зрения геологических теорий все было очень интересно. Изучали разные отложепия ледников, следы былых тундр и широколиственных лесов, бывших рек и озер. Отторжеицы — чудо природы! Удивительный район для геолога.
Но как вспомнишь наши практические исследования — впечатление совсем другое. Великие ледники перемяли и переместили массы горных пород, нагромоздили холмы.
С межледниковыми осадками разобраться было очень трудно: молодые долины врезались в более древние. Оказались близкими соседями слои плотные, возрастом в сотни тысячелетий, и рыхлые, молодые, которым было немногим более десяти тысяч лет.
Обо всем этом мало было только догадаться. Это требовалось доказать.
Однажды мы работали на пологом песчаном холме. Здесь начиналось строительство четвертого рудника. Сверху до глубины тридцать-сорок метров попадались почти сплошь пески.
На первый взгляд, очень простые геологические условия.
В лабораторных условиях мы определили физические свойства песков. Оказалось, что часть образцов песка — плотные, а часть — рыхлые. А по виду они были одинаковые! В чем дело?
Повторили анализы. Для этого пробурили новые скважины, отобрали образцы. А результат всо тот же: свойства у песков разные. Почему? Если не найдешь ясного ответа, то и не выяснишь: то ли анализы неточны, то ли образцы отобраны плохо, то ли действительно пески существенно различаются между собой.
Решили мы сделать так. Отобрали из этих непонятных песков образцы на спорово-пыльцевой анализ. И в тех местах, где отобрали образцы, провели опыты. Они называются штамповымп испытаниями. Устанавливаются сильные домкраты, которые вдавливают в грунт специальную планку, штамп. Чуткими приборами определяют, как штамп движется: если легко — значит грунт слабый, ненадежный. Вдобавок определяется, какую можно ожидать осадку сооружения.
Провели опыты в нескольких местах площадки. И снова удивились. В одном месте песок оказался рыхлым, податливым, в другом, рядом, — прочным.
Получили результаты спорово-пыльцевого анализа.
И сразу же все стало ясно. На площадке пески в одном месте содержат споры и пыльцу древнего межледникового времени. А рядом залегают молодые пески. Они отложились после ледника.
Теоретически не все объяснилось. Куда подевалпсь ледниковые отложения? Возможно, их тут почему-то накопилось немного. Или они были начисто смыты потоками речных и талых ледниковых вод?
А практически удалось разобраться, почему в одном месте можно строить тяжелые сооружения, а в другом — легкие. Ведь в песках могут встретиться слон торфяников, илов. В древних песках эти слои плотные, в молодых — слабые, мягкие. Такую возможность надо учитывать.
Но это опять — сложности нашей работы. А в чем нам великие ледники помогают? Сразу вроде бы и ответить трудно.
Скажем, валуны. Валяются на полях. Каждый год приходится освобождать от них пашни. Лишняя канитель!
И все-таки польза от валунов есть. Прочные это камни. Много скопилось — вот и месторождение строительного материала.
В Киеве Золотые ворота, воздвигнутые при легендарном князе Владимире Красное Солнышко, сложены из валунов. На севере России и в Белоруссии есть старые здания, крепости, построенные с применением валунов. В наше время камни обычно размельчают в камнедробилках, а обломки добавляют в бетон.
Еще больше пользы от отторженцов.
Один случай особенно показателен, на западе Белоруссии местные жители издавна добывали писчий мел. Не для того, чтобы им писать. Для строительных целей.
В некоторых ямах, откуда брали мел, встречались обломки костей, рогов оленей и лосей. Этими обломками люди в древности раскапывали мел. Из мела извлекали желваки кремня. В те времена кремень был ценным полезным ископаемым. Его легко оббивать. На сколах кремень получается острым, как бритва. Из него делали каменные ножи, скребки, топоры, наконечники копий и другие орудия труда.
В наши годы в этих местах вновь стали добывать полезное ископаемое. И на этот раз снова писчий мел. Он нужен для цементного производства и других целей.
Теперь работа ведется современными методами. Когтистые ковши экскаваторов выцарапывают огромные горсти мела, бросают их в кузова самосвалов. В результате возникают крупные глубокие котлованы, карьеры.
