Книга: Симпсоны и их математические секреты
Назад: ГЛАВА 7. БАБГЕБРА И ЖЕНГОРИТМЫ
Дальше: ГЛАВА 9. ДО БЕСКОНЕЧНОСТИ И ДАЛЬШЕ

ГЛАВА 8

ШОУ ПРОСТЫХ ЧИСЕЛ

Сюжетная линия эпизода «Мардж и Гомер спасают чужой брак» (Marge and Homer Turn a Couple Play, сезон 17, эпизод 22; 2006 год) разворачивается вокруг звезды бейсбола по имени Бак Митчелл («Король хоум-рана»), который играет за бейсбольную команду Спрингфилда Isotopes. Когда у них с женой Табитой Викс возникают супружеские проблемы, результативность Митчела на поле начинает падать, поэтому они обращаются к Гомеру и Мардж за советом как к семейным консультантам. После множества неожиданных поворотов действие достигает кульминации на спрингфилдском стадионе, где Табита появляется на экране Jumbo-Vision и прилюдно признается Баку в любви.

Несмотря на то что в этом эпизоде звучит голос Мэнди Мур, есть отсылка к Джерому Дэвиду Сэлинджеру и «Пьете» Микеланджело, зрителей из числа математиков больше всего взволновало появление особого простого числа. Прежде чем рассказывать о нем более подробно, давайте немного отклонимся от темы и познакомимся с двумя математиками, которые натолкнули сценаристов на мысль об отсылке к этому числу. Речь идет о профессоре Аппалачского университета Саре Гринволд и профессоре из Колледжа Санта-Моники Эндрю Нестлере.

Гринволд и Нестлер заинтересовались мультсериалом «Симпсоны» в 1991 году, когда впервые встретились и подружились во время учебы на математическом факультете Пенсильванского университета. Оба как раз начинали работать над докторскими диссертациями и раз в неделю собирались со студентами магистратуры, чтобы посмотреть «Симпсонов» и вместе поужинать. Нестлер хорошо помнит, почему этот сериал им так нравился: «Сценаристы создали двух нердов: профессора Фринка, ученого, и Мартина Принса, одаренного ученика начальной школы. Кроме них была еще главная героиня — Лиза Симпсон, тоже очень умная и любознательная. Наличие этих персонажей придало сериалу нечто такое, из-за чего интеллектуалам хотелось его смотреть, чтобы в каком-то смысле посмеяться над собой».

Спустя некоторое время Гринволд и Нестлер начали собирать различные математические ссылки в «Симпсонах». Помимо шуток про высшую математику, их внимание также привлекли сцены с математикой в контексте обучения. Нестлер вспоминает, что пришел в восторг от фразы Эдны Крабаппл в эпизоде «Малыш Вигги» (This Little Wiggy, сезон 9, эпизод 18; 1998 год), когда самая суровая учительница Спрингфилда поворачивается к классу и говорит: «Чья машинка сосчитает, сколько будет семь на восемь?»

Через какое-то время Гринволд и Нестлер нашли так много математических шуток, что Нестлер решил создать базу данных со сценами, которые могут заинтересовать математиков. По словам Нестлера, для него это было очевидно: «Я по своей природе коллекционер и люблю все каталогизировать. В молодости я собирал визитки. Мое главное хобби — коллекционирование записей Мадонны; в моей коллекции их уже более 2300».

После того как Гринволд и Нестлер получили докторские степени и занялись преподавательской деятельностью, они стали включать сцены из «Симпсонов» в лекции. Нестлер, докторская диссертация которого была посвящена алгебраической теории чисел, использовал материал из мультсериала в своих курсах, охватывающих такие темы, как матанализ, введение в матанализ, линейная алгебра и дискретная математика.

Научные интересы Гринволд, напротив, фокусировались на сферических многообразиях (специальной области геометрии), поэтому она чаще включала геометрические шутки из «Симпсонов» в свой курс под названием «Математика 1010 (Гуманитарная математика)». Например, обсуждала на лекциях начальную сцену на диване (вступительные кадры каждого эпизода заканчиваются такой сценой, причем в ней всегда присутствует какой-то визуальный элемент юмора) из эпизода «Великий Гомер» (Homer the Great, сезон 6, эпизод 12; 1995 год). В ней Гомер и его семья перемещаются по парадоксальной системе лестниц под воздействием трех сил тяжести, каждая из которых перпендикулярна остальным. Эта сцена представляет собой ссылку на «Относительность», знаменитую литографию голландского художника Маурица Корнелиса Эшера, страстно увлеченного математикой вообще и геометрией в частности.

