Книга: Смерть в черной дыре и другие мелкие космические неприятности
Назад: Глава восьмая. Бродяги в Солнечной системе
Дальше: Глава десятая. И антивещество на что-нибудь сгодится

Глава девятая

Пять точек Лагранжа

Первым пилотируемым космическим кораблем, покинувшим околоземную орбиту, был «Аполлон-8». Этот прорыв до сих пор остается одним из самых значительных, но малоизвестных рекордов XX столетия. Когда настал назначенный миг, астронавты включили третью, последнюю ступень мощной ракеты «Сатурн-V», и командный отсек корабля вместе с тремя его обитателями разогнался до скорости почти в 11 километров в секунду. На то, чтобы добраться до орбиты Земли, была растрачена половина энергии, необходимой, чтобы долететь до Луны.

После сброса третьей ступени двигатели были больше не нужны – только в середине полета необходимо было слегка скорректировать траекторию, чтобы астронавты не промахнулись мимо Луны. На протяжении 90 % путешествия почти в 400 тысяч километров командный отсек постепенно замедлялся под влиянием слабеющей земной гравитации. Тем временем по мере приближения к Луне ее притяжение становилось все сильнее. Поэтому где-то на пути неизбежно должна была быть точка, где взаимное притяжение Земли и Луны уравновешено. Когда командный отсек проходил эту точку в пространстве, его скорость снова возросла и он двинулся в сторону Луны с ускорением.

Если бы при этом приходилось учитывать одну лишь силу гравитации, эта точка была бы единственным местом в системе «Земля-Луна», где противодействующие силы уравновешивают друг друга. Однако Земля и Луна вращаются еще и вокруг общего центра тяжести, который находится примерно в полутора тысячах километров под поверхностью Земли на воображаемой линии, соединяющей центры Луны и Земли. Когда тела движутся по кругу любого радиуса и на любой скорости, они создают новую силу, которая направлена от центра вращения наружу. Именно эту «центробежную» силу вы и ощущаете, когда закладываете крутой разворот в машине или зачем-то соглашаетесь сходить на аттракцион вроде центрифуги или скоростной карусели. Классический пример подобных тошнотворных в буквальном смысле развлечений – это когда вы встаете по периметру большой круглой панели, прижавшись спиной к бортику. Когда все это устройство приходит в движение и раскручивается все быстрее и быстрее, вы чувствуете, как вас все сильнее и сильнее прижимает к бортику. На большой скорости эта сила не даст вам даже пошевелиться. И в этот-то момент у вас из-под ног убирают пол и начинают качать и переворачивать эту конструкцию в разные стороны. Когда я в детстве катался на таком аттракционе, то даже пальцами пошевелить не мог – они словно приклеились к бортику вместе со всем остальным моим телом.

Если во время подобного развлечения вас по-настоящему вырвет и вы успеете повернуть голову вбок, рвотные массы улетят под углом. Или тоже прилипнут к бортику. А вот если все будет еще хуже и вы не успеете повернуть голову, не исключено, что рвотные массы останутся у вас во рту, поскольку мощная центробежная сила подействует на них в противоположном направлении. (Тут мне пришло в голову, что я давненько не видел именно таких аттракционов. Неужели их наконец-то запретили?)

Центробежная сила – это просто следствие того, что любой предмет имеет тенденцию, придя в движение, двигаться дальше равномерно и прямолинейно, поэтому на самом деле это и не сила вовсе. Однако в расчеты ее можно включать как самую настоящую. И тогда – как сделал гениальный французский математик XVIII века Жозеф-Луи Лагранж (1736–1813) – откроешь во вращающейся системе «Земля-Луна» точки, где гравитация Земли и Луны и центробежные силы уравновешивают друг друга. Это особые места, и называются они точками Лагранжа.

Их пять.

Первая точка Лагранжа, которую ласково называют L1, находится между Землей и Луной – чуть ближе к Земле, чем точка простого гравитационного равновесия. Любой объект, попавший туда, будет вращаться по орбите вокруг центра тяжести системы «Земля-Луна» с тем же периодом в один месяц, как и Луна, и поэтому покажется, будто он застрял в пространстве на линии от Земли до Луны. Хотя все силы в этой точке словно бы перестают действовать, первая точка Лагранжа – это точка весьма ненадежного равновесия. Стоит телу чуть-чуть сместиться в сторону в любом направлении, совокупное воздействие трех сил вернет его на прежнее место. Однако если оно даже на самую малость сдвинется по линии «Земля-Луна», то неизбежно упадет или на Землю, или на Луну – словно шарик, с трудом уравновешенный на вершине крутого холма, который скатится либо по одному, либо по другому склону, если сдвинется хотя бы на волосок.

