Врачебный лексикон совпадает с астрофизическим лишь в единичных случаях. В человеческом черепе есть «орбиты» – более или менее круглые впадины, которые называются еще и глазницами; посередине под грудиной находится «солнечное» сплетение, однако ни квазаров, ни галактик в организме нет. Что касается орбит, то тут медицинский и астрофизический смысл во многом если не совпадает, то смыкается, а вот слово «плазма», хотя и часто упоминается в обеих дисциплинах, означает настолько разные вещи, что они не имеют друг с другом ничего общего. Переливание плазмы крови может спасти жизнь, а даже самая мимолетная встреча с сияющим шаром из астрофизической плазмы, температура которой составляет миллион градусов, оставит от вас только облачко дыма.
Астрофизическая плазма встречается в космосе везде и повсюду, однако в учебниках для младших курсов и в популярной прессе о ней почти никогда не говорят. В научно-популярных статьях и книгах плазму часто называют четвертым состоянием вещества из-за пестрой россыпи качеств, которые отличают плазму от привычных твердых, жидких и газообразных тел. В плазме есть свободно движущиеся атомы и молекулы, как в газе, однако она может проводить электрический ток, а также «замораживать» пронизывающее ее магнитное поле. Большинство атомов в плазме по тем или иным причинам лишены электронов. А сочетание высокой температуры с низкой плотностью приводит к тому, что электроны воссоединяются с атомами лишь изредка. В целом плазма остается электрически нейтральной, поскольку общее число (отрицательно заряженных) электронов равно общему числу (положительно заряженных) протонов. Однако внутри плазмы так и снуют электрические токи и магнитные поля, поэтому во многих отношениях она ведет себя точь-в-точь как идеальный газ, о котором мы столько наслушались на уроках физики и химии в старших классах.
Воздействие на вещество электрических и магнитных полей практически всегда так велико по сравнению с силой гравитации, что ей можно пренебречь. Электрическая сила притяжения между протоном и электроном на сорок порядков сильнее гравитационного взаимодействия. Электромагнитные силы так мощны, что детский магнит легко поднимает со стола скрепку, невзирая на гигантское тяготение Земли. Хотите пример поинтереснее? Если вы умудритесь вытащить все электроны из кубического миллиметра атомов под носом у космического шаттла и размажете их по взлетной площадке, сила их притяжения окажется такова, что шаттл не взлетит. У него заработают все двигатели – а сам он не сдвинется с места. И если бы астронавты с «Аполлона» привезли домой на Землю все электроны из горстки лунной пыли (оставив на Луне все атомы, из которых они забрали электроны), сила притяжения превзошла бы гравитационную тягу между Землей и Луной.
Самые заметные примеры плазмы на Земле – это огонь, молния, след падающей звезды и статический разряд, который больно ударяет вас, если надеть шерстяные носки, пошаркать по ковру, а потом взяться за металлическую дверную ручку. Электрические разряды – это зигзагообразные потоки электронов, которые стремительно пролетают по воздуху, когда слишком много электронов скапливается в одном месте. Если заглянуть в мировую статистику гроз, молнии ударяют в Землю несколько тысяч раз в час. Воздушный столб толщиной в сантиметр, по которому проходит разряд молнии, за долю секунды превращается в плазму и ярко светится, поскольку поток электронов мгновенно разогревает его до миллионов градусов.
Каждая падучая звезда – это крошечная частичка межпланетного мусора, которая движется так быстро, что сгорает в воздухе и опускается на Землю в виде безобидной космической пыли. Примерно то же самое происходит с космическим кораблем, который возвращается в атмосферу. Поскольку обитатели корабля не видят особого смысла в том, чтобы приземляться на орбитальной скорости в 30 000 километров в час (около 8 километров в секунду), кинетическую энергию надо куда-то девать. При входе в атмосферу она превращается в тепло на передней части космического корабля и быстро выделяется теплозащитной обшивкой. Именно поэтому астронавты, в отличие от падучих звезд, прибывают на Землю не в виде пыли. Во время спуска в течение нескольких минут жар так силен, что каждая молекула рядом с космической капсулой ионизируется, на время окутывая астронавтов плазменным барьером, сквозь который не проходят никакие сигналы связи. Это и есть знаменитый период исчезновения сигнала, когда корабль светится, а в ЦУПе ничего не знают о самочувствии астронавтов. Потом корабль замедляется в атмосфере, температура падает, воздух становится плотнее, и плазма прекращает существование. Электроны возвращаются к своим атомам, а связь быстро налаживается.