Необычный подход к преподаванию Гринволд и Нестлера, несколько лет подряд использующих сцены из «Симпсонов» в своих курсах, привлек внимание ряда местных СМИ, что вылилось в интервью в программе Национального общественного радио Science Friday («Научная пятница»). Когда сценаристы «Симпсонов» услышали его, они были поражены тем, что их внутренние нердовские шутки упоминаются теперь даже в университетских курсах по математике, и захотели встретиться с этими профессорами и поблагодарить их за увлеченность как математикой, так и «Симпсонами». В итоге Гринволд и Нестлера пригласили на вычитку очередного эпизода, которым как раз и оказался эпизод «Мардж и Гомер спасают чужой брак».

Двадцать пятого августа 2001 года Гринволд и Нестлер слушали вычитку сценария о беспорядочных отношениях между Баком Митчелом и Табитой Викс. Профессора сидели и наслаждались историей, а сценаристы внимательно анализировали каждую строчку, выискивая хорошие шутки, которые можно было бы улучшить, и плохие, которые следовало выбросить. Немного позже в тот же день, после отъезда профессоров, авторы сравнили свои записи и начали предлагать поправки к сценарию. Все согласились с тем, что это сильный эпизод, но в нем есть одно вопиющее упущение — полное отсутствие даже намека на математику!

Казалось невежливым пригласить Гринволда и Нестлер на вычитку сценария из-за их интереса к математике в «Симпсонах», и при этом представить им эпизод, в котором математики не было. Авторы приступили к повторному анализу сценария, сцена за сценой, в поисках подходящего места для вставки математики. В конце концов один из них заметил, что кульминация эпизода позволяет включить ряд интересных цифр.

Перед тем как Табита во всеуслышание признается в любви к Баку на экране Jumbo-Vision, на нем отображается вопрос с несколькими вариантами ответа, предлагающий зрителям догадаться, сколько людей присутствует на стадионе. В предварительном сценарии числа в них были взяты наугад, однако теперь сценаристы решили заменить их числами с особенно интересными свойствами. Когда они справились с задачей, Джефф Уэстбрук написал Саре Гринволд электронное письмо, в котором было сказано следующее: «Просто замечательно, что вы у нас побывали, поскольку это слегка подстегнуло нас, и мы решили включить в эпизод несколько более интересных математических чисел в честь вашего визита».

Изображение на экране Jumbo-Vision из эпизода «Мардж и Гомер спасают чужой брак»

Три особых числа, появившиеся на экране Jumbo-Vision, случайному зрителю показались бы произвольно выбранными и ничем не примечательными, но зрители с математическим складом ума сразу бы поняли, что каждое из них замечательно по-своему.

Первое число 8191 — простое число. В действительности оно относится к особому классу простых чисел, известному как числа Мерсенна. Этот класс назван в честь Марена Мерсенна, который в 1611 году стал членом ордена минимов в Париже и с тех пор делил свое время между молитвами Богу и поклонением математике. Мерсенн проявлял особый интерес к набору чисел вида 2p – 1, где p — любое простое число. В приведенной ниже таблице показано, что произойдет, если подставить все простые числа меньше 20 в формулу 2p – 1.

p107

Поразительное свойство этой таблицы состоит в том, что формула 2p – 1, похоже, генерирует числа, которые могут быть простыми. На самом деле все числа в правом столбце простые, за исключением числа 2047, поскольку 2047 = 23 × 89. Другими словами, формула 2p – 1 — это рецепт, использующий в качестве ингредиентов простые числа для образования новых простых чисел. Например, если p = 13, тогда 213 – 1 = 8191, а это и есть простое число Мерсенна, присутствующее в эпизоде «Мардж и Гомер спасают чужой брак».

Числа Мерсенна считаются звездами в мире чисел, так как могут быть очень большими. Некоторые из них относятся к категории титанических простых чисел (имеют более тысячи знаков), некоторые — гигантских простых чисел (более десяти тысяч знаков), а самые большие называют мегапростыми числами (более одного миллиона знаков). Десять наиболее больших известных простых чисел Мерсенна — это самые большие простые числа из когда-либо найденных. Самое большое число Мерсенна (257885161 – 1), которое было открыто в январе 2013 года, имеет свыше семнадцати миллионов знаков.