Вторая и третья точки Лагранжа (L2 и L3) тоже лежат на линии «Земля-Луна», однако L2 расположена далеко по ту сторону Луны, а L3 – далеко по ту сторону Земли. Там опять же действуют три силы – гравитация Земли, гравитация Луны и центробежная сила вращающейся системы. И опять же тело, помещенное в одну из этих точек, будет обращаться вокруг центра тяжести системы «Земля-Луна» с тем же периодом в один месяц, что и Луна.

Гравитационные «площадки» в точках L2 и L3 гораздо просторнее, чем в L1. Так что если вы случайно отклонитесь в сторону Луны или Земли, самой чуточки топлива хватит, чтобы вернуться на место.

Точки L1, L2 и L3 пользуются заслуженным уважением, однако премия «Лучшие точки Лагранжа» достается точкам L4 и L5. Одна расположена далеко слева от центральной линии системы «Земля-Луна», другая на таком же расстоянии справа, и каждая представляет собой вершину равностороннего треугольника, две другие вершины которого – Земля и Луна.

Точки L4 и L5, как и три их сестры, – это точки равновесия всех сил. Однако в точках L1, L2 и L3 равновесие лишь неустойчивое, а в L4 и L5 – устойчивое, и в какую сторону ни подашься, куда ни отклонишься, силы не дадут отклониться еще больше: это словно долина между двумя холмами.

Если тело, находящееся в любой точке Лагранжа, расположено не в точности в том месте, где уравновешиваются все силы, оно будет колебаться в окрестностях точки равновесия и траектория его колебаний называется либрацией. (Не путайте их с определенными точками на поверхности Земли, где умы колеблются под воздействием либаций, то есть возлияний.) Либрации похожи на колебания шарика, который скатывается в лунку, но по инерции проскакивает дальше нижней точки, а потом возвращается обратно.

Мало того что L4 и L5 – это особые точки орбиты, это еще и места, где в принципе можно создать космические колонии. Нужно всего лишь доставить туда строительные материалы, добытые не только на Земле, но, возможно, и на Луне или на каком-нибудь астероиде, оставить их там, не рискуя, что они разлетятся, а потом вернуться с очередной партией. Накопив в точке с нулевой гравитацией достаточно материалов, можно построить огромную космическую станцию размером в десятки километров, причем напряжение в ее конструкции будет минимальным. А если станция будет вращаться, центробежная сила создаст искусственную гравитацию для сотен (а может быть, и тысяч) ее обитателей.

Именно с этой целью в августе 1975 года было создано «Общество L5». Основателями его стали инженеры-энтузиасты Кейт и Кэролайн Хенсон, а запомнилось оно в основном поддержкой идей принстонского преподавателя физики и рьяного сторонника колонизации космоса Джерарда О’Нила, который написал об этом несколько книг, в том числе классическую работу «Верхний фронтир. Человеческие колонии в космосе» (Gerard K. O’Neill, «High Frontier: Human Colonies in Space», 1976). Руководящим принципом «Общества L5» было «распустить Общество на общем собрании в точке L5» – видимо, общее собрание должно пройти на космической станции, и таким образом будет показано, что Общество достигло своей цели. В апреле 1987 года «Общество L5» объединилось с Национальным космическим институтом, и в результате было сформировано Национальное космическое общество, которое существует и по сей день.

Идею расположить крупные космические станции в точках либрации выдвинул еще Артур Кларк в романе «Лунная пыль» (1961). Кларк был знаком с особыми орбитами не понаслышке. В 1945 году он первым рассчитал, на каком расстоянии от поверхности Земли период обращения спутника в точности совпадет с 24-часовым периодом обращения Земли; расчеты заняли четыре страницы и были вручную отпечатаны на пишущей машинке. Спутник на такой орбите «парил» бы над поверхностью Земли и служил бы идеальной ретрансляционной станцией для международной радиокоммуникации. Сегодня именно таких спутников связи насчитывается несколько сотен.

Где же находится это волшебное место? Это не низкая околоземная орбита. Те, кто ее занимают, например, Космический телескоп им. Хаббла и Международная космическая станция, облетают Землю примерно за 90 минут. А если тело находится от Земли на том же расстоянии, что и Луна, оно обращается вокруг нашей планеты примерно за месяц. Логично предположить, что где-то между ними расположена орбита, на которой можно поддерживать период обращения в 24 часа. Оказывается, она пролегает в 35 786 километрах над Землей.

