Книга: Ошибка Коперника. Загадка жизни во Вселенной
Назад: Биография в десять миллиардов лет
Дальше: Великое заблуждение

Наши соседи



В поисках своего места во Вселенной мы уделяли основное внимание именно планетам – космическим оазисам, на существование которых мы так давно уповаем. И у нас есть на то веские причины: ведь очевидно, что если других планет, а особенно других Земель, очень мало, это сильно изменит нашу точку зрения. Либо где-то еще есть несколько инкубаторов для жизни, либо поиски станут сложны до полной невозможности, если миры раскиданы по далеким недоступным уголкам Вселенной.

Мысль о существовании иных, «нездешних» миров глубоко укоренена не только в науке. Как мы уже видели, это был метафорический центр самых разных философских школ, а кроме того, эта мысль с завидной регулярностью всплывает в искусстве и литературе.

Особенно яркий пример – довольно древний: чудесные сказки «Тысячи и одной ночи». Эти затейливые истории были собраны в единый корпус более 1100 лет назад, а до этого многие поколения бытовали в устном фольклоре – и при этом до сих пор невероятно занимательны. Среди моих любимых – история о юном султане по имени Булукия, который ищет целебную траву, дарующую бессмертие. По пути он посещает множество самых странных мест, где становится свидетелем различных сверхъестественных явления – от соцветий из голов или птиц, растущих прямо на сучьях, до геенны огненной, то извергающей змей, то всасывающей их обратно. В частности, ему встречается ангел, который читает ему краткое введение в устройство мироздания. Посланец небес сообщает Булукии, что за краем света существует целых сорок земель, каждая в сорок раз больше нашего мира, и все они населены всевозможными невообразимыми созданиями. Очень увлекательная сказка. А еще из нее со всей очевидностью следует, что вдохновенные рассказчики уже давным-давно усвоили представление о множестве миров помимо нашего – причем миры эти настолько чужды нам, что простой смертный, заглянув в них, падает ниц в благоговении.

Все, что лежит ниже, выше и вдали от нашего обыденного существования, по-прежнему подпитывает фантазию человечества – вспомним хотя бы Клайва Льюиса, который изобрел аллегорическую Нарнию, или кипучую Вселенную «Звездных войн». Однако иногда мы забываем о собственных удачнейших творениях, пока природа не удивит нас, возродив их к жизни. И вот недавно мы очутились именно в такой ситуации – нет, нам не являлись ангелы, мы не искали траву, дарующую бессмертие, зато мы обнаружили планеты, лежащие вне Солнечной системы.

Сюрприз заключается не в том, что другие планеты существуют, а в том, что они обладают качествами, которые испытывают на прочность наше воображение, поднимают нас над привычной плоскостью мышления. Сейчас я покажу вам, что эта реальность выводит на авансцену одну из важнейших находок на нашем философском пути, важнейшую деталь головоломки, ответ на которую – наше место во Вселенной. Однако следствия из этой находки не так уж просты: с одной стороны, мы обзавелись надежными доводами в пользу точки зрения Коперника (мы занимаем не центральное, а, наоборот, совершенно заурядное место во Вселенной), с другой – у нас появилось самое веское на данный момент доказательство, что наши обстоятельства весьма необычны, а возможно, даже уникальны.

* * *

Найти планеты, вращающиеся вокруг других звезд, крайне трудно. Других слов и не подберешь. Причины вполне понятны: планеты маленькие и тусклые, а звезды большие и яркие. К тому же звезды и их планеты, если смотреть на них с космических расстояний, очень близки друг к другу, и это серьезная проблема, поскольку фундаментальные свойства света таковы, что даже самый совершенный телескоп размазывает изображения. Ослепительный свет центральных звезд затмевает жалкие отблески планет.

Разумеется, большинству из нас доводилось видеть яркое сияние полной Луны на небосклоне и даже замечать яркие точки планет, например, Венеры или Юпитера. Наши знакомые планеты застенчивостью не страдают. Однако не нужно заблуждаться: у нас может быть так, а у соседей иначе.

Гигантское небесное тело вроде Юпитера отражает свет Солнца и к тому же испускает из своих разогретых недр ровное инфракрасное излучение. Но максимальное количество электромагнитной энергии, исходящее от самой яркой планеты Солнечной системы, составляет всего одну миллиардную от излучения нашего Солнца. И планеты вроде Земли, горячее, но гораздо меньше Юпитера, выглядят так же жалко. Нам кажется, что Луна яркая, а на самом деле это просто оптический обман, вызванный нашим взаимным положением. Поверхность Луны на самом деле отражает всего процентов десять солнечного света, который на нее попадает – примерно столько же, сколько кусок угля. Нам кажется, будто она яркая, просто потому, что она близко, и потому, что солнечный свет на том расстоянии, где мы находимся, еще ярок.

Если бы мы взглянули на Солнечную систему с расстояния, измеряемого световыми годами, то планеты вроде Юпитера и Земли были бы не видны, их затмило бы сияние рассеянного солнечного света, словно пылинки при ослепительной фотовспышке. Чтобы непосредственно увидеть эти миры, нужны очень мощные телескопы и всевозможные оптические ухищрения, а подобные технологии пока что лишь маячат на нашем горизонте. Однако есть и другие способы увидеть иные планеты или ощутить их присутствие, пробившись за слепящую завесу звездных систем.

Об одном из подходов я уже упоминал, о нем подозревал еще Исаак Ньютон. Он отметил, что сами звезды тоже вращаются по орбите вокруг центра масс или точки равновесия системы. В отсутствие планет эта точка совпадает с центром звезды, но если планеты есть, их гравитационное поле смещает всю систему к какой-то другой точке. Более того, сама эта позиция зачастую непостоянна, поскольку планеты скользят по орбитам и оказываются в разных местах, и от этого точка равновесия тоже вынуждена сдвигаться.

Иначе говоря, если у звезды есть планеты, она колеблется, и ее колебания меняются со временем. Возможно, вы даже можете наблюдать это непосредственно – заметить, как звезда еле-еле заметно движется туда-сюда по небу. Однако если вы прибегнете к помощи эффекта Допплера, результат будет несколько лучше: о наличии планет вам подскажет изменение частоты – то есть цвета – светового излучения при движении звезды к нам и от нас.

Однако зарегистрировать это по-прежнему трудно, хоть плачь. Планета вроде Земли вызывает движение Солнца всего на десяток-другой сантиметров в секунду, и проявляется это маятникообразное движение лишь за период около года. Юпитер послужил бы нашей цели немного лучше. Он способен смещать Солнце примерно на 12 метров в секунду, однако рисунок этих колебаний размазан по десяти годам, за которые Юпитер совершает оборот по орбите. Нужно быть очень упорным и терпеливым наблюдателем, чтобы заметить его.

Мало этих трудностей: поверхность звезды – место очень неспокойное, пылающий и сияющий газ постоянно вздымается и опадает. Местные колебания вполне могут превосходить по силе более плавное и мерное движение, вызванное гравитацией планет, и еще сильнее смазать данные наблюдаемого солнечного света.

Задача эта не для слабонервных. Звездный свет, который улавливают мощные телескопы, нужно расщепить на тысячи составляющих его частот – примерно так свет преломляется в стеклянной призме и получается радуга. Астрономы должны выявить трудноразличимые маркеры – специфические спектральные свойства электронов, скачущих в атомах, которые составляют звезду, и пользоваться полученными величинами как линейкой. Поэтому сами маркеры нужно измерить необычайно точно, тщательно исследовать и на их основании произвести тщательную оценку скорости объекта весом в тысячи триллионов тонн, который движется, быть может, медленнее пешехода.