Второе число на экране стадиона, 8128, известно как совершенное число. Совершенство в контексте числа зависит от его делителей, а именно тех чисел, на которые оно делится без остатка. Например, делители числа 10 — 1, 2, 5 и 10. Число считается совершенным, если оно равно сумме своих делителей, отличных от самого числа. Самое маленькое совершенное число — 6, поскольку 1, 2 и 3 — это его делители, а 1 + 2 + 3 = 6. Второе совершенное число — 28, потому что его делители — 1, 2, 4, 7 и 14, а 1 + 2 + 4 + 7 + 14 = 28. Третье совершенное число — 496, а четвертое — 8128: именно то число, которое появляется в эпизоде «Мардж и Гомер спасают чужой брак».

Об этих четырех совершенных числах знали еще древние греки, однако математикам пришлось больше тысячелетия ждать открытия трех следующих совершенных чисел: 33 550 336 было обнаружено примерно в 1460 году, а затем, в 1588-м, было объявлено об открытии чисел 8 589 869 056 и 137 438 691 328. Как сказал французский математик XVII столетия Рене Декарт, «совершенные числа, как и совершенные люди, встречаются крайне редко».

Исходя из того, что совершенных чисел очень мало, легко сделать поспешный вывод о существовании их конечного количества. Но тем не менее математики до сих пор не смогли это доказать. Кроме того, все известные совершенные числа четные, поэтому велика вероятность, что и те совершенные числа, которые будут когда-то найдены, также окажутся четными. Но и это пока никто не доказал.

Несмотря на эти пробелы в знаниях, нам все же кое-что известно о совершенных числах. Например то, что четные совершенные числа (а ими могут оказаться все числа такого рода) — это также треугольные числа:

6 = 1 + 2 + 3

p109-1

28 = 1 + 2 + 3 + 4 + 5 + 6 + 7

p109-2

Кроме того, мы знаем, что четные совершенные числа (за исключением числа 6) всегда представляют собой сумму нескольких следующих подряд нечетных чисел, возведенных в третью степень:

28 = 13 + 33

496 = 13 + 33 + 53 + 73

8128 = 13 + 33 + 53 + 73 + 93 + 113 + 133 + 153

И последнее, но не менее важное замечание: нам известно о существовании тесной связи между совершенными числами и простыми числами Мерсенна. В действительности математики доказали, что каждая из этих групп содержит одно и то же количество чисел, и показали, что каждое число Мерсенна можно использовать для генерирования совершенного числа. Следовательно, всего мы знаем сорок восемь совершенных чисел, потому что знаем только сорок восемь чисел Мерсенна.

Третье число на экране стадиона — 8208 — тоже особенное, поскольку оно относится к категории так называемых самовлюбленных чисел. Оно равно сумме своих цифр, возведенных в степень, равную количеству этих цифр:

8208 = 84 + 24 + 04 + 84 = 4096 + 16 + 0 + 4096

Причина, почему это число называют самовлюбленным, заключается в том, что его же собственные цифры используются для генерации самого числа. Создается впечатление, что такое число одержимо собой, почти влюблено в само себя.

Есть масса других примеров самовлюбленных чисел, например 153, которое равно 13 + 53 + 33, однако доказано, что существует их конечное количество. В действительности есть всего восемьдесят восемь самовлюбленных чисел, среди которых самое большое — 115 132 219 018 763 992 565 095 597 973 971 522 401.

Тем не менее, если мы ослабим ограничения, то появится возможность сгенерировать так называемые сумасбродные самовлюбленные числа. Они могут быть образованы с помощью собственных цифр любым возможным способом. Вот несколько примеров сумасбродных самовлюбленных чисел:

6859 = (6 + 8 + 5)√9

24739 = 24 + 7! + 39

23328 = 2 × 33! × 2 × 8

Итак, благодаря визиту Гринволд и Нестлера в эпизоде «Мардж и Гомер спасают чужой брак» появились простое число Мерсенна, совершенное число и самовлюбленное число. На протяжении многих лет мультсериал «Симпсоны» оказывал влияние на методику преподавания, теперь же ситуация изменилась на прямо противоположную: профессора оказали влияние на «Симпсонов».

