Чтобы услышать страшные прогнозы о гибели всего сущего из-за столкновения с астероидами-убийцами, далеко ходить не приходится. И это хорошо, поскольку почти все, что вы видели, читали или слышали, – истинная правда.
Вероятность, что на моем или на вашем надгробии напишут «Погиб от попадания метеорита», примерно такая же, как и «Погиб в авиакатастрофе». Однако за последние 400 лет от падения метеоритов погибло человек двадцать, а за сравнительно краткую историю пассажирских авиаперевозок число жертв авиакатастроф составляет тысячи. Неужели в этой сравнительной статистике нет противоречия? Как такое может быть? Очень просто. Данные о падениях метеоритов говорят, что за период в 10 миллионов лет – именно за это время во всех авиакатастрофах погибнет миллиард человек (если считать, что в авиакатастрофах погибает в среднем 100 человек в год), – скорее всего, в Землю врежется астероид, у которого хватит энергии, чтобы убить миллиард человек. Правильно понимать эту статистику мешает то обстоятельство, что в авиакатастрофах погибает по несколько человек за раз, а астероид, вероятно, не убьет никого и за несколько миллионов лет. Зато уж когда он попадет в Землю, то унесет жизни нескольких сотен миллионов человек сразу и еще несколько сотен миллионов – в результате последующих глобальных климатических катастроф.
На ранних этапах существования Солнечной системы кометы и астероиды бомбардировали ее с устрашающей частотой. Теории и модели формирования планет показывают, что химически обогащенный газ конденсируется, создает молекулы, потом частички пыли, потом камни и лед. А потом начинается настоящая бомбежка. Столкновения помогают химическим и гравитационным силам связывать более мелкие объекты в более крупные. У тех объектов, которые по случайности набрали массу немного больше среднего, и гравитация немного больше, поэтому они еще сильнее притягивают другие объекты. Набор массы – ученые называют его аккрецией – продолжается, в конце концов гравитация превращает глыбы в шары, и рождаются планеты. У самых массивных планет гравитации хватает на то, чтобы сохранять газовую оболочку. Все планеты продолжают набирать массу до конца дней своих, просто темп аккреции со временем становится гораздо меньше, чем в период формирования.
И все же на самой периферии Солнечной системы – на расстоянии до тысячи раз большем, чем расстояние до Плутона – остаются миллиарды, а вероятно, даже триллионы комет, чувствительных к гравитационным толчкам от проходящих мимо звезд и межзвездных облаков, которые отправляют кометы в долгое путешествие вовнутрь системы, к Солнцу. Кроме того, в число строительного мусора после возникновения Солнечной системы входят и кометы с коротким периодом, несколько десятков которых, как мы знаем, пересекают орбиту Земли. И несколько тысяч астероидов, как известно, тоже.
Слово «аккреция» звучит не так весело, как «столкновение, в результате которого вымирают биологические виды и разрушаются экосистемы». Но с точки зрения истории Солнечной системы это одно и то же. Нельзя одновременно радоваться, что живешь на планете, радоваться, что твоя планета богата химическими соединениями, радоваться, что ты не динозавр, и при этом дуться из-за риска катастрофы всепланетного масштаба.
Энергия от падения на Землю метеоритов отчасти гасится в нашей атмосфере – уходит на трение и на ударную волну в воздухе. Грохот при переходе через звуковой барьер – это тоже ударная волна, но обычно его производят самолеты, летящие со скоростью от одной до трех скоростей звука. Самое страшное, что может сделать такая ударная волна, – это задребезжать посудой в буфете. Но когда скорость достигает 70 000 километров в час, то есть превышает скорость звука примерно в семьдесят раз, ударная волна от столкновения небольшого астероида с Землей может привести к страшным последствиям.