* * *

Искать планеты можно и другими способами, не менее сложными, поскольку опираются они как на умение, так и на везение. Иногда планетные системы ориентированы таким образом, что отсюда, с Земли, видно, как планеты вращаются вокруг родительских звезд, заслоняют их и перегораживают несколько долей процента света звезды, доходящего до нас. Если это заметить – а потом заметить еще раз, при следующем витке по орбите, и при следующем тоже, – можно сделать вывод о наличии этих крошечных пятнышек и даже об их размерах.

Реже признаком наличия планет становятся искажения пространства-времени вокруг звездных систем (к тому же их труднее регистрировать и интерпретировать): гравитационные поля искривляют световые лучи – следствие релятивистской природы Вселенной. Если свет более далекой звезды проходит в нужной точке звездной системы, оказавшейся между нами, он ведет себя так, словно в пространстве подвешена линза. Этот свет ненадолго усиливается и вспыхивает, и вспышку видно несколько дней, а затем оптическая конструкция рассыпается из-за круговорота небесных тел. Гравитационную линзу может создавать и одинокая звезда, но стоит добавить планеты, и характер вспышки меняется, а по его изменениям можно сделать выводы об этих планетах, их орбитах и массах.

Все эти способы изобилуют трудностями, и долгая история попыток обнаружить планеты вокруг звезд полна неудач и обманутых надежд. Однако ко второй половине ХХ века астрономические методы достигли такого уровня, что целый ряд отважных и упорных ученых сочли, что обладают достаточно реалистичной базой для обнаружения крошечных темных крупиц-планет вокруг далеких звезд. То есть было показано, что планеты все-таки существуют – конечно, это и раньше считалось весьма вероятным, однако оставались досадные сомнения. Но вот что интересно: большинство этих ученых пребывали в убеждении, что если они что-то и найдут, это будет что-то донельзя скучное. В сущности, они представляли себе копии нашей Солнечной системы, знакомые разновидности планет в знакомых сочетаниях. Хотя современные писатели-фантасты постоянно изобретали что-то из ряда вон выходящее, ничуть не хуже авторов «Тысячи и одной ночи», а то и куда более сенсационное, исследователи не искали подобные планеты. Гипотетические планеты и орбиты, которые представляли себе астрономы, ничем особым не отличались – все они были более или менее похожими копиями нашего непосредственного окружения.

А достаточно смелые гипотезы держались на периферии – отчасти именно из-за вполне понятного научного консерватизма. К тому же нас довольно долго сбивало с толку неверное толкование принципа Коперника. Раз мы не занимаем никакого особого положения в центре мироздания, разумно предположить, что в других местах все точно так же, как у нас. Если мы всего-навсего заурядная планетная система при заурядной звезде, резонно ожидать, что остальные планетные системы похожи на нас. В итоге к концу ХХ века мы, в сущности, высматривали планеты вроде Юпитера или Сатурна. Это должны были быть массивные небесные тела, медленно вращающиеся по большим орбитам и обеспечивающие очень вялый, но все же заметный танец при движении их звездных родительниц. А найти планеты размером с Землю нечего было и думать – в то время чувствительность оборудования этого не позволяла, хотя не оставалось сомнений, что конечной целью любого ученого, пусть и невысказанной, были именно такие миры.

Кроме того, наша Солнечная система оставалась единственным лекалом для теорий формирования планет. Научные представления о происхождении планет из газа и пыли в межзвездном пространстве, разумеется, менялись с течением веков. Однако ко второй половине ХХ века был выявлен механизм, с которым научный мир в целом согласился. Как я уже писал, налицо были веские физические причины, почему планеты могут формироваться из огромного газово-пылевого диска, окружающего сжимающееся, слипающееся вещество туманности, из которого рождается звезда. А у Солнечной системы весьма определенная структура: мелкие каменистые планеты формируются ближе к горячему Солнцу, а большие газово-ледяные отстоят от него дальше. Таков был и остается образец, по которому теоретически формируются новые миры.

* * *

Выйти за рамки этих представлений было очень трудно. Есть даже красивое эмпирическое численное правило, так называемое правило Тициуса-Боде, выведенное еще в XVIII веке, которое предсказывает расстояния планет от Солнца на основании всего лишь простой алгебраической последовательности. Это последовательность 0, 3, 6, 12, 24, 48, 96, 192, в которой каждый член после 3 вдвое больше предшествующего. «Волшебная» формула состоит в том, чтобы прибавлять к каждому члену 4, а затем делить на 10 – и получается среднее расстояние от планеты до Солнца в астрономических единицах (одна астрономическая единица – это расстояние от Земли до Солнца). Числа, которые получаются по этой формуле, близки к реальности, но все же не точны. Эта закономерность наводит на мысль о наличии какого-то более глубокого принципа, своего рода фундаментального, возможно, даже универсального закона, по которому формируются и выстраиваются планеты. Так и есть – если не вдумываться.

Со временем ученые обнаружили, что «правило» Тициуса-Боде в лучшем случае всего лишь следствие из общей тенденции природных явлений слепо следовать определенным математическим образцам. Эти образцы – особые функции, так называемые экспоненциальные кривые, или степенные зависимости. В худшем случае подобная «закономерность» – простое совпадение. То есть это правило применимо к Солнечной системе, но не обязательно должно соблюдаться повсюду. Однако от подобных идей очень трудно отказаться, и хотя прямо об этом нигде не говорилось, однако я готов ручаться, что этот мнимый «закон» внес солидный вклад в общее научное представление о том, что все планетные системы должны быть похожи на нашу.

Когда я думаю обо всем этом с сегодняшней точки зрения, меня одолевает легкая оторопь. Словно бы наш биологический вид, смирившись с принципом Коперника, нанес себе такую душевную травму, что теперь мы только и можем, что плестись, понуро опустив головы. Большинство астрономов, совершенно справедливо сместив Землю из центра мироздания, восприняли постулат о посредственности как религиозную догму. Им было трудно допустить, что наши жизненные обстоятельства при их очевидной заурядности все же могут представлять собой некое исключение из бесчисленного числа иных конфигураций и биографий.

Поэтому можно сказать, что когда было получено первое неопровержимое доказательство существования планет вне Солнечной системы, это было своего рода актом вселенской справедливости: мы обнаружили нечто столь непохожее на нас, что сразу стало ясно, как мы были слепы и какими возможностями пренебрегали. Оказалось, что планеты склонны к радикальному нонконформизму.

* * *

В десяти милях от северного побережья одного из островов Пуэрто-Рико, расположенного в Карибском море, раскинулись, расползаясь во все стороны, густые древние джунгли. В основном их буйный растительный и животный мир гнездится на пористом известняке, растворимом в воде, и в некоторых местах тысячелетняя влажность разъела камень, отчего образовались обширные провалы и вымоины. Обычно жизнь здесь кипит особенно бурно: получаются словно бы чаши влажной плодородной земли, окруженные пологими холмами. Обычно – но не в том месте, о котором у нас идет речь.

Здесь в углублении диаметром метров в триста землю покрывают не деревья и подлесок, а более 38 000 плотно подогнанных, похожих на решето алюминиевых пластин, словно бы металлическая печать тщательно отгораживает влажную землю. В 150 метрах над этой серебристой поверхностью расположена не менее внушительная конструкция. К трем вышкам по периметру впадины крепятся толстые стальные тросы, которые пересекаются над центром. А там сложное переплетение кабелей и брусьев поддерживает массивную мозаику из треугольных пластин – важнейшую часть хитроумного пункта наблюдения за внеземными радиоволнами.

Это вопиющий конструктивизм – детище ультрасовременной технологии: подобное никак не ожидаешь увидеть в мирном и довольно далеком от цивилизации райском уголке. Перед нами обсерватория Аресибо, и как бы скромно ни пряталась она среди деревьев, устремления у ее сотрудников весьма честолюбивы.