Когда осматриваешь стенки этих карьеров, можно увидеть странную картину. На ослепительно белой стене проглядывают более темные серые узоры: окружности, эллипсы, изогнутые вертикальные полосы.
Это остатки очень древних горных выработок, засыпанных мелкими обломками мела. Куда направлены выработки, тоже видно неплохо: вдоль скоплений кремневых желваков.

 

Сначала эти «узоры» заинтересовали работников, добывающих мел. И не удивительно: в стенках карьеров попадались крупные рога оленей, костей. А в одном месте оказался даже скелет человека.
Слух об этих находках дошел до археологов. Они приехали на карьеры и стали изучать древние горные выработки. Исследования велись долго и внимательно. Выяснилось немало интересного.
Начали добывать здесь полезное ископаемое более четырех тысячелетий назад. Работы вели толково, как настоящие горняки. В ямах-шахтах трудилось несколько человек. Одни долбили мел, другие доставали кремень, третьи вытаскивали на поверхность добытые камни и пустую породу. Невдалеке велась начальная обработка кремня.
Древние люди не ленились засыпать отработанные шахты пустой породой. Трудно сказать, почему они так делали. Возможно, чтобы ненароком не упасть в какуюнибудь яму. Во всяком случае они поступали точно так, как положено в наше время по правилам техники безопасности и в целях охраны природы.
Когда ведутся крупные горные работы с помощью современной техники, опустошаются большие территории.
Чтобы этого не происходило (а добыча полезных ископаемых продолжалась), приходится заботиться о восстановлении ландшафтов. Некоторые котловины засыпаются пустой породой. До начала разработок почвенный слой с поверхности осторожно снимается и сохраняется. А на месте карьера или возле него, где все живое уничтожено машинами, после окончания работ почва насыпается вновь. Затем проводятся лесопосадки. Через несколько лет участок выглядит почти так, как прежде.
Иной раз отработанный участок приобретает своеобразную красоту. В глубоких карьерах возникают бассейны с зеленоватой водой (сказывается присутствие водорослей). Крутые обнаженные борта карьеров и склоны холмов, покрытые лесом, придают местности облик живописных гор с межгорными озерами…
Но мы отвлеклись.
Подумаем о том, как очутился писчий мел блпз земной поверхности. Он перемещен сюда великим ледником.
Залегает здесь коренной слой писчего мела на глубине два — три, а то и больше десятков метров под толщей песков и глин. Когда надвинулся ледник, толща эта была меньше. Течением ледовой реки были смяты, вздыблены, частично оторваны и передвинуты слои глауконитовых несков и писчего мела.
Прекрасный подарок преподнес великий ледник древним людям. Иначе как бы удалось добраться до драгоценных залежей кремня? И теперь мы продолжаем пользоваться результатами работы ледника. Как будто бы завершаем ее. Он поднял полезные ископаемые к поверхности. Мы их извлекаем и отправляем на переработку, а затем — в дело.
Кстати, писчий мел из этих карьеров пошел на изготовление цемента, который использовался для строительства знаменитой Останкинской телебашни в Москве.
Отторжопцы только на первый взгляд залегают как попало, хаотично. В действительности они образуют определенные фигуры. Зная особенности залегания отторженцев, можно лучше использовать их для практических целей.
Так бывает со всеми месторождениями полезных ископаемых. Теоретические знания помогают практическим мероприятиям. А практика дает знания для дальнейшего уточнения теорий.
Когда началась активная добыча мела из отторженцев на западе Белоруссии, поиски новых заложен полезного ископаемого велись вслепую, наугад. Вскоре выяснилось, что мел залегает неравномерно, отдельными глыбами, линзами. А для производства нужно знать точпо не только запасы сырья, ио и условия его добычи.
Разведку полезного ископаемого можно провести поразному. Если тратить очень много средств и времени, то и без помощи науки выяснится геологическая обстановка:
надо только бурить как можно больше скважин, глубину их назначать с излишком, образцов отбирать многие тысячи… Но ведь тогда, пожалуй, разведка обойдется дороже, чем полезное ископаемое!
С меловыми отторженцами удалось разобраться без больших усилий. Помогла ледниковая теория. Ученью, обследуя разные ледниковые районы, давно выясппли, что отторженцы обычно залегают в виде плавных дуг, выпуклых в сторону движения ледника.