* * *

Вообще-то вращающаяся система вроде системы «Земля-Луна» – явление достаточно распространенное. Для вращающейся системы «Земля-Солнце» существует свой набор из пяти точек Лагранжа. Астрофизическим спутникам особенно уютно в точке L2 системы «Земля-Солнце». Точки Лагранжа в этой системе вращаются по орбите между центром тяжести системы с периодом в один земной год. На расстоянии в полтора миллиона километров от Земли в направлении, противоположном Солнцу, телескоп в точке L2 может наблюдать все ночное небо 24 часа в сутки, поскольку Земля оттуда выглядит такой маленькой, что уже не играет никакой роли. А вот с низкой околоземной орбиты, где вращается телескоп имени Хаббла, Земля так велика, что заслоняет почти половину поля зрения. А Зонд микроволновой анизотропии им. Уилкинсона (Wilkinson Microwave Anisotropy Probe, WMAP) достиг точки L2 системы «Земля-Солнце» в 2002 году и вот уже несколько лет усердно собирает данные о вездесущем реликтовом микроволновом излучении, следствии Большого Взрыва. «Вершина холма» области L2 в системе «Земля-Солнце» еще более просторная и плоская, чем в системе «Земля-Луна». У WMAP осталось всего 10 % топлива, однако этого хватит, чтобы находиться в этой точке неустойчивого равновесия почти сто лет. Сейчас НАСА планирует запуск Космического телескопа им. Джеймса Уэбба, который назван в честь бывшего руководителя НАСА, который стоял во главе агентства в 1960-е годы. Этот телескоп должен сменить телескоп им. Хаббла. Он тоже будет жить и работать в области L2 системы «Земля-Солнце». И даже после его появления там останется достаточно места для новых спутников – десятки тысяч квадратных километров.

А вокруг точки L1 в системе «Земля-Луна» колеблется еще один лагранжелюбивый спутник НАСА под названием «Дженезис». Расстояние от Земли до точки L1 составляет полтора миллиона километров в сторону Солнца. В течение двух с половиной лет «Дженезис» был нацелен на Солнце и собирал беспримесное солнечное вещество, в том числе атомы и молекулы из солнечного ветра. Затем материал был переправлен на землю в капсуле, и ее состав изучали точно так же, как должны были изучать образчики вещества с аппарата «Стардаст», который собирал космическую пыль. «Дженезис» позволит подробнее изучить состав первоначального солнечного облака, из которого сформировались Солнце и планеты. Покинув точку L1, капсула с собранным веществом пролетела вокруг точки L2 и вернулась на Землю.

Поскольку точки L4 и L5 – это области устойчивого равновесия, можно предположить, что возле них будет скапливаться космический мусор, так что вести там дела станет довольно рискованно. В сущности, и сам Лагранж предсказывал, что в точках L4 и L5 системы «Солнце-Юпитер» с ее мощной гравитацией будет обнаружен космический мусор. Прошло сто лет – и были открыты первые из «троянских астероидов» Юпитера. Теперь мы знаем, что в областях L4 и L5 системы «Солнце-Юпитер» находится множество астероидов, которые предшествуют Юпитеру и следуют за ним по орбите вокруг Солнца с периодами, равными периоду обращения Юпитера. Ведут они себя точь-в-точь так, словно их держат на месте какие-то силовые лучи из фантастических романов, – и на веки вечные обречены сидеть на привязи гравитационных и центробежных сил в системе «Солнце-Юпитер». Разумеется, мы не сомневаемся, что в точках L4 и L5 систем «Земля-Солнце» и «Земля-Луна» и в самом деле скапливается космический мусор. Так и есть. Но его несопоставимо меньше, чем в системе «Солнце-Юпитер».

У всего этого есть важный побочный эффект: межпланетные маршруты, которые начинаются в точках Лагранжа, требуют очень мало топлива, чтобы добраться до других точек Лагранжа, а иногда и до других планет. Если запустить космический аппарат из точки Лагранжа, то, в отличие от запуска с земной поверхности, когда львиная доля топлива расходуется только на то, чтобы оторваться от земли, получится похоже на спуск судна из сухого дока, когда оно плавно соскальзывает в океан с минимальными затратами топлива. Современные ученые и инженеры думают скорее не о самодостаточных «колониях Лагранжа» – с людьми и фермами, – а о том, что точки Лагранжа могут послужить воротами в остальную Солнечную систему. От точек Лагранжа в системе «Земля-Солнце» полпути до Марса – если говорить не о расстоянии или времени, а о расходе топлива, который, собственно, все и решает.

Представьте себе такой вариант освоения пространства в будущем: мы расставим во всех точках Лагранжа в Солнечной системе заправочные станции, где путешественники будут пополнять свои запасы топлива по дороге в гости к друзьям и родным на других планетах. Такая модель при всей своей кажущейся утопичности не такая уж и надуманная. Обратите внимание, что если бы по всей стране не были обильно разбросаны автозаправочные станции, то, чтобы пересечь ее от побережья до побережья, вам понадобился бы автомобиль размером с ракету «Сатурн-V»: основной объем и массу вашего транспортного средства составляло бы именно топливо, которое использовалось бы в основном для транспортировки топлива, запасенного на будущее. По Земле мы так не ездим. Возможно, настало время отказаться от такого способа перемещения и в космосе.

Назад: Глава восьмая. Бродяги в Солнечной системе
Дальше: Глава десятая. И антивещество на что-нибудь сгодится