В феврале 1990 года этот исполинский телескоп прислушивался к тончайшим изменениям электромагнитного излучения из далекого уголка нашей Галактики, от которого до нас почти 20 тысяч триллионов километров, две тысячи световых лет.

Электромагнитные волны отталкиваются от алюминиевых пластин, которыми выстлана огромная чаша Аресибо, и сходятся на чутких датчиках, подвешенных в воздухе. Хотя долгое межзвездное путешествие приглушило колебания, источник излучения лежал в бешено вращающемся ядре звезды, погибшей около 800 миллионов лет назад.

Этот объект – нейтронная звезда, звездный остаток, состоящий из элементарных частиц под названием нейтроны с добавлением небольшого числа протонов, а также электронов. Вот и все, что осталось от звезды, которая была немного крупнее нашего Солнца и некогда сияла на этом месте, пока ядерные реакции в ее ядре не затухли. Когда источник питания внутри нее отключился, ядро схлопнулось под собственным весом. В результате этой катастрофы произошел мощный взрыв сверхновой, разбросавший внешнюю оболочку звезды в пространстве и оставивший внутри лишь кошмарно плотный шар.

Вещество нейтронной звезды совсем не похоже на материю, с которой мы сталкиваемся здесь, на Земле: оно очень-очень плотно упаковано. Здесь нет ни атомов, ни молекул – просто, в сущности, гигантский ком из элементарных частиц, накрепко склеенных гравитацией. Нейтронная звезда с массой вдвое больше массы Солнца имеет в диаметре всего около 20 километров. Ускорение свободного падения у ее поверхности так велико, что при падении вы врезались бы в поверхность со скоростью 1500 километров в час.

Кроме того, нейтронные звезды очень быстро вращаются. Поскольку они рождены в результате неконтролируемого коллапса ядра звезды, есть много причин, которые могут привести к быстрому вращению, и некоторые нейтронные звезды совершают оборот в считанные миллисекунды. Как правило, они еще и очень горячие – около миллиона градусов. И пышут энергией: магнитные поля и электрически заряженные протоны и электроны отрываются от поверхности и уносятся в пространство. В сочетании эти качества создают едва ли не самый сюрреалистический объект во Вселенной – пульсар.

Пульсар испускает электромагнитное излучение в пространство, словно вечно мерцающий маяк. Интенсивный поток энергии разлетается по Галактике в виде огромной спирали стремящихся наружу фотонов. Огромная плотность такого объекта приводит к сильной инерции. Так что могут пройти эпохи, прежде чем нейтронная звезда растеряет достаточно энергии, чтобы ее вращение заметно замедлилось. Скорость вращения нейтронной звезды невероятно стабильна. Радиомаяк стремительно вращающегося пульсара способен испускать сигналы с точностью, сопоставимой с лучшими атомными часами.

Поэтому стало большой неожиданностью, когда в начале 1990 года обнаружилось, что радиосигналы, достигавшие обсерватории Асерибо, содержат не только свет нейтронной звезды, вращающейся со скоростью 167 оборотов в секунду, но и кое-что еще: загадочные отклонения в регулярности вспышек излучения, истолковать которые с ходу не удалось. Словно бы часы самой Природы вдруг забарахлили!

В следующие два года обсерватория то и дело возвращалась к сигналам с этого объекта. Корпевшие над данными астрономы заметили, что непонятные отклонения сигнала имеют циклический характер с периодом в несколько месяцев. Единственное разумное объяснение состояло в том, что есть какая-то сила, которая тянет пульсар и вынуждает его вращаться по маленькой орбите вокруг точки равновесия системы, не совпадающей с центром самого пульсара. Такое смещение точки равновесия могло быть вызвано воздействием не одного, а нескольких расположенных поблизости объектов, причем не очень больших – планетного размера.

В январе 1992 года астрономы Александр Вольщан и Дейл Фрейл опубликовали статью о своем открытии в журнале «Nature». Им удалось совершить открытие, к которому столь многие так стремились. В данных с далекого пульсара они обнаружили убедительные доказательства существования первой экзопланетной системы – первого известного нам другого набора планет в нашей Галактике.





Рис. 8. Планеты, вращающиеся вокруг пульсара PSR B1257+12. Художественная реконструкция Р. Хёрта (НАСА)





На сегодня данных наблюдений этой поразительной системы накопилось уже гораздо больше, и мы знаем, что вокруг пульсара вращается по меньшей мере три тела размером с планету. Два из них обладают массой примерно в четыре раза больше массы Земли и вращаются по орбитам на расстоянии около 55 миллионов и 69 миллионов километров от пульсара – даже ближе, чем среднее расстояние от Солнца до Меркурия. Третья планета совсем маленькая, всего в 2 % от массы Земли, что сравнимо с массой Луны. Эта крошечная планетка-крупинка вращается еще ближе к пульсару, чем две ее крупные соседки.

На основании этих фактов и цифр еще нельзя создать наглядную картину, поэтому давайте взглянем на нее с другой точки зрения. Эта система настолько непривычна для нас, настолько разительно отличается от нашей, что тут же опровергает любые сколько-нибудь разумные экстраполяции всего того, что мы, по нашему мнению, знали.

Нормальной звезды у этих планет нет. Вместо нее у них всего лишь ядовитые останки, чудовищная мать, которую они обнимают тесным орбитальным хороводом. Вертящийся пульсар испускает в пространство жесткое разрушительное излучение и нагревает поверхности планет своим стальным светом. Когда звезда-предшественница пульсара погибла миллиард лет назад, произошел титанический взрыв сверхновой, и если вокруг этой звезды и вращались какие-то планеты, взрыв их уничтожил. Странные планеты, которые мы наблюдаем, – это жуткая тень былого, реликты эпохи разрушения, возродившиеся из пыли, которая слиплась и сконденсировалась под воздействием гравитации, и так получились новые миры, жестокая пародия на планеты, которым уже никогда не придется нежиться в лучах нормального солнца.

* * *

К такому никто не был готов. Первые планеты вне нашей собственной системы оказались картинкой из астрофизической преисподней. Однако вот оно, бесспорное доказательство, что за пределами Солнечной системы тоже есть объекты вроде планет. И каким бы диковинным ни было это место, оно все же подготовило почву для следующего сюрприза.

Три года спустя, в 1995 году, астрономы объявили об открытии первой планеты, которая, по надежным свидетельствам, вращается вокруг нормальной звезды вроде Солнца в системе, удаленной от нас всего на 50 световых лет. Это был очередной переломный момент в науке: мы наконец-то заручились подтверждением, что и у других звезд вроде нашей могут быть планеты, в чем мы, пожалуй, и не сомневались, просто у нас не было доказательств.

Новая планета, как и планеты вокруг пульсара, была замечена благодаря ее гравитационному воздействию на звезду-родительницу: она заставляла эту звезду двигаться по маленькой орбите вокруг точки равновесия между этими телами. Именно такое поведение звезд и планет описал Исаак Ньютон почти за четыреста лет до этого – оно прямо следовало из его теории гравитации. Колебания звезд видны по изменениям частоты света, доходящего из системы. Однако здесь есть одна тонкость, и весьма серьезная.

Эта планета совершает годовой оборот – полный круг – чуть больше чем за четверо земных суток. Более того, от нее до звезды-родительницы всего восемь миллионов километров, гораздо ближе, чем даже от Меркурия до Солнца в самой ближней точке его эллиптической орбиты – это расстояние составляет благополучные 45 миллионов километров. Но и этого мало: эта планета – отнюдь не каменная малютка, а гигант с массой больше чем в 150 масс Земли.