Исходя из этих знаний, стали вести разведку данного месторождения. Предположение подтвердилось. Полученные при разведке и добыче мела повые материалы помогли лучше разобраться в том, как ледник передвигал и нагромождал отторженцьг.
Некоторые отторжонцы достигают огромных размеров.
В Калининской области находится Новоторжско-Вышпеволоцкии вал, настоящая возвышенность. Вал протянулся на сто километров и состоит из огромных глыб горных пород, принесенных сюда с севера. Многие геологи считают, что это — полоса отторженцев (хотя некоторые специалисты оспаривают это мнение).
Близ белорусского города Кричева хорошо изучен отторженец длиной в полтора, а ширипой до четверти километра. Вес его несколько миллионов тонн! По форме он очень интересен: напоминает крыло самолета. Это что — случайное совпадение? Вряд ли.
Самолетное крыло преодолевает сопротивление воздуха. Оно сделано так, что скользит в воздухе.
Крупный отторженец движется в леднике. Он преодолевает сопротивление льда. Вернее, текучий лед обрабатывает крупный отторжепец, приспосабливает его к скольжению в плотном и вязком леднике. Когда скорость льда уменьшается, отторженец как будто идет на посадку, задирает свою переднюю часть. Так же осуществляет посадку самолет.
Надо только помнить, что скользит в ледяной толще и приземляется гигантское «блюдце», на котором вполне уместится целый микрорайон города. До сих пор но вполне ясно, как удалось леднику срывать и очень осторожно, порой без значительных нарушений, передвигать на многие километры такие необычайной величины глыбы. Однако вряд ли можно сомневаться, что великий ледник способен выполнить такую трудную работу.
Просто невозможно придумать другую геологическую силу, которая так легко и просто управилась бы с крупными отторженцами. Валуны, даже очень, большие, переносятся за тысячи километров морскими льдами. А вот айсбергами перемещаться отторженцы не могут. Во всяком случае об этом ничего не сказано в научной литературе.
Если говорить о пользе от великих ледников, то надо вспомнить еще кое о чем. Среди полезных ископаемых есть группа так называемых местных строительных материалов. Это пески, гравий, глины, которые идут для производства цемента, бетона, устройства насыпей, земляных плотин и так далее. Они очень часто имеют ледниковое происхождение.
Особая польза от ледниковых вод. Когда великие ледники таяли, потоки талых вод растекались по всей равнине. Они несли с собой множество песчаных частиц. Накапливались хорошо перемытые слои песка. Их называют водно-ледниковыми.
Сейчас во многих местах северной половины Восточно-Европейской равнины из водно-ледниковых песков добывают подземную воду. Ее используют для питья, например, в таком крупном городе, как Минск. Это возможно там, где ледники вдобавок к хорошему водоносному горизонту устроили над ним более или менее надежную «крышу» из пласта донной морены. Под такой «крышей» чистая подземная вода укрыта от загрязнения с поверхности земли.
Выходит, великие ледники помимо всего прочего способны на два полезных дела: создают водоносные горизонты, а затем прикрывают их водоупорным слоем.

ЛЁСС

Есть довольно странная горная порода. Она состоит в основном из воздуха. В этой горной породе воздуха бывает вдвое больше, чем твердого вещества.
Можно было бы ее назвать «надувной» горной породой. Не только за то, что она содержит очень много воздуха. Она способна «надувать» в смысле обманывать, на вид она прочная, а на деле — обманчивая, слабая.
Эта горная порода боится воды. От воды она может сжаться вдвое. Рождена она в ледниковом периоде.
Эта горная порода называется лёссом.
Слово «лёсс» возникло в Германии. Здесь, в долине Рейна (она была охвачена оледенением), верхний (рыхлый) слой земли издавна носил название «лёш». Сходное слово «лосе» обозначает по-немецки «нетвердый», «слабый», а «лёссен»-растворимый.
Очень удачно назван лёсс. Потому что этим именем называется горная порода рыхлая, слабая, растворимая.
На вид лёсс вполне надежен и прочен. В Китае имеются древние пещерные города и храмы, вырубленные в лёссовых обрывах. Из лёсса можно вырезать кирпичи.
