2.3. Максимальные токовые защиты
Максимальные токовые защиты (МТЗ) — это токовые защиты максимального типа, селективность действия которых обеспечивается выбором различных выдержек времени срабатывания.
Как правило, МТЗ используются в электрических сетях с односторонним питанием. Они устанавливаются в начале каждого контролируемого объекта со стороны источника питания (рис. 2.7).
Выдержки времени срабатывания защит должны нарастать по мере приближения к источнику питания: tС31 > tC32 > tC33> tC3H4.
При КЗ на линии W3 (например, в точке КЗ) токи в линиях от источника до точки КЗ увеличатся и все три обтекаемые током КЗ защиты MT31—MT33 могут начать действовать. Среди перечисленных защит МТЗЗ имеет наименьшую выдержку времени и поэтому срабатывает первой, отключая только поврежденную линию W3. Остальные защиты вернутся в исходное состояние, так и не успев сработать.
При КЗ на линии W2 (в точке К2) током КЗ обтекаются защиты МТЗ1 и МТЗ2. Из них меньшей выдержкой времени обладает МТЗ2. Именно она должна сработать первой и отключить поврежденную линию W2.
При КЗ на линии W1 должна сработать защита МТЗ1.
2.3.1. Выбор уставок МТЗ
Ток срабатывания МТЗ выбирается исходя из следующих условий.
Во-первых, ток срабатывания должен быть больше максимального рабочего тока, чтобы защита не действовала при нормальной работе системы:
IC3 MAX > IАБ МАХ.
Во-вторых, ток возврата защиты должен быть больше тока самозапуска в послеаварийном режиме работы системы, чтобы защита возвращалась в исходное положение после селективного отключения поврежденного оборудования другой защитой:
IВЗ > IСЗП.
Так, при КЗ в начале линии W2 (рис. 2.8) токи в местах установки защит МТЗ1 и МТЗ2 увеличиваются, токовые реле этих защит срабатывают и реле времени начинают отсчет установленных на них выдержек времени. Одновременно снижается напряжение на шинах подстанции ПС2 и двигатели М, также питающиеся от шин этой подстанции, затормаживаются. Часть из них при этом отключается, другая часть в соответствии с технологическими требованиями остается подключенной к сети. После отключения линии W2 защитой МТЗ2 начинается процесс самозапуска этих двигателей, при котором ток в месте установки МТЗ1 равен току самозапуска электродвигателей. В этих условиях необходимо, чтобы МТЗ1 все же вернулась в исходное состояние, прервав отсчет времени.
Учитывая, что ток срабатывания защиты и ток ее возврата связаны коэффициентом возврата (kв = IBЗ /IС), а также используя коэффициент запаса kЗ, второе условие можно переписать в виде:
Для реле РТ-40, РТ-80, РТ-90 kЗ = 1,1–1,2, kВ = 0,8–0,85 [4].
Если максимальное значение тока самозапуска неизвестно, его можно определить приближенно на основании коэффициента самозапуска, показывающего, во сколько раз ток самозапуска больше максимального рабочего тока. Тогда:
Здесь IСЗ и kСЗП — соответственно ток самозапуска электродвигателей в месте установки защиты и коэффициент самозапуска.
Выдержки времени срабатывания МТЗ при каскадном соединении линий должны возрастать по мере приближения к источнику питания (см. рис. 2.7):
где tСЗ H4 — время срабатывания собственной защиты нагрузки;
Δ t — ступень селективности; при использовании электромеханических реле времени Δ t = 0,4–0,6 с.
2.3.2. Схемы МТЗ
Полная звезда (трехфазная трехрелейная схема, рис. 2.9; kCX = 1) применяется редко, так как в сетях 6-35 кВ при двойных замыканиях на землю она может приводить к неселективному отключению поврежденных линий. Чувствительность такой защиты, установленной на трансформаторах 110 кВ и выше, необходимо искусственно снижать, не допуская действия защиты при внешних однофазных КЗ. В сетях 110 кВ и выше обычно используют дистанционную защиту [5].
Неполная звезда (двухфазная двухрелейная или трехрелейная схема, рис. 2.10) используется для защиты в электрических сетях 6-35 кВ, то есть в сетях с изолированной или компенсированной нейтралью, где не может быть однофазных КЗ. Для уменьшения вероятности неселективных отключений при двойных замыканиях на землю ТТ во всей сети устанавливают на одноименных фазах (обычно А и С). На трансформаторах со схемами соединения обмоток «звезда/треугольник» (Y/Δ) и «треугольник/звезда» (Δ/Y), а также на линиях, питающих такие трансформаторы, следует использовать трехрелейную схему [5]: при двухфазном КЗ на стороне низшего напряжения (НН) трансформатора ток КЗ в одной из фаз на стороне высшего напряжения (ВН) будет в два раза выше, чем в двух других. В одном из трех случаев двухфазных КЗ этой фазой будет являться фаза B, не охваченная защитой, и чувствительность защиты снизится в два раза. Для повышения чувствительности в этом случае в обратный провод двухфазной схемы следует включить дополнительное реле KA3 (показано пунктиром на рис. 2.10).
Треугольник (обмотки реле соединяются по схеме звезды, а вторичные обмотки трансформаторов тока — по схеме треугольника, рис. 2.11; kCX = √3; схема оперативного тока такая же, как для полной звезды — см. рис. 2.9) используется для защиты трансформаторов 35 кВ и выше.
Защита, выполненная по этой схеме, не действует при внешних однофазных КЗ (в отличие от схемы полной звезды).
На двухобмоточных трансформаторах со схемой соединения обмоток «звезда/треугольник» (Y/Δ) одно из трех реле может быть исключено [5] без ухудшения чувствительности защиты (реле KA2 на рис. 2.11).
Неполный треугольник (двухфазная однорелейная схема, рис. 2.12; kCX = √3) ввиду значительных недостатков допустимо использовать только для защиты электродвигателей выше 1 кВ мощностью не более 2 МВт [3, 5]. Этот способ соединения вторичных токовых цепей иногда называют схемой включения реле «на разность токов двух фаз».