Можно безо всякого преувеличения сказать, что ни один физик или естествоиспытатель на протяжении двух тысячелетий письменной истории нашего вопроса не уделял сколько-нибудь существенного времени на обдумывание вероятности существования именно такой системы. И в самом деле, теория образования планет дошла до точки, где у нас появились все основания полагать, что такая большая планета попросту не может существовать так близко к звезде-родительнице. Такая великанша, думали мы, способна сформироваться только гораздо дальше, у внешнего края системы, где сочетание орбитальной динамики и более низких температур позволит ей нарастить массу и объем.

Лишь несколько ученых задумывались о том, что планетные объекты могут оказаться и в неожиданных местах, и в том числе астрофизики Питер Голдрайх и Скотт Тремейн, которые еще за 15 лет до этого изучали, как планеты могут «мигрировать» вовнутрь протопланетного диска. Так что хотя это открытие и было триумфом астрономов, которые прилежно проделали необычайно сложные вычисления, оно их крайне озадачило.

Со времени этих первых открытий сюрпризы так и сыпались. Мы обнаруживаем, что разнообразие экзопланет и их явное нежелание соответствовать нашим представлениям о том, какими должны быть планетные системы, просто поражает. Мы бы, пожалуй, смирились с мыслью, что иные миры несколько отличаются от нашего, не совсем такие, но нам и в голову не приходило, что они настолько разные. Они покрывают весь диапазон вариантов. И проливают совершенно иной свет на главный вопрос нашего исследования – наше место в мироздании. Это головокружительное разнообразие служит для нас, в сущности, введением в сравнительную планетологию – в классификацию и категоризацию видов планет и в изучение того, почему все они могут существовать.

* * *

Итак, добро пожаловать в лигу выдающихся планет. Нет, это вовсе не закрытый клуб, ведь его члены повсюду, куда ни бросишь взгляд, однако все они для нас выдающиеся и ни на кого не похожие, поскольку наше представление о Вселенной до обидного провинциально.

То, о чем я собираюсь вам сейчас рассказать, основано по большей части на информированной экстраполяции, однако мы уже начали проверять и подтверждать многие подобные спекулятивные заявления благодаря новым данным с телескопов и хитроумным приемам, позволяющим выманить сигналы и выявить размеры, температуру и даже химический состав планет. Так давайте же зайдем в клуб и осмотрим его гостиную с ее великолепной, изысканной обстановкой и блистательными, царственными обитателями. Вот там, в углу у камина, собрались планеты-гиганты, которые, пренебрегая опасностью, вращаются вблизи от своих звезд-родительниц. Это представительницы самых первых экзопланет, обнаруженных вокруг нормальных звезд. К настоящему времени они уже получили неофициальное прозвание – «горячие юпитеры» (хотя знакомую нам гигантскую планету они напоминают лишь отдаленно).

Эти планеты занимают неположенное место, однако это не мешает им быть пухлыми и иногда даже розовощекими. Вероятно, некоторые из них мигрировали туда, где мы их находим, протолкавшись через огромный диск вещества, некогда окружавший их планетную систему, и пробились в первый ряд. А может быть, их притянуло на это место, поскольку они очутились близковато к гравитационным полям других планет и совершили ошибочное па, которое и навлекло на них жгучий гнев их светил.

Некоторые из этих планет-гигантов вращаются так близко к звезде, что совершают полный круг всего за 24 земных часа, и дневная их сторона раскаляется до страшных температур – более 500 градусов. Приливные силы тянут некоторых из них так настойчиво, что там больше нет нормальной смены дня и ночи. Планеты застряли в одном положении, и дневная сторона у них навсегда осталась дневной, а на ночной царит вечная тьма, и планета остывает, глядя в холодный космос. Такое необычное положение дел привело к возникновению на таких гигантах весьма сурового климата. Жара на дневной стороне загоняет атмосферные течения на ночную и заставляет их огибать планету на сверхзвуковых скоростях, и поднимается реактивный ветер, сметающий все на своем пути, словно взрывная волна. Поскольку под газом нет ни гор, ни континентов, он гоняется сам за собой, не зная отдыха.

Высокие температуры на этих планетах приводят к всевозможным химическим и атмосферным явлениям, которые мы из Солнечной системы не можем даже распознать. На таких планетах есть угарный газ, оксид ванадия и оксид титана в газообразном состоянии, и они оказывают решающее воздействие на расположение слоев и структуру планет. Облака состоят не из воды или аммиака, а из железа и соединений кремния – раскаленные скопления тяжелых атомов. Тут уж не до пушистых зверюшек ясным летним деньком – скорее, страшные сны об Аиде.

А еще «горячие юпитеры» не гнушаются тем, чтобы подольститься к своим звездным родительницам. Гравитационная тяга вызывает приливы и волны в атмосфере самой звезды, а мощные магнитные поля непосредственно взаимодействуют с магнитным полем светила. Звезда не ограждена от своего окружения, напротив, это она подвергается влиянию планет, а не наоборот. Когда массивный горячий юпитер жужжит вокруг, словно толстое назойливое насекомое, солнечная атмосфера то и дело раздраженно вспыхивает.

Только не думайте, будто эти планеты – самодовольные великаны, сидящие в креслах у самого ревущего пламени: поймите, что некоторым из них суждено погибнуть. Они рискуют злоупотребить гостеприимством звезды. Гравитационные приливы постепенно искажают их орбиты и заставляют двигаться по спирали к центру системы – но занимает это десятки миллионов лет. А потом они либо нырнут под поверхность светила, либо разлетятся в кольцо пыли и обломков вокруг звезды, обреченное на недолгую жизнь.

Некоторые гигантские планеты навлекают на себя гнев судьбы по еще более противоестественным, с нашей точки зрения, причинам. Все планеты нашей Солнечной системы вращаются по орбите так же, как вращается вокруг своей оси Солнце – по часовой стрелке, если угодно, – однако примерно каждый пятый «горячий юпитер» поступает в точности наоборот. Эти отступники вращаются в направлении против вращения звезды-родительницы – в обратную сторону. А в результате они оказываются в рискованном положении: их орбиты неизбежно искажаются, и в конце концов они летят по спирали навстречу страшной участи.

Очень трудно разобраться, почему планеты выбирают такое неблагоприятное направление вращения. Насколько нам известно, силы, воздействующие на звезды и их планеты, на ранних стадиях формирования небесных тел заставляют их вращаться и вокруг своей оси, и по орбите в одном направлении. Все остальное обрекает их на скорую динамическую катастрофу: если планеты пытаются двигаться против вращения протопланетного диска, им попросту трудно сформироваться. Откуда же берутся экзопланетные объекты, вращающиеся в противоположном направлении?

Сказать наверняка мы не можем – слишком мало мы знаем о многих членах лиги. Однако очень может быть, что эти планеты и вправду сформировались на гораздо больших расстояниях от звезд-родительниц и двигались «как положено», но затем игра гравитационных полей других планет вынудила их вращаться по очень вытянутым эллиптическим орбитам. В итоге такие орбиты могут встать перпендикулярно плоскости системы, а потом буквально перевернуться, и тогда планета будет двигаться в противоположном направлении – наподобие гимнастического обруча, который оказывается то одной, то другой стороной кверху. В конце концов приливная гравитационная тяга звезды «выправляет» эллиптическую орбиту, возвращает ей круглую форму и подтягивает планету поближе, где мы ее и видим.

Богатый жизненный опыт придает «горячим юпитерам» довольно интересные качества. Одни раздуваются до удивительных размеров, сверх всяких ожиданий, и в результате у них получается очень низкая плотность – иногда даже меньше, чем у воды. А есть и другие планеты-гиганты, которые из-за близости к источнику энергии и особенностей истории своего формирования претерпевают самые разные химические и структурные изменения.

