Книга: Понятная физика
Назад: ЧАСТЬ II
Дальше: Глава 5. Переменный ток

Глава 4. Электрический магнетизм

§ 36. Опыт Эрстеда

Опытами доказано, что электрическое поле сохраняется вокруг заряженной частицы, даже если она остаётся одна. Электрон и в вакууме является носителем электрического поля. На этом принципе работают все электронные лампы. К сожалению, многочисленные попытки найти частицы, несущие «магнитный» заряд, ни к чему не привели. Образец магнетита, который является природным постоянным магнитом, можно распиливать пополам множество раз, но у каждой новой половинки мгновенно возникает и северный и южный полюс.
Заметим, что линии «магнитного» поля, которые так любят демонстрировать в опытах с железными опилками, всегда замкнуты. Ключевое слово здесь «всегда». Представим, заряженная частица движется вдоль магнитной линии и возвращается в исходную точку. Энергия частицы не изменилась, значит, никакой работы поле не произвело. Действительно, многочисленные опыты показывают, магнитное поле работу не производит. Для нашего подхода это означает, что магнитное поле существует только на бумаге. То, что по традиции называют «магнитным полем», является свойством электрического поля, которое проявляется при движении заряженных частиц. Когда говорят, «действует магнитное поле», мы должны понимать, что работает электрическое поле, которое приобретает дополнительное действие при движении его носителя. Следует признать, за прошедшие почти два столетия теория магнетизма получила такое развитие, что её результатами пользуются все. Мы тоже будем применять понятия магнитной теории, чтобы не отходить далеко от традиционного курса. Иначе нас не поймут. Обратимся к опытам.
В 1820 году Эрстед пропустил через провод электрический ток и поднес магнитную стрелку. Стрелка отклонилась. Если провод с током действует на магнит, значит, вокруг провода с током возникает такое же поле, какое существует вокруг природного магнита, предположил Эрстед. Он объявил, что вокруг провода с током возникает магнитное поле и обозначил его буквой H. Заметим, в медном проводе никакого природного магнетизма нет, но легкая катушка с током повернётся возле провода с током точно так, как стрелка из магнетита. На этом основана работа любого прибора электродинамической системы. В них взаимодействуют электрические поля катушек с током. Справедливости ради стоит сказать, что в 1820 году об электронах ничего не знали.
Располагая одинаковые магнитные стрелки вокруг провода на расстоянии R, Эрстед выяснил, что напряженность поля вдоль окружности L = 2πR постоянна по величине и направлена по касательной к ней. Такое поведение поля теоретики называют циркуляцией. Эрстед предположил, что ток создает вокруг себя циркуляцию магнитного поля, которая пропорциональна силе тока. Остаётся найти связь силы тока, порождающего циркуляцию поля H, с электрическим полем E, возникающим вокруг провода с током I = Q/t.
Для составления уравнения можно обратиться к теореме Гаусса, согласно которой поток поля E вблизи провода равен Е S = Q/ε0 = I*t/ ε0, где S – поверхность провода.
Учитывая, что S = 2πrl, где r – радиус, l – длина провода, можно написать: Е = Q/2πrlε0 = It/2πrlε0, или: Е/t = I/2πrlε0 (36.1). Умножим обе части (36.1) на ε0 и введем обозначения: I/2πrl = j (плотность тока), и Еε0 = D (так называемое поле электрического смещения). Тогда уравнение (36.1) переходит в уравнение j = D/t (36.2). Другими словами, скорость изменения электрического смещения равна плотности тока, которая, как указал Эрстед, пропорциональна напряженности циркуляции магнитного поля Н. Это простое уравнение равносильно второму принципу Максвелла: «Циркуляция магнитного поля пропорциональна скорости изменения поля электрического смещения».