Но почему авторы мультсериала выбрали именно эти числа для демонстрации на экране Jumbo-Vision? Ведь существуют сотни видов интересных чисел, и любые могли бы сыграть свою роль в эпизоде. Например, так называемые числа-вампиры, цифры которых можно разделить таким образом, чтобы образовались два новых числа (известных как «клыки»), произведение которых равно исходному числу. Например, 136 948 — это число-вампир, поскольку 136 948 = 146 × 938. Еще более интересный пример — число 16 758 243 290 880, потому что его клыки можно сформировать четырьмя разными способами:

1675824290880 = 1982736 × 8452080

1675824290880 = 2123856 × 7890480

1675824290880 = 2751840 × 6089832

1675824290880 = 2817360 × 5948208

Если бы сценаристы захотели использовать в высшей степени особенное число, они могли бы выбрать безукоризненное число. Таких чисел всего два, поскольку они должны удовлетворять двум строгим требованиям, имеющим отношение к совершенству. Во-первых, общее количество делителей этого числа должно быть совершенным числом; во-вторых, сумма этих делителей тоже должна быть совершенным числом. Первое безукоризненное число — 12, так как его делители — 1, 2, 3, 4, 6 и 12. Количество делителей равно 6, а их сумма — 28, причем 6 и 28 — совершенные числа. Второе безукоризненное число — 6 086 555 670 238 378 989 670 371 734 243 169 622 657 830 773 351 885 970 528 324 860 512 791 691 264.

По словам сценаристов, они выбрали число Мерсенна, совершенное число и самовлюбленное число для эпизода «Мардж и Гомер спасают чужой брак» только потому, что все они примерно равны реальному количеству зрителей на бейсбольном стадионе. Кроме того, именно эти числа первыми пришли им в голову. Поправки в сценарий вносились в последнюю минуту, поэтому авторам некогда было долго думать над выбором чисел.

Но теперь, по прошествии времени, я готов поспорить, что сценаристы выбрали самые подходящие числа, поскольку они еще видны на экране в момент появления Табиты Викс, причем каждое из них как будто представляет собой ее точное описание. Будучи одним из наиболее эффектных персонажей «Симпсонов», Табита считает себя совершенной женщиной в расцвете лет, поэтому неудивительно, что она — самовлюбленный человек. В действительности в самом начале эпизода Табита, одетая в откровенное платье, вызывающе танцует перед восхищенными бейсбольными фанатами мужа, так что появление сумасбродного самовлюбленного числа на экране стадиона более чем уместно.

* * *

Хотя Гринволд и Нестлер могут показаться исключительными преподавателями, они не единственные, кто обсуждает «Симпсонов» на своих лекциях. Джоэл Сокол из Технологического института Джорджии в курсе лекций под названием «Принятие решений в противостоянии с соперником: практическое применение математической оптимизации» использует слайды с описанием игры «камень, ножницы, бумага», в которую играют герои «Симпсонов». Этот курс лекций посвящен теории игр — области математики, которая занимается моделированием поведения участников в конфликтных ситуациях и партнерских отношениях. Теория игр может помочь нам понять очень многое, от домино до военных действий, от животного альтруизма до переговоров профсоюзов. Точно так же Дирк Матри, экономист Университета штата Пенсильвания, активно интересующийся математикой, использует сцены из «Симпсонов» с игрой «камень, ножницы, бумага», когда рассказывает студентам о теории игр.

На первый взгляд кажется, что «камень, ножницы, бумага» (сокращенно КНБ) — достаточно простая игра, поэтому вас удивит тот факт, что она может представлять какой-либо интерес с точки зрения математики. Тем не менее в руках специалиста по теории игр КНБ становится сложной битвой между двумя соперниками, пытающимися перехитрить друг друга. На самом деле в КНБ много скрытых математических тонкостей.

Но прежде чем их раскрыть, позвольте кратко описать правила игры. В КНБ участвуют два игрока, которые играют по очень простым правилам. Сначала они вместе считают «Раз, два, три…» и на счете «три» показывают рукой один из трех знаков: камень (сжатый кулак), бумага (открытая, плоская ладонь) или ножницы (указательный и средний пальцы образуют букву V). Победитель определяется по принципу «круговой иерархии»: камень затупляет ножницы (побеждает камень); ножницы режут бумагу (побеждают ножницы); бумага заворачивает камень (побеждает бумага). Если оба игрока выбрали один и тот же знак, значит, в этом раунде будет ничья.