Особенно это заметно по наружности – по верхним слоям их атмосфер. Среда там агрессивная, однако разобраться, какие химические компоненты в ней доминируют, практически невозможно, в отличие от прохладных, но едких и вонючих дуновений кристаллизованного аммиака и метана, которые мы находим на наших Юпитере и Сатурне. В предельных случаях температуры так высоки, что роль воды играют даже атомы железа – они формируют цикл, при котором пары создают облака, а потом проливаются тяжелыми металлическими каплями.

У некоторых «горячих юпитеров» атмосфера насыщена углеродом, а это подсказывает, что и недра у них, вероятно, нашпигованы углеродом в количествах, нам непривычных. Не исключено, что в ядрах таких планет-гигантов залегают алмазные слои – и даже есть некоторая вероятность, что существуют и другие планеты, более скромных размеров, в составе которых углерода больше, чем кремния: вполне допустимый, однако совсем не привычный для нас сценарий.

Вещества вроде газообразных оксидов титана и ванадия, существующие при таких условиях, также вносят свой вклад в облик внешних слоев атмосферы, которые иногда поглощают весь падающий на них свет. Такие планеты впитывают излучение сильнее, чем самый черный уголь. Планеты чернее ночи. Только свет, который их заливает, такой яркий и сильный, что человеческий глаз все же уловит отраженное сияние – словно неумелый хамелеон пытается замаскироваться под чернильную черноту космоса.

«Горячие юпитеры» составляют обособленный класс планет и ни с кем не желают водиться. Однако рядом с ними расположилась еще одна компания – отпетые сорвиголовы, будущие «горячие юпитеры». За неимением официального названия я буду именовать их «планеты-икары». В отличие от «горячих юпитеров» орбиты у таких планет довольно большие, на один круг уходит несколько месяцев. И не круглые – в сущности, это другая крайность – узкий эллипс, один конец которого находится в десятках миллионов километров от звезды-родительницы, а другой попадает в зону досягаемости звездной «топки».

Температура на некоторых таких планетах в течение их года меняется в сотни раз. В дальних точках, где планеты движутся медленнее всего, условия достаточно терпимые. Однако когда планета приближается к своему солнцу и облетает его в ближайшей точке, температура повышается на семьсот градусов за несколько часов.

Каждый раз, когда планета приближается к звезде-родительнице, гравитационные приливы чуть-чуть замедляют ее. Пройдут миллионы лет, и планета откажется от такой нелепой орбиты – скорее всего, в результате гравитационных столкновений с другими планетами, – и постепенно перейдет на конфигурацию, больше напоминающую круглую орбиту «горячего юпитера». И когда-нибудь планета-икар примкнет к «горячим юпитерам», займет свое просторное кресло у камина, однако рано или поздно ее все равно ждет гибель в звездном пламени.

Рискуют жизнью, подбираясь слишком близко к звездам, не только планеты-гиганты, но и маленькие планеты из камня и металла, выстроившиеся в пределах десятков миллионов километров от звезд-родительниц. Некоторые из них в несколько раз массивнее Земли и, скорее всего, плотнее, и поверхность у них раскаляется до температур, заметно превышающих точку плавления всех мыслимых скальных пород.

Внешние слои таких планет, лишенные защитной оболочки атмосферы, как у гигантов, превращаются в океан лавы, в вечную геенну огненную. Даже металлические составы вроде оксида алюминия испаряются с такой поверхности и снова конденсируются в пылинки, которые сдувает звездный ветер в числе прочего пара и дыма, словно чад от космической плавильной печи.

Возможно, эти миры когда-то напоминали наш Нептун, планету, покрытую толстым одеялом из первобытного газа и льдов. Не исключено, что на нынешних орбитах они очутились в результате миграций, а здесь защитный покров развеялся и испарился. А может быть, они всегда представляли собой просто небесные тела из камня и металла, которым не повезло оказаться в нынешних суровых условиях.

* * *

Итак, на этом конце экзопланетной гостиной, поближе к камину, сидят самые разные планеты. Однако всего в нескольких шагах от них расположились объекты еще более пестрые и ошеломительно-незнакомые. Например, на соседних креслах сидит группа из девяти крупных планет, окруживших одну звезду.

Поначалу кажется, будто в них нет ничего особенно необычного: ведь и вокруг нашего Солнца вращается восемь крупных планет плюс многочисленные транснептуновые тела вроде Плутона. Так что числом девять нас не удивишь. Мы и не удивились бы, если бы не одно обстоятельство: все эти планеты вращаются вокруг своей звезды (так вышло, что это звезда примерно той же массы и того же возраста, что и Солнце) на расстояниях меньше радиуса орбиты Юпитера.

Все эти планеты, кроме двух, которые лишь немногим массивнее Земли, крупные и тяжелые – в 10, 20, даже в 60 раз массивнее нашего домика. И хотя все они плотно упакованы в ужасно тесную на первый взгляд систему, там остается место кое для чего еще. В подобных местах процессы формирования планет идут бесконтрольно – планеты выковываются одна за другой, умудряясь как-то избегать губительных последствий гравитационных взаимодействий между ними. Прямо-таки хочется подойти к таким системам и сказать: «Молодцы, молодцы!»

Теперь уже очевидно, что планетные системы и сами планеты необычайно разнообразны. Это разнообразие поразительно и само по себе, однако заставляет задавать серьезные вопросы и о том, как мы оцениваем собственную вселенскую заурядность, собственную обычность. Мы уже не просто не единственная планетная система на свете – все обстоит гораздо хуже: очень многие из этих новых планет и систем пренебрегают всеми нашими представлениями о нормальности. В некоторых системах у планет экзотические орбиты. Гравитационная динамика так организовала движение этих объектов, что периоды обращения, планетные годы, синхронизированы в виде отношений простых чисел. Например, внутренняя планета делает два оборота ровно за то время, за которое внешняя совершает один оборот. Как будто их движение – часть точно настроенного музыкального инструмента, который меняет высоту звука в соответствии с идеальной гармонией.

Этот феномен называется резонанс. Движения планет по орбитам в таких системах подчиняются этому ритму, поскольку планеты постоянно оказываются в одном и том же месте в пространстве через равные промежутки времени. А в результате гравитационные поля воздействуют друг на друга одинаково, ритмически – и поддерживают синхронизацию. Во время формирования и в ходе истории этих систем орбиты планет медленно менялись и оказались пойманы в это состояние, общее для всех планет и вызванное взаимным гравитационным притяжением, без надежды на побег.

Хотя многочисленные примеры такого рода орбитального резонанса налицо даже в нашей Солнечной системе, у нас им подчиняются почти исключительно движения мелких планет и спутников, а движение крупных планет не знает резонанса, по крайней мере, в такой степени, в какой ему подвластны некоторые экзопланетные системы. Например, орбиты малой планеты Плутон и гигантского Нептуна подчиняются резонансу – на два плутоновских года приходится три нептуновских. Специфическим закономерностям подчиняются и некоторые спутники вокруг гигантских планет. Ио, Европа и Ганимед – спутники Юпитера – подчиняются закономерности в 4, 2 и 1 оборот за один и тот же период. Однако никакие крупные планеты в нашей системе не состоят друг с другом в подобных отношениях, по крайней мере, сейчас, поскольку есть некоторые свидетельства, что когда-то, быть может, четыре миллиарда лет назад, Юпитер с Сатурном танцевали танго с ритмом один к двум.