§ 37. Опыт Фарадея

В 1821 году Фарадей взял коробку из-под булавок и выломал у неё дно. На боковые стенки он намотал тонкий изолированный провод, столько витков, сколько поместилось. Получилась прямоугольная обмотка в виде рамки. Подвесив рамку на нити в поле постоянного подковообразного магнита, он пропустил через обмотку ток. Рамка повернулась вокруг вертикальной оси так, что линии магнитного поля прошли через её середину. Фарадей предположил, что у рамки с током появились полюсы, как у природного магнита.
Что же случилось с полем прямого провода с током после того, как его намотали на стенки коробка? Пока провод был прямым, вокруг него циркулировало поле. Линии этого поля были окружностями. При сгибании провода в виток линии поля сгустились внутри витка, но стали реже снаружи. Когда витками покрылась все стенки, линии внутри коробка сгустились ещё больше и выпрямились. Так сформировалось однородное поле. Фарадей решил, что внутри рамки возникло магнитное поле и она повернулась в однородном поле подковообразного магнита, как повернулась бы стрелка компаса.
Опыт Фарадея является обратным по отношению к опыту Эрстеда. В опыте Эрстеда прямой ток создавал циркуляцию поля. В опыте Фарадея циркулирующий ток создавал прямой поток поля. Сам Фарадей сформулировал результат опыта так: циркуляция тока по замкнутому контуру создает внутри контура поток магнитного поля. В дальнейших опытах Фарадей установил, что вращающий момент рамки с током (произведение ширины рамки на силу взаимодействия рамки с внешним магнитным полем) пропорционален длине рамки. Учитывая, что произведение длины на ширину дает площадь, Фарадей предложил характеризовать магнитное поле внутри рамки потоком магнитного поля: Ψ = n Н S (37.1), где S – площадь сечения рамки, n – количество витков провода в рамке.
На результатах опытов Эрстеда и Фарадея Максвелл построил половину своей теории электромагнетизма. Уравнения Максвелла на языке векторного анализа описывают то, что Эрстед и Фарадей установили опытным путем. В нашем энергетическом подходе эти результаты можно объяснить еще проще. В опыте Эрстеда электрический ток на прямом участке провода создает вокруг себя циркуляцию электрического поля, в которой лини поля являются концентрическими окружностями. В опыте Фарадея циркуляция электрического тока в витках провода создает внутри рамки поток электрического поля. В уравнении (37.1) под магнитным полем H следует понимать электрическое поле E, поскольку магнитное поле работать не может, а рамка с током всё же поворачивается! Иначе не объяснить работу приборов электродинамической системы, в которых взаимодействуют две обмотки. В этих приборах ток от источника питания проходит через неподвижную обмотку и создает внутри образцовый поток поля. Измеряемый ток, проходя через подвижную рамку, создает внутри неё опытный поток поля. При взаимодействии двух потоков возникает момент силы, который поворачивает рамку вместе с измерительно стрелкой вокруг оси. Угол поворота зависит от упругости пружинок, на которых подвешена рамка. Это работа электрических полей, вклада от магнетизма здесь нет.

§ 38. Магнетики

Теория магнетизма была призвана объяснить магнитные свойства материи. Коэффициент μ, показывающий, во сколько раз среда усиливает магнитное поле, назвали магнитной проницаемостью. Если μ меньше единицы, значит, данное вещество ослабляет поле. Такие материалы называют диамагнетиками (аналогично диэлектрикам, которые ослабляют электрическое поле). Пример диамагнетика – висмут. Вещество, которое незначительно усиливает магнитное поле, называют парамагнетиком. Пример – платина. Материалы, которые в разы (некоторые – в десятки раз) усиливают магнитное поле, называют ферромагнетиками. Пример, естественно, железо.
Природную намагниченность ферромагнетиков можно объяснить тем, что в расплавленном состоянии атомы ферромагнетика сцепляются в кольца из десятков и даже сотен атомов. При застывании расплава кольца соединяются в трубки длиной в тысячи атомов. Такие трубки состоят из миллионов атомов, у которых внешние электроны являются общими. Эти электроны легко циркулируют по поверхности трубок, создавая внутри потоки электрических полей Ф (в магнитной теории – магнитные потоки Ψ). Внешнее поле упорядочивает циркуляцию электронов по «стенкам» трубок, ориентируя потоки внутренних полей вдоль направления внешнего поля. При этом поля трубок складываются с внешним полем, усиливая его. Если ферромагнетик нагреть выше определенной температуры, связь между атомными кольцами разрушается и ферромагнетик превращается в обычный парамагнетик.
Во времена Эрстеда считали, что магнитное поле создается двумя типами магнитных «зарядов»: северным (n) и южным (s). Коллеги Эрстеда брали закон Кулона, заменяли в нем переменные q1, q2 на n, s и формально получали силу магнитного взаимодействия Fm. Разделив Fm на s, они получали напряженность магнитного поля в виде: Н = Km n / r2 (38.1), где n – величина «северного» магнитного заряда. Фарадей первым стал характеризовать магнитное поле не формально, напряженностью Н, а индукцией поля B, которую он определял по величине наибольшего вращающего момента, когда рамка с током параллельна линиям поля: B = Mmax/IS (38.2), где I – сила тока, S – площадь рамки. Было бы справедливее, если единица магнитной индукции называлась фарада, а не тесла (Тл), как это принято сейчас. Индукция внешнего поля равна 1 Тл, если оно создает для рамки площадью 1 м2 и током 1 А момент Мmax = 1 Н*м.
Позже было доказано, что раздельных магнитных зарядов не существует, а магнитную стрелку всегда поворачивает пара сил (от южного и северного полюса), создавая вращающий момент. Таким образом, прав оказался Фарадей.
Назад: ЧАСТЬ II
Дальше: Глава 5. Переменный ток

Виктор Оськин
Фотоны - это не частицы, а пучки ЭМВ, которые формируются согласно закона Ампера о взаимном притяжении проводов при протекании по ним тока в одном направлении.
Альинзет
Эффект Дебройля говорит о том что вакуума нет а атомы колеблются от толчков эфира мелких частиц и нехрен фантазироватьне реальные частицы
али
55