На Земле плазма встречается относительно редко, зато составляет более 99,99 % всего видимого вещества в космосе. Сюда входят все светящиеся звезды и газовые облака. Почти на всех прекрасных фотографиях туманностей в нашей галактике, полученных космическим телескопом им. Хаббла, видны разноцветные газовые облака плазмы. На форму и плотность некоторых из них сильно влияет присутствие магнитных полей, созданных близкими источниками. Плазма способна удерживать магнитное поле в своих границах, она вертит им – и вообще искажает – как может. Сложные отношения плазмы с магнитным полем – основная причина одиннадцатилетнего цикла солнечной активности. У солнечного экватора газ вращается немного быстрее, чем у полюсов. Этот перепад дурно влияет на цвет лица нашего светила. Магнитное поле Солнца заключено внутри его плазмы, поэтому оно искажается и растягивается. Кривое, искореженное магнитное поле пробивается сквозь поверхность Солнца, таща за собой плазму – от этого и возникают солнечные пятна, вспышки, протуберанцы и прочие прыщи и раздражения.
Именно эта взаимосвязь и приводит к тому, что Солнце вышвыривает в пространство до миллиона тонн заряженных частиц в секунду – в том числе электроны, протоны и голые ядра гелия. Этот поток частиц, когда легкое дуновение, а когда и настоящий ураган, принято называть солнечным ветром. Солнечный ветер – возможно, самый знаменитый вид плазмы – приводит к тому, что хвосты комет направлены от Солнца независимо от направления движения кометы. Именно солнечный ветер и вызывает северные (и южные) сияния, когда сталкивается с молекулами земной атмосферы поблизости от магнитных полюсов, причем так бывает не только на Земле, но и на всех остальных планетах, где есть атмосфера и сильные магнитные поля. В зависимости от температуры плазмы и от ее атомного и молекулярного состава, некоторые свободные электроны занимают места в электронных оболочках атомов, где имеются вакансии, и как по лестнице скатываются вниз по множеству энергетических уровней в этих оболочках. По пути электроны испускают свет со строго определенными длинами волн. Своей чудесной цветовой гаммой северные сияния – как, впрочем, и неоновые трубки, флуоресцентные лампы, а также декоративные плазменные лампы, которые продают в третьеразрядных магазинах подарков, – обязаны именно буйным шалостям электронов.
Благодаря современным спутникам-обсерваториям у нас появилась беспрецедентная возможность следить за солнечной активностью и солнечным ветром с такой же легкостью, как мы следим за ежедневной сводкой земной погоды. Мое первое телевизионное интервью для вечернего выпуска новостей было связано именно с тем, что Солнце запустило прямо в Землю плазменной плюшкой. Все – по крайней мере, журналисты – страшно перепугались, что когда она угодит в Землю, цивилизации конец. Я уговаривал зрителей не волноваться, ведь нас надежно защищает магнитное поле, и предложил воспользоваться случаем, съездить куда-нибудь на север и полюбоваться северным сиянием, которое вызовет солнечный ветер.
Разреженная солнечная корона, тот самый сияющий ореол, который видно во время полного солнечного затмения вокруг силуэта Луны, – это плазма с температурой в пять миллионов градусов, составляющая внешнюю часть атмосферы Солнца. При таких высоких температурах корона является главным источником рентгеновского излучения, наблюдаемого от Солнца, однако в других условиях она не видна невооруженному глазу. В диапазоне видимого света солнечная поверхность – фотосфера – такая яркая, что ее сияние полностью затмевает корону.
В атмосфере Земли есть целый слой, где солнечный ветер выбивает электроны из атомов, отчего создается покров плазмы, который мы называем ионосферой. Этот слой отражает определенные частоты радиоволн, в том числе и длинноволновый (АМ) диапазон вашего радиоприемника. Именно это свойство ионосферы позволяет АМ-сигналам проходить сотни километров, а «коротковолновое» радио уходит на тысячи километров далеко за горизонт. Сигналы в диапазоне FM и телевещательные сигналы, обладающие гораздо более высокой частотой, проходят атмосферу насквозь и уносятся в космос со скоростью света. Любая инопланетная цивилизация, стоит ей на нас настроиться, запросто узнает все про наши телешоу (что, наверное, не так уж хорошо), услышит все наши музыкальные FM-радиостанции (что, наверное, не так уж плохо) и ничего не узнает о политических дебатах на АМ-радиостанциях (а это, наверное, только к лучшему).