Если астероид или комета достаточно велики и их собственная ударная волна их не разрушит, то вся оставшаяся энергия окажется направлена на поверхность Земли – и произойдет взрыв, от которого почва расплавится и образуется кратер диаметром раз в двадцать больше самого астероида. Если на Землю упадет много астероидов с небольшими промежутками, то земная поверхность не успеет остыть в промежутке между ударами. Изучение древних кратеров на поверхности Луны – нашей ближайшей космической соседки – говорит нам, что примерно 4,6–4,0 миллиарда лет назад Земля пережила эпоху сильнейшей бомбардировки. А возраст древнейших ископаемых останков живых организмов на Земле – примерно 3,8 миллиардов лет. Незадолго до этого поверхность Земли подвергалась непрерывной стерилизации, что препятствовало возникновению сложных молекул, а следовательно, и жизни. Это, конечно, плохо, – но надо учесть, что при этом на Землю бесперебойно доставлялись необходимые ингредиенты.
Сколько времени требуется, чтобы зародилась жизнь? Обычно говорят, что 800 миллионов лет (4,6 миллиардов – 3,8 миллиарда = 800 миллионов). Однако, если по-честному принять во внимание данные органической химии, надо сначала вычесть все то время, на протяжении которого поверхность Земли была так раскалена, что ни о каких органических молекулах не было и речи. И тогда на то, чтобы из первобытного бульона, богатого химическими соединениями, возникла жизнь, останется всего 200 миллионов лет. А этот бульон, как полагается всякому нормальному бульону, был приготовлен на воде.
Да-да. Та самая вода, которую вы пьете каждый день, попала на Землю отчасти благодаря кометам, упавшим 4 миллиарда лет назад. Однако не весь космический мусор родился во время формирования Солнечной системы. На Землю по меньшей мере десяток раз попадали каменистые обломки с Марса – и куда большее число раз обломки с Луны. Эти обломки получаются, когда у метеоритов, которые падают на небесное тело, энергии столько, что более мелкие каменные глыбы, оказавшиеся поблизости от места падения, выбивает вверх со скоростью, которой хватает на то, чтобы преодолеть притяжение планеты. После этого каменные глыбы сами регулируют собственную баллистику на орбите вокруг Солнца, пока не врежутся еще во что-нибудь. Самый знаменитый марсианский метеорит – это первый, который в 1984 году был обнаружен в районе гор Алан Хиллс в Антарктиде. Официальное его название – аббревиатура, которая выглядит загадочно, но на самом деле совершенно логична: ALH-84001. Так вот, при изучении этого метеорита были получены очень соблазнительные, но все же косвенные данные, что миллиард лет назад на красной планете кишмя кишела простейшая жизнь. А совсем недавно марсоходы «Спирит» и «Оппортьюнити» обнаружили минералы и породы, которые могли образоваться только в присутствии стоячей воды.
Поскольку жизнь в том виде, в каком мы ее знаем, не может обойтись без жидкой воды, гипотеза о вероятном появлении жизни на Марсе совсем не противоречит научной точке зрения. Самое интересное начинается, когда задумываешься, не могло ли быть так, что жизнь зародилась сначала на Марсе, а потом ее вышвырнуло с поверхности красной планеты – и первые бактериальные астронавты в Солнечной системе очутились на Земле и запустили на ней эволюцию. У этого процесса есть даже ученое название – «панспермия». Не исключено, что все мы – потомки марсиан.
Гораздо вероятнее, что вещество перемещалось именно с Марса на Землю, а не наоборот. Чтобы вырваться из гравитационных уз Земли, нужно более чем в два с половиной раза больше энергии, чем для того, чтобы покинуть Марс. Более того, атмосфера Земли примерно в сто раз плотнее. Сопротивление воздуха на Земле по сравнению с марсианским просто чудовищное. В общем, это должны были быть очень выносливые бактерии – ведь им ко всему прочему пришлось бы пережить несколько миллионов лет межпланетных странствий, прежде чем добраться до Земли. К счастью, на Земле нет недостатка ни в жидкой воде, ни в разнообразных химических соединениях, поэтому для объяснения происхождения жизни на нашей планете в привычном для нас виде не обязательны теории панспермии. С одной оговоркой: такого объяснения у нас до сих пор нет.
