Мы, создатели «Руководства», считаем себя психологами-любителями. Мы предполагаем, что люди увлекаются физикой, потому что боятся катаклизмов, черных дыр и конца света либо надеются все о них узнать. Ведь и вы, проезжая мимо автомобильных аварий, всегда притормаживаете, чтобы посмотреть, правда?
Мы не станем подвергать ваши стимулы сомнению, поскольку они такие же, как у нас, и неважно, здоровые они или нет. Мы уже уделили много времени разговорам об исчезновении черных дыр, которое ждет нас в далеком будущем, и о так называемом втором законе термодинамики, согласно которому с течением времени Вселенная превратится в тепловатый бассейн, в котором не будет никакой речи ни о структуре, ни о жизни в том виде, в каком мы ее знаем. Мы даже упомянули о том факте, что Вселенная подвержена бесконечному экспоненциальному расширению, вызванному темной энергией. Оно будет продолжаться, пока каждая галактика не превратится в остров, полностью отрезанный от остальной Вселенной. Трудно представить себе более унылое будущее.
Но когда общаешься с физиком, всегда следует ожидать худшего. Что если мы вам скажем, что с течением времени сама материя будет медленно выкипать и испаряться?
Конец материи
Да, мы знаем, что всерьез испортим вам настроение, поэтому первым делом поймите, что все это случится далеко не завтра. Когда речь идет о галактиках, черных дырах и испаряющейся материи, мы говорим даже не о миллионах и не о миллиардах лет. Мы говорим о периодах времени в триллионы миллиардов раз больше нынешнего возраста Вселенной. Учитывая, сколько гадостей произойдет за это время, гибель материи можно смело поместить в самый низ перечня ваших страхов.
Задаваясь вопросом о распаде материи, мы с практической точки зрения задаемся вопросом о распаде протонов. Мы уже говорили, что при всяком удобном случае нейтрон распадается на протон и кое-что еще, но только потому, что он тяжелее протона. Протон – самый легкий из барионов, поэтому мы ожидаем, что он сколько-то проживет.
Вопрос в том, сколько именно, и на это стандартная модель дает простой недвусмысленный ответ. Вечно. Протоны не распадаются, поскольку общее число барионов должно сохраняться. Поскольку протон – самый легкий барион, распадаться ему не на что.
Но если эта глава чему-то успела вас научить, так это тому, что стандартная модель отвечает отнюдь не на все вопросы. Если реакция идет в одном направлении, значит, должна иметь место и обратная реакция. Наверняка когда-то, еще во время Большого взрыва, было время, когда барионы создавались из ничего. С этой научной проблемой мы встретились в главе 7, когда обнаружили, что если бы барионы с антибарионами всегда создавались только парами, то и аннигилировать они должны тоже парами. Вы живое и ходячее доказательство того, что в какой-то момент все-таки имело место превосходство барионов над антибарионами! Вам повезло.
Вероятно, выработка лишних барионов имела место в конце периода инфляции, примерно через 10 секунды после Большого взрыва, а значит, она, вероятно, имела какое-то отношение к унификации электрослабого и сильного взаимодействий. Если закон сохранения количества барионов не действовал тогда, то и сейчас он в некоторой степени тоже не действует.
Представьте себе, что у вас есть собственная великая теория унификации (ВТУ). Первым делом мы бы спросили у вас, сколько, согласно вашей ВТУ, живет типичный протон. Согласно практически всем этим теориям до единой, протоны в конце концов распадаются на позитрон и еще одну частицу под названием пион. Главное различие между разными теориями – средняя продолжительность жизни протона. И это хорошо. Это значит, что если мы сумеем выяснить, сколько живут протоны, то у нас появится отменный критерий точности различных ВТУ – по крайней мере мы сможем тут же просеять эти теории сквозь частое сито.
Где же он, распад протонов?
Некоторые из ранних моделей ВТУ предсказывали, что протон живет примерно 10–3231 лет. Это очень-очень долго. Гораздо больше возраста Вселенной, поэтому вы вправе предположить, что физики, которые выдвинули эти модели, просто взяли наугад протон-долгожитель и решили, что все равно никто не проживет настолько долго, чтобы опротестовать их нобелевский банковский счет.
К счастью, нам не нужно брать протончик, класть его на стол и ждать, когда он превратится во что-нибудь другое, – у нас есть методы и получше. В 1980-х годах ученые поняли, что для этого нужно построить гигантские подземные бассейны со сверхчистой водой. Главная цель таких экспериментов – посмотреть, распадется ли хоть один протон в бассейне, если оставить его в покое. Если да, то заряженные частицы, создавшиеся при распаде, промчатся по бассейну и испустят излучение, которое будет зафиксировано детекторами. Поскольку протонов много, разумно предположить, что, если наблюдать достаточно долго, хоть один да покинет сию юдоль скорби.
Что-то подобное мы видели в главе 3, когда говорили о космическом генераторе случайных чисел. Представьте себе, что протон и в самом деле живет 10 лет. Это значит, что каждый год космический генератор случайных чисел бросает игральную кость, у которой 103131 граней, по одному разу на каждый протон в бассейне. Если у генератора выпадет единичка, соответствующий протон распадается. «Супер-Камиоканде» находится в шахте Моцуми неподалеку от японского города Хида, эксперименты подобного рода идут уже 25 лет, и еще ни разу не было засвидетельствовано ни одного распада.
Это хорошие новости, поскольку отрицательный результат означает, что в обозримом будущем нам не придется спонтанно распадаться на высокоэнергичные частицы. С другой стороны, это плохие новости для некоторых ВТУ, поскольку теперь их можно легко опровергнуть. В наши дни остается все меньше и меньше моделей, соответствующих все более и более долгой минимальной жизни протонов, но многие из них предполагают примерно 10 лет. Учитывая, насколько мы близки к точному определению этого периода, стоит ли удивляться, что мы уверены, будто определим его совсем скоро?