Большинство видов плазмы плохо влияют на органические вещества. Во всем сериале «Звездный путь» самая опасная работа у того персонажа, который исследует сияющие плазменные шары на неведомых планетах, куда попадают герои. (Помнится, что этот персонаж всегда был в красной рубашке.) Каждый раз, столкнувшись с плазменным шаром, герой испаряется. Казалось бы, если ты родился в XXV веке, пора бы научиться относиться к плазме с уважением, или уж тогда не наряжайся в красное. Мы, жители XXI века, еще нигде толком не побывали, а уже очень уважаем плазму.
В термоядерных реакторах, где за плазмой наблюдают с безопасного расстояния, мы пытаемся на высокой скорости столкнуть ядра водорода и превратить их в более тяжелые ядра гелия. При этом мы высвобождаем энергию, которой могло бы хватить на удовлетворение потребности общества в электричестве. Беда в том, что мы еще не преуспели в том, чтобы получать больше энергии, чем вкладываем. Чтобы добиться столкновения на столь высоких скоростях, сгусток атомов водорода нужно разогреть до десятков миллионов градусов. В такой обстановке нечего и надеяться, что электроны останутся в атомах. При таких температурах все электроны вырываются из своих атомов водорода и отправляются в свободное плавание. Как же удержать сияющий шар водородной плазмы при температуре в миллионы градусов? В какой емкости хранить? Пластиковый контейнер для микроволновки тут не подойдет, даже дорогой и фирменный. Нужна такая бутылка, которая не расплавится, не распадется, не испарится. Мы уже упоминали о том, что можно воспользоваться в своих интересах отношениями между плазмой и магнитным полем и создать своего рода «бутылку», стенки которой состоят из мощных магнитных полей, за которые плазма не в состоянии просочиться. Экономическая выгода от хорошего термоядерного реактора отчасти зависит от устройства его магнитной бутылки и от того, насколько правильно мы понимаем, как взаимодействует с ней плазма.
Почетное место среди самых экзотических искусственных состояний вещества занимает недавно выделенная кварк-глюонная плазма, созданная учеными в Брукхейвенской национальной лаборатории – в ускорителе частиц, расположенном на Лонг-Айленде в Нью-Йорке. Кварк-глюонная плазма состоит не из атомов, лишившихся электронов, а из смеси самых фундаментальных составляющих вещества – кварков с дробным зарядом и глюонов, которые обычно скрепляют их вместе, создавая протоны и нейтроны как таковые. Эта необычная разновидность плазмы сильно напоминает состояние Вселенной спустя долю секунды после Большого Взрыва. Примерно тогда вся наблюдаемая Вселенная уместилась бы в 26-метровую сферу в Роузовском Центре Земли и Космоса. На самом деле вся Вселенная до последнего кубического сантиметра находилась в состоянии плазмы еще почти 400 000 лет после Большого Взрыва. К этому времени Вселенная остыла от триллионов градусов до нескольких тысяч. Все это время свободные электроны плазменной Вселенной рассеивали свет направо и налево – это очень напоминает состояние, в котором пребывает свет, когда проходит сквозь матовое стекло или сквозь недра Солнца. Ни там ни там свет не может пройти, не рассеявшись, так что обе эти среды светопроницаемы, но не прозрачны. Остыв ниже нескольких тысяч градусов, Вселенная уже создала такие условия, что каждый электрон в космосе мог соединиться с одним атомным ядром, и так получились полноценные атомы водорода и гелия. Как только каждый электрон нашел себе дом, Вселенная вышла из состояния плазмы. Так продолжалось сотни миллионов лет, по крайней мере, до возникновения квазаров, чьи центральные черные дыры лакомятся газовыми смерчами. Перед тем как упасть в черную дыру, газ испускает ионизирующий ультрафиолетовый свет, который расходится по Вселенной и прилежно выбивает электроны обратно из атомов. До появления квазаров Вселенная пережила один-единственный период в своей истории (и прошлой, и будущей), когда плазмы в ней не было. Этот период мы называем Темными веками и считаем временем, когда гравитация тихо и незаметно собирала вещество в огромные шары, которые затем разогревались и превращались в первое поколение звезд, снова состоящих из плазмы.