Как ни парадоксально, в основных эпизодах вымирания, известных по ископаемым останкам, мы вполне можем винить именно падение метеоритов, более того, их мы и виним. Однако каков риск для жизни и общества в наши дни? Ниже вы увидите таблицу, где приведена средняя частота столкновений Земли с метеоритами и астероидами, размер этих метеоритов и астероидов и энергия столкновения в тротиловом эквиваленте. Для справки я включил в таблицу столбец, где за единицу энергии столкновения взята та атомная бомба, которую США сбросили на Хиросиму в 1945 году. Эти данные я взял из диаграммы, которую составил в 1992 году Дэвид Моррисон из НАСА.
Таблица основана на тщательном анализе истории кратеров, оставшихся на Земле после падения метеоритов, а также кратеров на поверхности Луны, не подверженных эрозии, и на том, что мы знаем количество астероидов и комет, чьи орбиты пересекаются с орбитами Земли.
По таблице можно найти энергетику некоторых знаменитых метеоритов. Например, взрыв метеорита возле сибирской реки Тунгуски в 1908 году повалил тысячи квадратных километров тайги и выжег 300 квадратных километров вокруг эпицентра. Считается, что тогда на Землю упал каменный метеорит диаметром 60 метров (размером примерно с двадцатиэтажный дом), который взорвался в воздухе и поэтому не оставил кратера. Судя по таблице, столкновения подобного масштаба должны происходить в среднем раз в двести лет. Двухсоткилометровый кратер Чиксулуб на полуострове Юкатан в Мексике, как полагают ученые, – визитная карточка десятикилометрового астероида. Энергия удара была приблизительно в 5 миллионов раз больше, чем от взрывов атомных бомб во время Второй Мировой войны, и по расчетам подобные столкновения происходят примерно один раз в 100 миллионов лет. Возраст кратера – около 65 миллионов лет, и с тех пор подобных катастроф еще не было. По странному совпадению, примерно в то же время вымерли тиранозавр и его приятели, благодаря чему, собственно, млекопитающие и получили возможность эволюционировать в нечто более честолюбивое, чем землеройка.
Те геологи и палеонтологи, которые упорно отрицают роль космических катастроф в истории исчезновения некоторых биологических видов на Земле, должны найти какое-то другое применение огромному количеству энергии, попадающему на Землю из космоса. Правда, само количество энергии от попадания на Землю метеорита может быть разным, и его значения варьируются в поистине астрономических масштабах. В обзоре метеоритной опасности для Земли, написанном для толстой книги «Hazards Due to Comets and Asteroids» («Опасности, связанные с кометами и астероидами», Gehrels 1994), Дэвид Моррисон из Эймсовского исследовательского центра НАСА, Кларк Р. Чепмен из Планетологического института США и Пол Словик из Университета штата Орегон кратко описывают, каковы могут быть последствия нежелательных энергетических вбросов для экосистемы Земли. Их соображения я и привожу здесь в несколько упрощенном виде.
Большинство метеоритов, энергия которых меньше 10 мегатонн, взрываются в атмосфере и не оставляют ни следа кратера. Те немногие, которые остаются целы, скорее всего, богаты железом.
Железный метеорит с энергией от 10 до 100 мегатонн оставит кратер, а его каменный эквивалент развалится, и это приведет к серии взрывов, в основном в воздухе. Если такой метеорит упадет на поверхность Земли, то разрушит территорию, равную площади города Вашингтона.
При падении на земную поверхность метеоритов с энергией от 1000 до 10 000 мегатонн опять же остаются кратеры; если метеорит попадет в океан, это вызовет значительные приливные волны. При падении на сушу будет разрушена территория размером со штат Делавэр.
Если на Землю упадет метеорит с энергией 100 000–1 000 000 мегатонн, это приведет к поражению озонового слоя в масштабах всей планеты; если он попадет в океан, это вызовет гигантские волны, которые скажутся на целом полушарии, а если на сушу – поднимет в стратосферу столько пыли, что климат Земли изменится, а посевы замерзнут. При падении на Землю такой метеорит разрушит территорию размером с Францию.