Казалось бы, необычное положение дел, и, тем не менее, подобные резонансы наблюдаются по всей нашей Галактике довольно часто. Но есть и еще одно свойство орбит многих планет, на котором нам совершенно необходимо остановиться, поскольку свойство это, с одной стороны, весьма часто встречается, а с другой – разительно отличается от устройства Солнечной системы. Мы обнаружили, что большинство планет нашей лиги вращаются не по кругу, а по плавным эллиптическим траекториям. Именно эти эллипсы обнаружил Кеплер, когда нашел объяснение непослушных закономерностей движения планет в Солнечной системе, именно они прямо следуют из закона всемирного тяготения Ньютона. Однако орбита самой Земли имеет лишь слегка эллиптическую форму – она отклоняется от правильной окружности лишь на пару процентов. В сущности, ни одна планета нашей системы не отклоняется от окружности больше чем на 10 %, кроме Меркурия, у которого отклонение составляет 20 %.

А если мы изучим лигу планет, то окажется, что 80 % экзопланет вращаются по орбитам с эллиптичностью более чем в 10 %. В сущности, более 25 % планет по всей Галактике вращаются по орбитам, которые на 50 % «эллиптичнее» круга. Иначе говоря, если мы захотим найти место Солнечной системы в лиге планет, нам придется потрудиться, чтобы найти местечко, зарезервированное для таких, как мы. Наша Солнечная система со своими относительно круглыми, но при этом большими орбитами находится в нижней четверти таблицы эллиптических орбит. Она явно выделяется в общем ряду.

Предпочтение эллиптической архитектуры орбит указывает на целый ряд весьма важных обстоятельств. Во-первых, оно предполагает, что большинство планетных систем, может быть, более 70 %, знавали периоды так называемой динамической активности. Это означает, что в прошлом планеты, скорее всего, были расположены иначе, временами проходили ближе друг к другу и сильнее притягивали друг друга. Со временем это может вызвать довольно заметные перемены и даже разрушение системы – они так и летают по ней и иногда находят себе другое место или вовсе теряются. К этому примечательному свойству я еще вернусь, когда мы заговорим об эволюции планетных орбит и о том, как она относится к принципу Коперника, однако оно свидетельствует о том, что история большинства систем оказалась куда более бурной, чем даже самые смутные времена в нашей Солнечной системе.

Еще одна черта эллиптических орбит, важная для нашей цели, – выяснения своего статуса во Вселенной – имеет отношение к климату. Многие потенциальные кузины Земли, как правило, подвержены значительно более резким перепадам количества энергии, которое они получают от родительских звезд в течение своего года. Эта энергия – важнейший фактор, определяющий обстановку на поверхности подобных планет, поэтому для нас она крайне важна.

Разнообразие в лиге планет этим не исчерпывается: орбиты – всего лишь одна из множества их отличительных черт. Очень многие системы содержат многочисленные экземпляры из другого класса планет, представителей которого вокруг Солнца нет вообще. Это планеты, которые укладываются в диапазон размеров от чуть больше массы Земли до пяти-десяти ее масс. Они – супер-Земли, и самые маленькие из них по крайней мере смутно напоминают нашу собственную планету, хотя на самом деле они не обязательно «землеподобны» (на этом качестве мы остановимся чуть позже). Более крупные варианты могут сильно отличаться от нас. У многих, по всей видимости, есть мощная атмосфера, вероятно, содержащая много водорода. Некоторые подобные массивные объекты, вероятно, покрыты слоем воды. Иногда они насквозь проморожены. А иногда целиком скрыты мировым океаном, достигающим невообразимой глубины – в десятки, а то и сотни километров, – где давление и температура так огромны, что химико-физическое поведение воды ничем не напоминает знакомые нам земные процессы. Есть и такие, где количество воды довольно скромно или ее вовсе нет. Зато на многих из них вовсю идут постоянные бурные вулканические процессы.

Несмотря на такие суровые и нестабильные условия на поверхности, подобные планеты могут быть необычайно плодородными с химической точки зрения. Непрерывный конвейер поднимающейся к поверхности раскаленной лавы постоянно освежает химическую смесь, обогащает ландшафты густой подливкой из высокореактивных веществ. А кроме того, из-за крупных размеров геофизическая продолжительность жизни подобных планет очень велика, поскольку отношение остывающей поверхности к общему объему у них меньше. Миллиарды лет замедленной активности позволяют им выглядеть молодо гораздо дольше, чем их миниатюрным – размером с Землю – кузинам.

Здесь, прямо посередине клубной гостиной, весьма многолюдно. Супер-Земли, а также нептуноподобные планеты чуть больших размеров и объекты поменьше, размером с Землю, так многочисленны, что им приходится сидеть прямо-таки друг у друга на голове. А данные последних исследований показывают, что они предпочитают находиться на тесных орбитах, полный оборот по которым занимает считанные дни или недели. Более того, судя по всему, такой тип планет – самый распространенный на Млечном Пути. Данные исследований наталкивают на мысль, что подобные небесные тела, вероятно, превосходят числом звезды в нашей Галактике, таких планет, быть может, сотни миллиардов.

И здесь нас ждет очередной сюрприз, очередное вопиющее противоречие нашим представлениям о заурядности Солнца и Солнечной системы, заставляющее усомниться в некоторых предпосылках Коперника: большинство этих планет вращаются вокруг звезд, которые меньше и тусклее Солнца, поскольку вообще большинство звезд во Вселенной меньше и тусклее Солнца.

Проведите перепись звезд по всей Галактике – и вы обнаружите, что 75 % звезд обладают массой меньше половины Солнца, а их яркость составляет всего-навсего несколько процентов его яркости! Самые маленькие – с массой примерно в одну десятую солнечной – светятся с яркостью лишь в одну тысячную Солнца. Это тусклые красноватые шары из водорода и гелия, рассыпанные по всему космосу.

Именно таковы почти все наши звезды-соседки. В пределах 20 световых лет от нас насчитывается восемь звезд размером с Солнце или несколько больше – и при этом 101 известная звезда меньше Солнца. Даже знаменитая система Альфа Центавра состоит из трех звезд. Две из них более или менее похожи на Солнце, а третья – Проксима Центавра – обладает массой только в 13 % солнечной и яркостью меньше чем 0,2 % яркости Солнца.

Все подобные звезды так тусклы и так далеки, что их невозможно различить невооруженным взглядом, они становятся видны лишь в линзах телескопов, собирающих свет. Однако не стоит отмахиваться от них как от сущей мелочи, от стайки межзвездных мошек: задумайтесь о том, что эти мелкие звезды не просто собирают вокруг себя большинство планет в Галактике, но и живут дольше всех других разновидностей звезд. Относительно низкая температура в их недрах в сочетании с турбулентной ядерной системой пищеварения, которая перерабатывает материал звезды, приводят к тому, что водородное топливо у этих звезд кончается очень не скоро – должно пройти колоссальное время. И к тому же они пережигают его, что называется, безотходно. Примерно через десять миллиардов лет постоянного термоядерного синтеза звезда вроде нашего Солнца израсходует всего лишь 8 % своего водорода, после чего ее жизнь начнет стремительно клониться к закату. Напротив, звезда гораздо меньших размеров способна переработать 98 % своего водорода, и на это у нее уйдет более триллиона лет.

Из этого следует, что если поглядеть на лигу выдающихся планет, то обнаружишь, что подавляющее большинство из них находится в системах тусклых звезд, которые равномерно излучают энергию на свои льдисто-каменистые чада примерно в сто раз дольше, чем ожидаем мы от своего Солнца. По-моему, разумно предположить, что внешний наблюдатель, который посмотрит на Млечный Путь, вооружившись астрономическими инструментами, исследует наши края и тут же придет к выводу, что такова уж неофициальная иерархия звезд, окруженных планетами: правят балом маленькие, а те, что покрупнее, встречаются довольно редко.

А теперь отправимся в дальний конец клубной гостиной, где кресла расставлены в густой тени. Однако здесь не менее людно, чем в остальных местах. В темных глубинах кресел раскинулись самые загадочные члены клуба – межзвездные миры, бродяги, вольные странники. Это планеты без звезд и орбит. Они дрейфуют в открытом космосе.