Правда, эти сырые кирпичи не очень прочны, однако после обжига лёссы превращаются в отличный по качеству красный кирпич.
Был проделан такой опыт. Его описал инженер-геолог А. К. Ларионов: «В банке, наполненной водой, подвесим редкую проволочную сетку. На нее быстро опустим вырезанный из лёсса кубик. Кусок породы мгновенно окружается бурой пеленой. Со всех сторон начинают выскакивать многочисленные пузырьки воздуха. Вместе с ними вырываются отдельные зернышки и кусочки, как будто вытолкнутые из породы какой-то невидимой силой. Бурный процесс через 10–40 секунд завершается полным распадением кубика. Остается тонкая муть, повисшая в воде, и осадок из зерен и обломков породы на дне банки».
Капнешь на лёсс соляной кислотой — он зашипит и вспучится. Значит, в нем имеются известковые частицы.
Цвет лёсса палевый, желтовато-серый. Он похож на слежавшуюся пудру и растирается в тонкую пыль. Получается действительно пудра. Потому что состоит лёсс из очень однообразных по размеру пылеватых частиц диаметром в сотые доли миллиметра.
Лёссы очень распространены на земле. Встречаются они главным образом на просторах степей Азии, Европы, Америки, реже — Африки, Австралии. В нашей стране они занимают более десятой части всей поверхности.
Лёсс легок, порист, плодороден. На нем охотно живут растения. Толщи лёсса могут достигать мощности до ста пятидесяти метров. На лёссах формируются самые плодородные почвы, наше бесценное богатство — знаменитые черноземы.
На лёссах возводят различные инженерные сооружения, строят города и поселки… Вот тут-то и показывает лёсс свое коварство.
Великолепное здание Одесского оперного театра построено на плотном слое лёсса. Поначалу стояло оно прочно, основательно. Через несколько десятилетий со зданием стало твориться что-то неладное.
На стенах появились трещины. Они тянулись вверх, расширялись. Некоторые колонны угрожающе покосились.
Искривились, наклонились стены. Театр пришел в аварийное состояние.
Сначала, как обычно, специалисты стали проверять качество строительства. Часто бывает: сооружение возводят небрежно, качество строительных материалов плохое, конструкция непродуманна, вот и жди аварии. На этот раз никаких строительных огрехов не нашли. Решили заглянуть под здание: надежна ли его опора?
Выяснилось, что Одесский оперный театр стоит на лёссе. Пока грунт оставался сухим, слой лёсса легко выдерживал немалые нагрузки.
Со временем, однако, случались небольшие неполадки: то прорвется водопровод, то испортится канализация, то выйдут из строя колодцы, которые отводят дождевую воду. Аварии пустячные. Их нетрудно было исправить. Вроде бы ничего особенного не происходило.
Так бы оно и было, если бы залегали тут другие горные породы. А лёсс воды боится. Он от нее, как известно, словно съеживается. Инженеры-геологи говорят иначе: лёсс проседает. Это значит, что он быстро теряет прочность и под нагрузкой сдавливается, резко сжимается.
Если бы еще подо всем зданием сразу лёсс просел — и все. Тогда оно опустилось бы на один, скажем, метр, или на два. Когда опускается вся поверхность земли — беда невелика.
Тут вышло иначе. Там, где лёсс «промок», он просел.
Эта часть здания опустилась. Там, где лёсс остался сухим, ничего не изменилось. Здание стало как бы разламываться.
Знать причину неполадок — начало. Как их исправить? Надо «улучшить» лёсс. Иначе говоря — провести мелиорацию грунта.
Обожженные огнём лёссы становятся прочными, почти как кирпич. Обжигать их можно через скважины. Есть и другой способ: внедрить в грунт раствор жидкого стекла. На этот раз так и поступили. Когда жидкое стекло застыло в лёссе, он превратился в камень.
В другом случае лёссы начали мешать работе двух домен. Когда домны были пущены и стали давать металл, выяснилось, что некоторые постройки неравномерно опускаются, дают перекосы.
Инженеры-геологи сразу предположили, что причина перекосов — в просадках лёсса. А почему просадки? Выяснить оказалось непросто. На доменной площадке утечки воды не наблюдалось. Территорию поисков расширили.