За многие столетия в разных культурах сформировались свои варианты этой игры, от индонезийского «слон, человек, уховертка» до «НЛО, микроб, корова», созданного любителями научной фантастики. В последней версии НЛО расчленяет корову, корова поедает микробы, а микробы заражают НЛО.

Хотя каждая культура имеет свои элементы игры, общие правила остаются неизменными. При их наличии можно использовать логику математической теории игр, чтобы определить лучшую стратегию игры. Это было продемонстрировано в эпизоде «Фронт» (The Front, сезон 4, эпизод 19; 1993 год), когда Барт и Лиза играют в КНБ, чтобы решить, чье имя следует указать первым в их совместном сценарии к «Шоу Щекотки и Царапки». Если взглянуть на игру КНБ с точки зрения Лизы, то ее лучшая стратегия зависит от ряда факторов. Например от того, что Лиза знает о сопернике — новичок он или профессионал — и что соперник знает о Лизе, а также какова цель: выиграть или избежать поражения?

Если бы Лиза играла с чемпионом мира, она могла бы воспользоваться стратегией случайного хода, поскольку даже чемпион мира не мог бы предсказать, что она выберет: камень, ножницы или бумагу. Это обеспечило бы Лизе равные шансы на выигрыш, проигрыш или ничью. Однако Лиза играет с братом, а он не чемпион мира по КНБ, поэтому она предпочитает стратегию, основанную на собственном опыте: Барт всегда выбирает камень. В итоге Лиза выбрасывает бумагу, чтобы победить камень Барта. Как и следовало ожидать, ее план срабатывает. Плохая привычка Барта согласуется с результатами исследования, проведенного Всемирным обществом КНБ, которые гласят, что камень — в целом самый популярный знак, особенно среди мальчиков.

Применение правильной стратегии игры, основанной на теории игр, сыграло в свое время ключевую роль, когда японская компания Maspro Denkoh выставила в 2005 году на аукцион свою коллекцию произведений искусства. Для того чтобы решить, с каким аукционным домом заключить многомиллионный контракт, с Sotheby’s или Christie’s, в Maspro Denkoh устроили между их представителями битву по КНБ. Международный директор отдела импрессионизма и современного искусства Christie’s Николас Маклин отнесся к этому настолько серьезно, что попросил совета у своих одиннадцатилетних дочерей-двойняшек. Опыт двойняшек подтверждали результаты исследования Всемирного общества КНБ, поскольку девочки тоже считали, что камень — самый распространенный ход. Более того, они обратили внимание, что продвинутые игроки знают об этом и выбирают в качестве своего хода бумагу. Интуиция подсказывала Маклину, что в Sotheby’s остановятся именно на этой продвинутой стратегии, поэтому посоветовал боссам в Christie’s сделать еще более тонкий ход, выбросив ножницы. Представители Sotheby’s действительно выбрали бумагу, поэтому Christie’s выиграли.

Еще один уровень математических тонкостей возникает, когда мы придаем игре КНБ дальнейший импульс, включив в нее больше вариантов. Прежде всего необходимо подчеркнуть, что любая новая версия КНБ должна иметь нечетное количество вариантов (N). Это единственный способ сбалансировать игру, так как каждый вариант выигрывает и проигрывает равному количеству других вариантов: (N – 1)/2. Следовательно, не существует такой версии КНБ, в которой было бы четыре варианта хода, но есть версия с пятью вариантами, придуманная программистом Сэмом Кассои и ставшая популярной после появления в восьмой серии второго сезона телесериала «Теория большого взрыва» (The Big Bang Theory, 2008 год), под названием «камень, ножницы, бумага, ящерица, Спок» (сокращенно КНБЯСп). Вот круговая иерархия и жесты для игры «камень, ножницы, бумага, ящерица, Спок».