Время от времени такие планеты становятся заметны по воздействию на пролетающий мимо свет далеких звезд. Линзоподобное искажение, возникающее из-за их массы на ткани пространства-времени, ненадолго усиливает и искривляет эти лучи, направляя их по контурам планет, которые остаются холодными и темными. Вероятно, эти небесные тела осиротели в результате мощного гравитационного воздействия на какие-то юные планетные системы, оказались вырваны из звездного гнезда и вышвырнуты в пространство – и теперь скитаются по Галактике.

Есть свидетельства существования значительного числа подобных планет-скиталиц, возможно, на Млечном Пути их не меньше, чем звезд. Их существование сильнейшим образом влияет на баланс астрофизических объектов в космосе, сдвигает его с гигантских структур в сторону мелких скоплений планетного вещества, которые создаются при бурном вращении вокруг зон, где рождаются звезды. И мы снова сталкиваемся с таким разнообразием видов и размером популяций, о каком и не подозревали.

* * *

Итак, в клубной гостиной собралась весьма разнородная компания, и чем пристальнее мы вглядываемся, тем больше разных типов различаем. На самом деле я, можно сказать, еще и не начал их перечислять – коснулся лишь тех разновидностей, о которых мы в данный момент больше всего знаем.

Например, планеты есть и во множестве систем, у которых больше одной звезды. Представляете, насколько там все не так, как у нас? Солнца-двойняшки, а иногда и тройняшки и даже больше. Зачастую такие звезды вращаются друг вокруг друга на солидном расстоянии. В таких случаях планеты вполне могут сформироваться и вращаться вокруг одной какой-нибудь звезды, а гравитация ее сверкающей сестры не очень их беспокоит. Однако есть и другие места, где планеты вращаются вокруг двух солнц, двух звезд в центре планетной системы. На небесах этих далеких планет восходят и заходят сразу два светила, и иногда они заслоняют друг друга, вызывая затмения, а иногда движутся бок о бок с утра до вечера.

Астрономы приходят к выводу, что существует великое множество всевозможных планет разного состава и с разными условиями. Миры, окутанные покровом атмосферы из паров воды или молекул водорода, планеты-океаны, где вообще нет континентов, углеродные миры с невиданной геофизикой, ледяные шары, погрязшие в вечной зиме настолько, что даже атмосфера у них замерзла и осыпалась на поверхность. Наверняка на свете есть планеты холодные и раскаленные, теплые и тепловатые, а иногда на одной планете есть все эти климатические зоны. Бывают планеты юные. Бывают древние. Бывают миры с богатым химическим составом, и одни из них залиты неведомыми соединениями, а другие больше похожи на Землю. Бывают и химически бедные планеты. Наверняка найдутся миры с кольцами из пыли или льда, вроде Сатурна. Будут и планеты, окруженные лунами, в том числе и лунами размером с Марс или Землю, быть может, даже с собственными атмосферами, океанами и материками.

Если во все это вдуматься, становятся понятны две вещи. Первая – ни наша звезда, ни наша планетная система не похожи на те системы, где обычно встречаются маленькие каменистые планеты с большим запасом воды. Иначе говоря, при всем разнообразии планет Земля и ее среда обитания несколько необычны. Это немного загадочно и очень важно. Предположим, что планеты, условия на которых благоприятны для жизни, с равной вероятностью встречаются у любых видов звезд и при любой архитектуре орбит. Если так, то мы могли бы ожидать, что подавляющее большинство пригодных для жизни планет существует вокруг звезд с низкой массой и эллиптической конфигурацией тесно сдвинутых орбит. Либо сами эти планеты, либо их сотоварищи должны быть Супер-Землями. То есть исключительно на этой основе мы вправе ожидать, что мы должны были существовать в одной из таких систем, а не в системе вроде той, в которой мы живем на самом деле.

Возможных объяснений очень много. Например, что мы живем в пригодной для жизни системе не самого распространенного типа по чистой случайности – просто реализовался маловероятный сценарий. Если да, то никаких особенно важных уроков нам это не преподает, просто так получилось, что мы живем в немного нетипичном месте. В частности, это может означать, что жизнь бурлит в самых разных местах, которые нам кажутся непривычными, – от планет, вращающихся вокруг звезд с низкой массой, до куда более экзотических миров вроде спутников планет-гигантов – на этих спутниках может быть морозный, а может быть и умеренный климат. Если жизнь – явление распространенное, она чаще возникает в таких местах, а не в редкостных уголках вроде нашей Солнечной системы.

Однако есть и другой вариант развития событий – что пригодные для жизни условия возникают у разных типов звезд и среди разных орбитальных архитектур с неодинаковой вероятностью. Не исключено, что есть что-то такое, из-за чего наши условия особенно хорошо подходят для возникновения жизни. Такой вариант означал бы, что во Вселенной в целом производится меньше жизни, чем могло бы. Если помните, я говорил, что вопрос «Насколько распространена жизнь в космосе?» – это загадка, ясного ответа на которую не дает ни принцип Коперника, ни антропная аргументация. Если окажется, что реализовался такой сценарий, это позволит нам подступиться к тому, чтобы измерить частоту возникновения жизни – и вероятность абиогенеза (естественного происхождения жизни из неживой материи). К этой важнейшей теме я еще вернусь.

Качества, которые позволяют планетам создавать системы, где более или менее возможно возникновение жизни, вполне очевидны. Главное – температура. На Земле налажено несколько шаткое равновесие, благодаря которому на поверхности и вблизи нее сохраняется большое количество воды в жидком состоянии. Жидкая вода – это уникальный природный растворитель, играющий важнейшую роль в земной биохимии и в геофизическом поведении нашей планеты. Кроме того, большое значение для того, чтобы у нас было вдоволь океанов и осадков, играют и точное расстояние от Земли до Солнца, и нынешняя яркость Солнца, и состав атмосферы Земли. Однако всех механизмов, которые задействованы в поддержании умеренного климата на той или иной планете, мы пока не знаем. Мы с коллегами, например, исследовали, как влияют на климат планет, похожих на Землю, различные орбиты, наклон осей и даже продолжительность дня. Зависимость получилась не прямая. Планеты на орбитах, гораздо более эллиптических, чем орбита Земли, вполне способны сохранять среду, насыщенную жидкой водой, в то время как на планетах, где день короче нашего, тепло не так хорошо передается от тропических экваторов к полюсам, и, вероятно, они застывают в вечных ледниковых периодах.

Список плюсов и минусов можно продолжать чуть ли не бесконечно. Влажные среды тоже могут быть разными – например, мы предполагаем, что они существуют под ледяной корой спутников вроде Европы, Ганимеда или Энцелада, фонтанирующего гейзерами, в нашей собственной Солнечной системе. Под поверхностью таких небесных тел, вероятно, залегают озера и даже океаны жидкости, и это никак не связано с жаром звезды.

Ясно, что нам недостает данных, чтобы разобраться, как ранжировать подобные вероятности, и в следующих главах я постараюсь рассортировать факты, чтобы понять, что еще можно узнать. Однако разнообразие экзопланет, вероятно, подсказывает нам в наших поисках жизни еще кое-что. Планеты, пригодные для жизни, несказанно разнообразны и по устройству орбит, и по составу и структуре самих планет. И хотя подобная пестрота многому учит нас с точки зрения планетной астрофизики, она ставит и некоторые существенные препятствия на пути науки.