Оказалось, вредил колодец для стока поверхностных вод, который находился в 50 метрах от сооружений. Вода из него подтекала под здание.
Ликвидировали колодец. А тут началась осадка самой доменной печи. Странно проходила осадка: в одни дни шла очень быстро, а в другие дни прекращалась вовсе. Что за чудеса?
Специалисты догадались, в чем дело. Уточнили, в какую погоду осадка ускоряется, а в какую прекращается.
И не зря уточнили. Выяснилось, что погода влияет на устойчивость сооружения: в дождливое время вода скапливается возле домны, просачивается в лёссы и ослабляет их устойчивость.
Засыпали все понижения, канавы, ямы, устроили лотки для отвода дождевых вод. Проверили результаты. Порядок! Теперь даже после дождей домна стояла надежно.
Однако через некоторое время с ней опять что-то произошло. День ото дня она погружалась в грунт. За неделю осела на пять сантиметров. Положение стало угрожающим. Почти как на тонущем корабле. Только он погружается в воду, а домна — в грунт. И непонятно почему.
Вторая домна тоже стала все быстрее оседать. Надо было срочно найти причину аварийной ситуации.
На этот раз обнаружили утечки из водопроводной сети. Когда их устранили, просадка лёссов прекратилась и домны наконец-то прекратили погружение. К этому моменту они опустились примерно на один метр.
Бывает и так, что на территории предприятия, возведенного на лёссах, возникают ямы-провалы глубиной до пяти метров. А причина таких явлений — пустячная: прорыв водопровода, а то и просто неисправность кранов. Таков уж лёсс: размокает от воды, как сахар.
Как же возникла эта странная горная порода?
Над этим вопросом ученые ломают головы уже полторы сотни лет. Написали о своих соображениях тысячи статей и книг. Окончательного ответа нет. Но многое прояснилось.
Сначала думали, что лёссы остались после всемирного потопа. Вроде грязи или ила на полях. Затем убедились, что пылеватые, как лёссы, слои накапливаются в озерах, реках. Кропоткин обнаружил их среди ледниковых отложений. Но все-таки было совершенно ясно, что накапливались лёссы и там, где не было за последнее время ни озер, ни рек, ни ледников.
Ученые обратили внимание на однообразный состав лёсса. Сплошная пыль! А пыль, как известно, легко переносится ветром. И откладываться может где угодно.
Правда, не совсем было ясно, откуда берется такая пыль, как она превращается в наполненную воздухом горную породу, пронизанную тонкими вертикальными трубочками, содержащую известковые частички, остатки растений и слои погребенных почв. Вдобавок мощность этой породы достигает многих десятков метров.
Кое-что удалось уточнить. В создании лёссов принимают участие растения. Своими корешками они скрепляют пылеватые частицы. Отмирая, добавляют в грунт известь, а на месте корешков образуются вертикальные пустоты. Растения задерживают пыль. И все-таки откуда-то должны взяться гигантские массы пыли?
Чтобы выяснить этот вопрос, ученые стали составлять карты распространения лёсса. Оказывается, он встречается главным образом по окраинам великих ледников Европы, Азии, Северной Америки. В тропическую зону лёссы вообще не заходят. Нет их и в заполярной зоне.
У этой горной породы оказались географические странности. Как будто есть у нее любимые климаты. Лёссы располагаются примерно по середине Северного полушария: между 30-й и 60-й параллелями.
Пора вспомнить о том, какую геологическую работу выполнили великие ледники, как они откладывали обломки. На своем пути они оставляли слой грубой донной морены и россыпи валунов. В краевых зонах ледников нагромождены холмы песков крупных, плохо отсортированных, с валунчиками. Южнее тянутся слои водно-ледниковых отложений. Здесь пески средние и мелкие, неплохо перемытые и отсортированные. Далее к югу они переходят в пылеватые.
Тут-то и начинают преобладать лёссовые накопления: тонкая пыль, почти как мука, великолепно «просеянная».
Перенести и перевеять ее мог, безусловно, ветер. А источником пыли были частички, оставшиеся от растаявших ледников и возникшие от морозного разрушения горных пород. (Ученые выяснили, что постоянное воздействие мороза дробит обломки до состояния тонкой пыли.)