Падение метеорита с энергией 10–100 миллионов мегатонн приведет к долгосрочным климатическим катаклизмам и к пожарам в масштабах всей планеты. Падение на поверхность уничтожит территорию, равную континентальной территории США.
Падение на поверхность или в океан метеорита с энергией 100 000 000–1 000 000 000 мегатонн приведет к массовому вымиранию того же масштаба, что и падение метеорита, оставившего кратер Чиксулуб 65 миллионов лет назад, когда с лица Земли были внезапно стерты почти 70 % всех биологических
видов.
К счастью, у нас есть возможность заносить в каталог все астероиды крупнее километра из числа тех, орбиты которых пересекаются с орбитой Земли: именно начиная с такого размера можно опасаться глобальной катастрофы. Создать систему раннего предупреждения и защиты рода человеческого от астероидной опасности – вполне реалистичная цель, и именно это и рекомендовано в документе НАСА «Spaceguard Survey Report» и – хотите верьте, хотите нет, – это находится под пристальным наблюдением Конгресса США. К сожалению, объекты меньше километра не отражают достаточно света, чтобы их можно было надежно регистрировать и отслеживать. Они могут врезаться в нас безо всякого предупреждения, а если и предупредят, то у нас не хватит времени, чтобы хоть что-то предпринять. Правда, не все так плохо: хотя у них хватит энергии, чтобы устроить локальную катастрофу и выжечь целую страну, все человечество из-за них точно не вымрет.
Земля, разумеется, не единственная каменистая планета, которой грозит опасность столкнуться с астероидом. Поверхность Меркурия вся изрыта кратерами, на взгляд непосвященного он очень похож на Луну. Недавние радиотопографические исследования закутанной в облака Венеры также показали, что на ней много кратеров. А на Марсе, на котором когда-то шли очень активные геологические процессы, есть большие кратеры, которые сформировались совсем недавно.
Юпитер более чем в триста раз массивнее Земли и более чем в десять раз больше в диаметре, поэтому никто в Солнечной системе не может тягаться с ним в способности притягивать кометы и астероиды. В 1994 году на той неделе, когда праздновалась двадцать пятая годовщина посадки «Аполлона-11» на Луну, комета Шумейкеров-Леви 9, распавшаяся на два десятка обломков в результате взаимодействия с Юпитером во время предыдущего прохода мимо него, угодила по частям в его атмосферу. Газовые «шрамы» были заметны с Земли даже в любительские телескопы. Поскольку Юпитер быстро вращается – один оборот за 10 часов – разные части кометы попали в разные участки вращающейся атмосферы. Кстати, если вам интересно, каждый обломок кометы нес с собой столько же энергии, сколько и метеорит, оставивший кратер Чиксулуб. И теперь, хотя мы еще очень многого не знаем о Юпитере, одно можно утверждать наверняка: динозавров там точно не осталось!
Ископаемые остатки на Земле изобилуют вымершими видами, организмами, которые прожили в покое и процветании гораздо дольше общего стажа, набранного Homo sapiens на сегодняшний день. В этом списке есть и динозавры. Как же нам защититься от чудовищных энергетических зарядов из космоса? Боевой клич тех, кому хочется найти применение ядерным боеголовкам, раз уж никакой ядерной войны никто не ведет, – «Разбомбим их прямо в небе!» Конечно, ядерное оружие – это и правда самый мощный заряд разрушительной энергии, придуманный человеком. Прямое попадание в надвигающийся астероид, пожалуй, может разбить его на мелкие кусочки, что смягчит удар, и вместо глобальной катастрофы получится безвредный, хотя и зрелищный метеоритный дождь. Обратите внимание, что в пустом пространстве, где нет воздуха, нет и ударных волн, поэтому ядерная боеголовка, чтобы разрушить астероид, должна вступить в ним в непосредственный контакт.