Понимание основ механики, которая стоит за формированием и эволюцией планет, дается гораздо труднее, когда становится ясно, сколько взаимодействующих факторов влияют на явление в целом. Кроме того, эта многогранность создает и еще одно препятствие, которое прямо относится к нашим поискам космического значения: если это разнообразие означает, что на свете нет пары одинаковых планет, как нам оценить свое место среди них?

Выражусь иначе. Ученые любят говорить о поисках «другой Земли» или «землеподобных» планет. Это легкий способ емко назвать поиск миров, похожих на наш набором каких-то основных параметров – от размера и состава до, разумеется, условий на поверхности. Однако в этих невинных фразах таятся нешуточные сложности.

Зачастую считают, будто словосочетание «землеподобная планета» означает другую планету, которую каждый узнает с первого взгляда – с континентами, океанами, облаками, лесами и милыми пушистыми зверюшками. Получается, что наш мир служит шаблоном, образцом, с которым следует сравнивать все остальное. Это слегка отдает старыми представлениями о том, что жизнь на других планетах должна быть похожа на нашу.

Мне представляется, что на самом деле мы ищем планеты, не подобные, а эквивалентные Земле. В данном случае эквивалентность – то же самое, как если бы в автосалоне вам сказали, что нет, вам не продадут красный спортивный кабриолет, зато вы можете приобрести другой автомобиль, не красный, не спортивный, вовсе не открытый всем ветрам, но тоже с четырьмя колесами и двигателем.

В самом первом приближении требования к планете, эквивалентной Земле, предполагают, чтобы условия на ее поверхности были похожи на условия в каких-то областях Земли в наши дни или в какие-то периоды ее истории. То есть температуры должны благоприятствовать жидкой воде и самой воды должно быть в изобилии, как и химического топлива и сырья. Вероятно, нужна еще и определенная стабильность, отсутствие слишком бурных и частых перемен или избыточного излучения, разрушительного для биологических структур и объектов.

Интересный вопрос – можно ли найти подобные эквиваленты Земле в местах, которые внешне сильно отличаются от нашей родной планеты, и ответа на него нам придется подождать. Однако, прежде чем мы покинем лигу выдающихся планет и двинемся дальше, нам придется научиться у них еще кое-чему, на первый взгляд неочевидному. Наверное, вы думаете, будто то, что планеты столь разнообразны, само собой разумеется, и тем не менее из этого обстоятельства следуют некоторые достаточно сложные выводы, которые могут сыграть важнейшую роль в наших изысканиях.

* * *

За годы, миновавшие с тех пор, как в обсерватории Аресибо были обнаружены планетные объекты вне нашей Солнечной системы, мы нашли тысячи новых планет вокруг тысяч звезд. Мы уверены, что число это будет и дальше расти, поскольку у нас уже достаточно данных, чтобы делать статистические обобщения, оценить общую популяцию планет в Галактике, провести приблизительную перепись. Этим занимались многие ученые, и закономерность в целом вполне ясна.

Если нас интересуют только планеты примерно земного размера – ну, скажем, от половины диаметра Земли до четырех ее диаметров – очевидно, что на Млечном Пути их должно быть от нескольких миллиардов до нескольких десятков миллиардов. Более того, если нас интересуют только те, которые вращаются вокруг своих звезд на нужном расстоянии – таком, чтобы на поверхности были умеренные температуры и жидкая вода, – некоторые исследования оценивают галактическую популяцию таких планет более чем в 20 миллиардов, а иногда и в 40.

При подобном изобилии миров вероятность того, что одна такая планета с благоприятными условиями существует в пределах 16 световых лет от нашего Солнца – по космическим меркам рукой подать – составляет 95 %. Мощности сегодняшних телескопов хватит, чтобы изучить такую планету достаточно подробно. А завтрашнее поколение телескопов и инструментов позволяет надеяться, что мы сможем найти и признаки жизни, о чем я еще расскажу.

Установить сам факт изобилия планет довольно просто – и при этом он фундаментально меняет природу наших вопросов о существовании внеземной жизни. Представьте себе, что было бы, если бы Земля была единственной планетой во Вселенной. Мы бы точно так же задавались вопросом, какова вероятность, что на планете с такими условиями зародилась жизнь, однако ответить на этот вопрос было бы, в сущности, невозможно. Как ни соблазнительно было бы думать, что вероятность очень высока (а иначе как появилась бы жизнь на единственной планете во Вселенной?), доказать это при наличии одного-единственного примера мы бы не могли.

Но если бы в этой гипотетической Вселенной обнаружилась вторая планета, все бы разом изменилось. Была бы и она обитаемой, неважно, – само ее существование дало бы нам возможность делать математические утверждения о вероятности зарождения жизни на планетах, а также оценить вероятность нашего собственного появления. Если бы планет было еще больше, это улучшило бы ситуацию, поскольку каждый следующий ответ «да» или «нет» помогал бы нам определить, с какой частотой возникает жизнь на любой планете.

Итак, налицо неочевидное обстоятельство. Мы уже знаем, что живем во Вселенной, где планет великое множество. Из этого следует, что мы живем во Вселенной, где в принципе можно получить ответ на вопрос о вероятности зарождения жизни, о шансах на абиогенез в каком-нибудь подходящем мире, – при условии, что у нас будет вдоволь времени и технологических умений.

То, что космос должен быть именно таким, – вовсе не данность. Планет могло быть очень мало – и мы все равно существовали бы на одинокой Земле и задавались бы тем же вопросом, просто так и остались бы навеки без ответа. А открытие такого количества планет возвращает нас к идее, о которой я писал в самом начале книги, – к антропному принципу. Возможно, читатель отметит, что Вселенная не просто настроена так, что жизнь может возникнуть в ней по крайней мере однажды, – похоже, она настроена так, чтобы жизнь заинтересовалась своим происхождением и вероятностью абиогенеза.

Мы не знаем в точности, какие из этого можно сделать выводы, по крайней мере, пока. Но это очень интересно – тут сомневаться не приходится; и еще нам определенно нужно будет пересмотреть свои воззрения по мере того как мы углубимся в дальнейшие исследования, не только в пространстве, но и во времени.

Чтобы примириться с идеей Вселенной, полной планет, нам пришлось выйти далеко за пределы привычных рамок. Мы были вынуждены пересмотреть самые разные древние фантазии о неведомых мирах. Как я уже показал, нам пришлось исправлять собственные ошибки, перестать считать, что наша Солнечная система – характерный представитель себе подобных.

Если бы обнаружить даже самые близкие экзопланеты не было так технически сложно, мы бы добрались до этого этапа гораздо раньше, а так при попытках приглядеться к этим тусклым искоркам вокруг сияющих звезд нас ждет множество неожиданностей. Казалось бы, изобилие планет подтверждает наши коперниковские идеи, однако их разнообразие сильно смазывает картину. Судя по некоторым признакам, мы обитаем в несколько необычном месте, и в этом таится намек на то, что нам нужно расширить понятие тонкой настройки Вселенной. Однако на этом история не кончается. Дело в том, что лига выдающихся планет отражает лишь сиюминутный срез истории наших космических соседок. Когда мы сравниваем их с нашей Солнечной системой, то основываемся зачастую на простом наборе параметров, зафиксированных во времени. Между тем сегодняшние условия отражают лишь миг в истории, насчитывающей 4,5 миллиарда лет прошлого и 5 миллиардов лет будущего нашего Солнца и его планет. Так есть ли смысл основывать все свои выводы на таких узких представлениях? Был бы, если бы системы планет были как заводные – бессмертные, неизменные и предсказуемые. Но ведь это не так. Поэтому в следующей главе я открою одну грязную тайну небесной механики, которую тщательнее всего хранят, поскольку она объясняет, почему мы в своем уравнении значимости должны обязательно учитывать ход времени и вероятность перемен.

Назад: Биография в десять миллиардов лет
Дальше: Великое заблуждение