Удалось даже искусственно вызвать просадочные свойства пылеватых нелёссовых пород. Их десятки раз замораживали и оттаивали. После этого лабораторные испытания показали: образцы стали «бояться воды», как настоящие лёссы. А еще у них увеличивалась пористость. Учтем, что в средней полосе промерзание и оттаивание почв происходит несколько раз в году. А ведь почвы живут сотни лет.
За это время они обрабатывались морозами многократно и вполне могли от этого обрести просадочпые свойства.
Уточнили геологи и возраст лёссовых толщ. Оказалось, что их мало накапливалось в первой половине ледникового периода; не возникают они и в наше время. Обычно удается выделить три-четыре основных горизонта лёсса — примерно столько, сколько предполагается великих оледенении.
Во всяком случае вполне резонно предполагать связь лёссов с великими оледенениями. Если бы для рождения лёссов достаточно было пустынь и ветров, то эти породы в изобилии накапливались бы вокруг Сахары. А их там нет вовсе.
Четыре главные загадки лёсса в наше время более или менее точно решены.
Откуда взялась лёссовая пыль?
Чаще всего — от морозной обработки горных пород. От «грязи», оставленной растаявшими великими ледниками.
Как переносилась и накапливалась лёссовая пыль?
Здесь больше всех поработал ветер. Особенное раздолье ему было в периоды «геологической осени», перед наступлением ледников. Часть лёссовой пыли могла переноситься талыми водами. А накапливалась пыль с помощью растений и почвенных процессов, скреплявших частички грунта.
Чем вызваны основные особенности лёсса?
Историей его формирования. Просадочность зависит от многократного замерзания и таяния, а также от воздействия корней растений и почвенных животных.
Как ухитрился лёсс не потерять свои удивительные свойства за многие века своего существования?
На этот вопрос я затрудняюсь ответить. Возможно, лёссы сохранились только там, где был для них благоприятный климат и соответствующая геологическая обстановка…
На вопросы, связанные с лёссом, ученые продолжают искать ответы. Они отрабатывают ответы все более убедительно. Делается это не только из любознательности, чтобы лучше попять особенности ледникового периода.
На лёссах возводят заводы и дома, устраивают аэродромы и размещают сельскохозяйственные угодья, прокладывают железные и шоссейные дороги, каналы. Лёссы употребляются как строительный материал. Следовательно, очень важно до малейших деталей знать характер, поведение, свойства лёссов. И не только учитывать эти свойства, но и менять их, если это понадобится.

ГРУНТ

Грунт — вещь очень странная.
В одной сказке дается трудная задачка: принести то — не знаю что. О грунтах можно сказать: это и есть то — не знаю что. Вроде бы есть грунты везде. И в то же время нет их вовсе.
Сам по себе грунт не существует. Нет такого природного создания. И все-таки грунтом может быть что угодно: песок, глина, мел, гранит, лунная пыль и даже обыкновенный мусор.
Вот и разберись после этого, что такое грунт!
А разобраться несложно. Надо только знать, что грунтом называется всякая горная порода, которая как-либо используется при строительстве. (И мусор бывает горной породой, если его достаточно много.)
То, на чем строится здание, инженерное сооружение, — это грунт. Материал, который используют для насыпей, извлекают из котлованов или каналов, — это грунт.
Лёсс — это, конечно, грунт, если на нем возводят строения. Грунты изучает специальная наука — грунтоведение. Дело это непростое. Потому что грунты бывают самые разные, с причудливыми характерами.
Известные нам лёссы от воды сжимаются. А некоторые глины от воды разбухают. Толстеют прямо на глазах. И если на них стоит дом, они способны его приподнять. Хуже, если они приподнимут одну часть дома: строение растрескается, повредится.
Большинство грунтов с глубиной становятся плотнее.
Понятно: их сжимают слои, лежащие сверху. А есть в тропиках красные породы — латериты. У них часто наоборот: сверху прочная железистая корка, а снизу — рыхлый слой.
Если рыхлые пески подвергнуть вибрации (заставить дрожать), они уплотнятся. Это понятие. Насыпешь в стакан сахарный песок, постучишь по стакану — песок уляжется плотно, утрамбуется.
Но есть плотные глинистые грунты, которые от вибрации «разжижаются». Расползаются, как кисель. Сооружение, стоящее на них, начинает буквально тонуть.