По мере увеличения количества вариантов вероятность ничьей снижается на 1/N. Следовательно, вероятность ничьей в КНБ составляет 1/3, а в КНБЯСп — 1/5. Если кто-то хочет свести вероятность ничьей к минимуму, то самой большой и лучшей версией КНБ будет созданная художником-аниматором Дэвидом Лавлейсом КНБ-101. Она содержит 101 жест и 5050 возможных вариантов ходов, которые однозначно приведут к выигрышу. Например, трясина засасывает грифа, гриф съедает принцессу, принцесса усмиряет дракона, дракон поджигает робота и т. д. Вероятность ничьей составляет 1/101, что меньше одного процента.

Пожалуй, самое интересное математическое событие, произошедшее благодаря изучению игры КНБ, — это изобретение так называемых нетранзитивных игральных костей, сразу же вызвавших к себе повышенный интерес, поскольку на гранях каждой из них обозначены другие цифры:

8_3-1
8_3-2
8_3-3

Мы с вами можем выбрать по одной игральной кости и сыграть ими друг против друга. Выигрывает тот, чья кость покажет большее число. Так как вы думаете, какая кость лучшая?

В приведенных ниже таблицах показано, что происходит с тремя возможными парами костей: (А против Б), (Б против В), (В против А). Из первой таблицы следует, что кость А лучше, чем кость Б, поскольку она выигрывает в 20 из 36 возможных вариантов развития событий. Другими словами, кость А в среднем выигрывает в 56 процентах случаев.

А как насчет пары «кость Б против кости В»? Вторая таблица показывает, что кость Б лучше, так как она выигрывает в 56 процентах случаев.

В реальной жизни мы привыкли к транзитивным отношениям, которые означают, что если А лучше Б, а Б лучше В, то А должно быть лучше В. Тем не менее, бросив кость А против кости В, мы обнаружим, что кость В лучше, потому что она выигрывает в 56 процентах случаев, как показано в третьей таблице. Именно поэтому такие кости названы нетранзитивными: они не подчиняются обычному правилу транзитивности, так же как и ходы в КНБ. Как уже отмечалось выше, правила КНБ подчиняются нетрадиционной круговой иерархии, а не простой иерархии сверху вниз.

p116-1
p116-2
p116-3

Каждая таблица показывает все возможные варианты развития событий, когда две игральные кости выбрасываются друг против друга. В первой таблице, отображающей ситуацию «А против Б», можно увидеть, что верхний левый квадрат отмечен как А и окрашен в светло-серый цвет, поскольку кость А выигрывает, если на ней выпадает число 3, а на кости Б — число 2. В свою очередь нижний правый квадрат отмечен как Б и имеет темно-серый цвет, так как кость Б выигрывает, если на ней выпадает число 9, а на кости А — число 7. С учетом всех возможных комбинаций можно сделать вывод, что кость А выигрывает в среднем в 56 процентах случаев в игре против кости Б.

Нетранзитивные отношения абсурдны и противоречат здравому смыслу, но именно поэтому они и приводят в восторг математиков, будь то авторы «Симпсонов», университетские профессора… или даже самый успешный инвестор в мире, а именно Уоррен Баффет, чистая стоимость активов которого оценивается примерно в 50 миллиардов долларов. В альбоме выпускников Школы Вудро Вильсона 1947 года под фотографией Баффета стоит весьма дальновидная подпись: «Любит математику; будущий фондовый брокер».

Баффет большой поклонник нетранзитивных игральных костей и часто предлагает людям сыграть с ним партию. Он без всяких объяснений вручает сопернику три нетранзитивные кости и просит первым сделать выбор. Сопернику кажется, будто это ставит его в более выгодное положение, поскольку у него есть шанс выбрать «лучшую» кость. Разумеется, лучшей кости просто не существует, и Баффет сознательно уступает первый ход, чтобы иметь возможность выбрать кость, более сильную по сравнению с той, на которую укажет соперник. Это не гарантирует Баффету победу, но существенно повышает ее вероятность.

Когда Уоррен Баффет решил провернуть этот трюк с Биллом Гейтсом, основатель Microsoft сразу же заподозрил неладное. Он достаточно долго изучал кости, а затем вежливо предложил Баффету сделать выбор первым.

Назад: ГЛАВА 7. БАБГЕБРА И ЖЕНГОРИТМЫ
Дальше: ГЛАВА 9. ДО БЕСКОНЕЧНОСТИ И ДАЛЬШЕ

bost-rasul
Hfvfpfy