Есть и другой метод: задействовать нейтронные бомбы, испускающие мощное излучение (напомню, что это именно те бомбы, которые убивают людей, но оставляют нетронутыми здания), тогда высокоэнергичная нейтронная ванна разогреет одну сторону астероида до такой температуры, что вещество, из которого он состоит, резко расширится, и это вытолкнет астероид с траектории столкновения. Более деликатный и вежливый способ – отклонить астероид в сторону при помощи неспешной, но постоянной ракетной бомбардировки, которая каким-то образом будет нацелена в одну его сторону. Если заняться этим заблаговременно, то потребуется всего лишь небольшой толчок при помощи ракет на обычном химическом топливе. Если бы мы составили каталог всех до единого объектов размером километр и больше, орбиты которых пересекают земную, то смогли бы при помощи тщательных компьютерных расчетов предсказывать катастрофические столкновения за сотни и даже тысячи оборотов по орбите, в отдаленном будущем, так что землянам хватило бы времени, чтобы наладить соответствующую оборону. Однако наш список потенциально смертоносных объектов прискорбно неполон, а предсказывать поведение объектов через миллионы и миллиарды оборотов по орбите нам сильно мешает хаос.
Самая страшная порода небесных тел, участвующих в этих гравитационных игрищах, – это, безусловно, долгопериодические кометы, то есть, по общепринятой классификации, те, период которых превышает 200 лет. Это примерно четверть общего количества объектов, с которыми Земля рискует столкнуться; они попадают во внутреннюю часть Солнечной системы с огромных расстояний и при приближении к Земле достигают скоростей свыше 150 000 километров в час. Следовательно, долгопериодические кометы набирают куда больше энергии для своих габаритов, чем какой-нибудь приблудный астероид. А главное – они на протяжении почти всей орбиты такие тусклые, что их невозможно отследить. К тому времени, как мы поймем, что на нас летит долгопериодическая комета, у нас, вероятно, останется совсем немного времени, от нескольких месяцев до двух лет, чтобы финансировать, разработать, построить и запустить какое-то устройство для ее перехвата.
Например, комета Хякутакэ была обнаружена в 1996 году всего за четыре месяца до того момента, когда она подошла ближе всего к Солнцу, поскольку ее орбита была сильно наклонена относительно плоскости Солнечной системы и проходила именно там, куда никто не смотрел. По пути комета Хякутакэ прошла в 15 миллионах километров от Земли (почти попала!) и была прекрасно видна в ночном небе.
Кстати, внесите в ежедневник: в пятницу 13 апреля 2029 года астероид такого размера, что он впишется в стадион «Роуз-Боул», словно яйцо в подставку, подлетит к Земле на такое расстояние, что поднырнет под наши спутники связи. Мы решили не называть его «Бэмби». Он получил имя Апофис в честь египетского бога мрака и смерти. Если траектория Апофиса при приближении к Земле пройдет в определенном диапазоне высоты, называемом «замочная скважина», влияние земной гравитации на его орбиту будет таково, что гарантирует прямое столкновение с Землей при следующем проходе – семь лет спустя, в 2036 году, – и тогда Апофис упадет в Тихий океан между Калифорнией и Гавайями. Возникшее в результате цунами сотрет с лица Земли все Западное побережье Северной Америки, потопит Гавайи и опустошит всю территорию Тихоокеанского хребта. Если же Апофис в 2029 году промахнется мимо замочной скважины, то в 2036 году нам, разумеется, можно будет ничего не опасаться.
Так надо ли нам создавать высокотехнологичные снаряды, чтобы они сидели в своих шахтах и ждали, когда их призовут на защиту человечества? Сначала нам нужна подробная перепись орбит всех объектов, представляющих риск для Земли. На всем белом свете этим занимается всего несколько десятков человек. Кстати, на какой срок имеет смысл наладить оборону Земли? Если люди когда-нибудь вымрут из-за катастрофического столкновения с астероидом, это будет величайшая трагедия в истории Вселенной. И не только потому, что у нас не хватило мозгов, чтобы защитить себя, но и потому, что у нас не хватило прозорливости. Биологический вид, который сменит нас на постапокалиптической Земле, будет, наверное, дивиться, глядя на наши скелеты в витринах своих музеев естествознания, почему же большеголовый Homo sapiens оказался ничуть не умнее динозавров, у которых мозги были буквально с горошину.