Известный советский грунтовед академик Е. М. Сергеев рассказывал, что видел в окрестностях шведской столицы Осло дом и хозяйственные постройки, разрушенные… от танцев! Хозяева дома и гости вечером хорошо потанцевали, дружно топая ногами. От ритмичной пляски глины, на которых покоился дом, разжижились, поехали вниз по склону. Возникла оплывина, захватившая немалую площадь.
Подобные глины, оставленные ледниковыми озерами, наделали немало бед в Скандинавии. В начале нашего века здесь начали быстро строить железные дороги. От сотрясения железнодорожного полотна прочные глины теряли устойчивость. Произошло несколько катастроф, многие километры магистралей вышли из строя.
Существует поговорка: «построено на песке». Подразумевается, что основание ненадежно, может рассыпаться. Вроде бы поговорка верна. Вспомним рыхлый песок под ногами — вязнешь в нем.
Однако инженеры-геологи вполне доверяют пескам, залегающим в основании сооружения. Правда, песок песку рознь. Если песчинки крупные, прочные и уложены плотно, они выдержат высокое здание. А бывает песок мелкий, тонкий, как пудра. Он податлив, сжимается под нагрузкой. И уж совсем беда, если он насыщен водой. Получается настоящая трясина: встанешь на такой песок — он колеблется под ногами или даже затягивает, засасывает.
Мне зыбучие пески попадались в казахстанской пустыне. Там находится обширная впадина Мынбулак. Во впадине есть отдельные углубления, воронки, словно блюда великанов. В этих местах лежат мелкие и пылеватые пески. Снизу к ним подступают подземные воды.
Идешь по такому песку, и чем ближе к центру воронки, тем глубже продавливается он под ногами. Тут уже не встретишь следов сайгаков, обитающих в этих местах.
Зыбучие пески очень опасны, и животные это чувствуют.
Между прочим, мне удалось добраться до середины такой воронки. Помогли белые «блюдца», разбросанные там и тут на песке. Это — пятна соли. Подземная вода из песков испаряется, а соль остается. Образуются прочные солевые нашлепки. Они выдерживают тяжесть человеческого тела.
Так вода, заключенная в песках, делает их зыбучими.
И в то же время, испаряясь, упрочняет эти пески с поверхности. Но строить на них, конечно, невозможно без специального укрепления грунта.
Вода способна и уплотнять песок. В этом нетрудно убедиться, если в рыхлую песчаную массу налить воды.
Это видно и на самом простом опыте: достаточно на рыхлый песок капнуть водой. Образуется плотная песчаная лепешка.
Еще одна особенность влажного песка: он слипается.
Сухой песок рыхлый, насыщенный водой — текучий.
А влажный песок слипается. Почему? Из-за свойства тонких пленок воды.
На поверхности воды имеется тончайшая пленка. Глазом ее не увидишь. Но ее действие наблюдать нетрудно.
Капнем на блюдце, стекло. Образуется водяной бугорок.
Вода не растекается ровным слоем, а возвышается над поверхностью блюдца или стекла. Любая капля держится, сохраняет свою округлую форму благодаря тонкой пленочке, которая ее стягивает.
На зернах песка, если в песке немного воды, тоже образуется такая пленочка. Она слепляет, стягивает зерна, уплотняет их. Поэтому сухие зерна рассыпаются, влажные слипаются, а насыщенные водой — растекаются.
Подобные свойства песков и других горных пород должен хорошо знать грунтовед.
В наше время есть возможность обойтись и без хорошего знания грунтов. Помогает техника. Можно осушить слой плывунов (хотя сделать это трудно, потому что плывун плохо отдает воду). Можно забить сваи, которые прорежут слабые грунты и упрутся в прочные. На столбахсваях строили и строят многие сооружения.
Укреплять основания сооружений с помощью свай научились люди еще в каменном веке. Они забивали тысячи деревянных столбов и устраивали на них помосты, на которых ставили хижины. Так удавалось строить поселки на болотах и озерных мелководьях.
Правда, в давние времена постройки возводились легкие. Теперь — иначе. Под высотными сооружениями нагрузки на грунты очень большие. На площадочку размером с ноготь — до двадцати килограммов, а на площадку размером с ладонь взрослого человека — четыре тонны!
Ясно, что грунт под таким грузом должен быть весьма прочным.
Свайные основания используются часто. Но это еще не значит, что отпадает надобность в детальном изучении грунтов. Забивать сваи тоже надо умеючи. В иной грунт их не забьешь. А там, где без них не обойтись, надо точно рассчитать их длину, конструкцию, густоту. Приходится предварительно изучать грунты.
Инженеру-геологу недостаточно знать свойства грунтов. Требуется выяснить, как залегают слои горных пород. Бывает, что под одним концом здания лежат прочные пески или донная морена, а под другим — слои слабых неустойчивых песков и глин. От этого здание погружается в землю неравномерно.
В Англии многие средневековые соборы и дворцы начали давать перекосы и трещины. Они стоят на ледниковых отложениях, которые изменяются по толщине и свойствам. В одних местах грунты продавливаются легко, в других трудно. Здания постепенно погружаются в грунт.
(Старые здания почти всегда «врастают» в землю: чем больше им лет, тем глубже.) Когда это погружение идет неравномерно, все сооружение перекашивается. Приходится скреплять стены стальными балками, искусственно укреплять грунты. Эти мероприятия обходятся дорого.
Во многих случаях без искусственного улучшения грунтов не обойтись. Проще всего утрамбовывать рыхлый грунт. Более сложные методы — химические; в грунты добавляются особые затвердевшие смеси. Применяется и временное изменение свойств грунта — замораживание.
Способ этот удобный, когда надо, скажем, пробить шахту или тоннель в горпых породах, насыщенных водой. Откачивать воду не всегда просто. Поэтому через скважины подают в грунт охлаждающую смесь. Вода замерзает, грунт становится льдистым.
Интересный случай произошел в Москве. Строилась станция метро. А над ней в то же время возводился высотный дом. При строительстве метро применяли заморозку грунта. Когда вода замерзает, она увеличивается в объеме. И грунт с водой — тоже увеличивается. А еще он становится прочным, почти не сжимается.
Инженеры-геологи и строители это учли. Они стали строить здание… с наклоном. Конечно, наклон был маленький. Но все-таки стена не была отвесной, строго вертикальной.
Решение было смелое. Для него потребовался точный расчет. Ведь когда мерзлый грунт под частью здания, где строилось метро, оттает, он сделается мягким, податливым.
На сколько сантиметров тогда опустится часть здания, под которым растает мерзлота?
Все произошло так, как предполагали грунтоведы. По мере оттаивания замороженных грунтов здание постепенно выпрямлялось. Прошло несколько месяцев, и оно заняло строго вертикальное положение. Неприятности начались чуть позже. Дом начал крениться в обратную сторону. До этого он был наклонен к улице, Садовому кольцу. А тут, постояв вертикально, покосился и стал наваливаться на дом, стоящий за ним. Хорошо, что между домами имелся зазор. Его сделали специально, заранее предвидя возможность такого аварийного отклонения высотного здания.
Все закончилось благополучно. Четверть века здание стоит надежно. Неточности в расчетах оказались незначительными.
Без неточностей в данном случае вряд ли можно было обойтись. Грунт после замораживания обычно изменяет свои свойства: чуть-чуть, на самую малость делается слабей, податливей, чем раньше. Определить совершенно точно величину ослабления грунта невозможно.
С мерзлыми грунтами инженерам-геологам нашей страны приходится встречаться часто. Искусственно замораживают грунты довольно редко и на небольших участках. Но есть огромные территории — почти половина всей площади СССР, — где мерзлые горные породы сохраняются тысячи, десятки тысяч лет. Раньше думали, что земля промерзла с незапамятных времен и навечно. Так и назвали: вечная мерзлота.
Специальная наука изучает вечную мерзлоту — мерзлотоведение. У мерзлых горных пород своя история, свои особенности. В краю вечной мерзлоты происходят необычные природные явления. Но я хочу рассказать о них не с чужих слов, а по своим наблюдениям, по своему практическому опыту.
Назад: Глава 7. ЗАЧЕМ ИЗУЧАТЬ РАСТАЯВШИЙ ЛЕД?
Дальше: Глава 9. ДАЛЬНЯЯ ЭКСПЕДИЦИЯ